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Abstract—We consider n individuals described by p standardized 

variables, represented by points of the surface of the unit hypersphere 
Sn-1. For a previous choice of n individuals we suppose that the set of 
observables variables comes from a mixture of bipolar Watson 
distribution defined on the hypersphere. EM and Dynamic Clusters 
algorithms are used for identification of such mixture. We obtain 
estimates of parameters for each Watson component and then a 
partition of the set of variables into homogeneous groups of 
variables. Additionally we will present a factor analysis model where 
unobservable factors are just the maximum likelihood estimators of 
Watson directional parameters, exactly the first principal component 
of data matrix associated to each group previously identified. Such 
alternative model it will yield us to directly interpretable solutions 
(simple structure), avoiding factors rotations. 

 
Keywords—Dynamic Clusters algorithm, EM algorithm, Factor 

analysis model, Hierarchical Clustering, Watson distribution. 

I. INTRODUCTION 
HERE is a large variety of hierarchical clustering methods 
that may be used to cluster either individuals or variables 

([1]-[3]). 
Considering that variables under study are previously 

standardized and then represented by points of the unit sphere 
in ࣬௡ (n individuals), we present a probabilistic approach for 
the classification of variables based on the identification of a 
mixture of Watson distributions. For the mixture 
identification, we use EM and dynamic clusters algorithms, 
which yield us a partition of the initial set of variables into K 
clusters of variables. 

In classical approach the p variables are previously chosen 
and the n individuals are randomly selected from a population 
of individuals. In our approach the n individuals are 
previously considered and the p variables from each cluster 
(i=1, …, K) are randomly selected from a specific population 
of variables. 
Each cluster of variables can be considered a random sample 
of variables from a specific Watson distribution. It means that 
our proposal give an innovative contribution for the so called 
a priori selection of variables problem ([4]-[7]). 

We will evaluate clusters obtained by these algorithms, 
using measures of within-groups variability and between- 
-groups variability. 

It was shown that maximum likelihood estimate of 
directional parameter ࢏ܝ of Watson distribution associated to 
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cluster i, is just the first principal component of data matrix 
represented such cluster ([6]). 

Such conclusion allows us to define an unobservable factor 
for each identified cluster and a factor analysis model, where 
factors are generally correlated and final solutions are directly 
interpretable avoiding factors rotation. 

II. THE WATSON DISTRIBUTION ON THE HYPERSPHERE 
We consider a particular case of Watson distribution 

defined on the hypersphere, the bipolar Watson distribution, 
denoted by Wn(u,κ ), with probability function given by  
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This distribution has two parameters: a directional 

parameter u and a concentration parameterκ , which measures 
the concentration around u. It is rotationally symmetric around 
the principal axis u. 

If x comes from the bipolar Watson population Wn(u,κ ), 
then for large κ  (see [8], p. 236): 
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Let ൣܠଵ|ܠଶ| ڮ |  ௣൧ be a sample of variables from the bipolarܠ

Watson distribution Wn(u,κ ). It can be shown ([6]), that 
maximum likelihood  estimator of the parameter u is the 
eigenvector of the orientation matrix Τ ൌ ∑  ௜ܠ௜ܠ

′௣
௜ୀଵ associated 

to the largest eigenvalue w. So it follows that the maximum 
likelihood estimator of the directional parameter u based on 
the sample of variables is the first principal component of the 
matrix representing such sample. Additionally, the maximum 
estimator of the parameter κ  is the solution of the equation 
ܻሺκ ሻ ൌ ௐ

௣
 where the function ܻሺ. ሻ is defined by ܻሺκ ሻ ൌ
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III. IDENTIFICATION OF A MIXTURE OF BIPOLAR WATSON 
DISTRIBUTIONS  

The probability density function of a mixture with K bipolar 
Watson components on hypersphere is given by 
 
߮ሺܠ; ߶ሻ ൌ ∑ ,୧ܝ|ܠ௜݂൫ߨ κ ௜൯,௞

௜ୀଵ ܠ ,    א ܵ௡ିଵ, ࢏ܝ א ܵ௡ିଵ, κ i>0, 
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where π୧, i =1, ..., K are the mixture proportions, 0 ൑  π୧  ൑
 1, , ୧׊ ∑ π୧

K
୧ୀଵ  ൌ  1; ݂൫ܝ|ܠ௜, κ ௜൯  is the density function of the 

ith component of the mixture, then the density of 
௡ܹ൫ܑܝ, κ ௜൯ , and ׎ ൌ  ൫ܝଵ, ڮ , ,௞ܝ κ ଵ, ڮ , κ ௞, ,ଵߨ ڮ ,  ௞൯ ݅sߨ

the parameter vector of the mixture. 
For obtaining a partition of the set of variables 

൫ܠଵ|࢞ଶ| ڮ  ௣൯ into K groups of variables, we considered theܠ|
EM algorithm and the Dynamic Clusters algorithm ([9]-[11]), 
To analyze the performance of the EM and dynamic clusters 
algorithms, we can use the variability measures between 
groups and within-groups ([12]). 

The between-groups variability measure is defined by  
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and the within-groups variability measure defined by  
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where ௜ܺ ൌ |௜ଶܠ|௜ଵܠൣ ڮ  ௜௣೔൧ represents the sample ofܠ|
,௜ܝ௜variables of ith subpopulation ௡ܹ൫݌ κ ௜൯, ݅ ൌ 1, ڮ ,  ,ܭ
݌ ൌ ∑ ௜݌

௄
௜ୀଵ  denotes the total number of variables, ܝෝ௜ is the 

eigenvector associated with the largest eigenvalue ߣመ௜ de 
κ෢௜ܺ௜ ௜ܺ

 ෝ is the eigenvector associated with the largestܝ , ′
eigenvalue ߣመ of ∑ κ෢௜ ௜ܺ ௜ܺ

′௄
௜ୀଵ  and κ෢௜ is the maximum 

likelihood estimate of the concentration parameter κ ௜. 

IV. AN ALTERNATIVE FACTOR ANALYSIS MODEL  
The basic common factor model is usually expressed as 

 
ܺ ൌ ′ܣܨ ൅ ܷ, 

 
where X is the p-dimensional vector of observable random 
variables (in our context standardized variables), F is a k-
dimensional vector of unobservable variables called common 
factors , U a p-dimensional vector of unobservable variables 
called unique factors and A is pxK matrix of unknown 
constants called factor loadings. There are p unique factors 
and it is generally assumed that the unique part of each 
variable is uncorrelated with each other or with their common 
part. Generally it is also assumed that the factors themselves 
are uncorrelated. However, for interpretable purposes it is 
often necessary a factor rotation (orthogonal on even oblique 
rotation) in order to obtain a simple structure. 

In such model we suppose the multinormality of 
observations and usually we estimate factors loadings by 
maximum likelihood methods, yielding us to the 
representation of variables. In a second step we estimate the 
common factors by regression yielding us to the representation 
of individuals. The two steps procedure is preceded by a 
choice for the number of factors in almost the cases justified 

by auxiliary information. 
On approach consider a new factor analysis model named 

common and residual factor analysis model, 
 

ܺ ൌ ᇱܣܨ ൅ ܷ, 
 

where F is the factor matrix obtained by the K first principal 
component of each cluster identified, loading matrix A is 
obtained by regression and ܷ represents the residual matrix, X-
FA’. In our proposal the factors F can be or not correlated, so 
we can achieve directly interpretable solutions avoiding 
rotation factor. 

V.ILLUSTRATION 
We used aggregate data at firm level provided by 

Portuguese Bank Association. We considered 26 Portuguese 
banks with information on 17 variables that describe both the 
labor and product markets of the banking sector. These 
variables are Share of workers by occupation: managerial 
(pf1), technical (pf2), administrative (pf3), Share of workers 
with tenure: below 6 years (pten1) and between 6 and 11 years 
(pten2); Share of workers by commercial activity (pact1); Net 
situation of the bank (NSeuros), Number of employees per 
bank (Nemp), Tax of return of the investment (ROA), Market 
share (Share), Age of the bank (Age), Wage, Profit per 
worker, real (Profit), Capital labor ratio (Kaplab), Profit per 
worker, non-real (RBemp), Asset per worker (Asset) and Sales 
of the bank per worker (Sales). 

A factor analysis solution was obtained, considering the 
previous assumption that each group of variables is a random 
sample of Watson population with specified parameters 
estimated by maximum likelihood method. 

Since the EM algorithm and Dynamic Clusters algorithm 
require the number of components of the mixture, we applied 
the hierarchical clustering method based on the linear 
correlation coefficient and complete linkage criterion, which 
suggested three components. A Q-Q plot for the sample of 
variables represented in Fig. 1 suggests a mixture of three 
Watson components.  

 

 

Fig. 1 Chi-square Q-Q plot for the sample of variables 
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Such components were obtained by EM algorithm and the 
final solution was  
Group 1: { Wage, RBemp, Asset, Sales} 
Group 2: { pf1, pf2, pf3, pten1, pten2, ROA, Age, profit} 
Group 3: { NSeuros, Nemp, pact1, Share, Kaplab} 
and matrix F is obtained doing 
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In Fig. 2, we can see the representation of variables from 

group 1 in relation to first principal component of this group. 
 

 

Fig. 2 Representation of variables from group 1 on first axis 
explaining 70.9% of total inertia of such group 

 
The linear correlation coefficients between 3-factors and 

initial standardized variables (Table I) suggest a simple 
structure outcome where factors are directly interpretable, 
avoiding factor rotations. 

 
TABLE I 

LINEAR CORRELATIONS BETWEEN THE VARIABLES AND THE FIRST PRINCIPAL 
COMPONENT OF THE GROUPS 

Variables Group 1 Group 2 Group 3 
Wage 0.81 -- -- 

RBemp 0.88 -- -- 
Asset 0.76 -- -- 
Sales 0.89 -- -- 
pf1 - 0.38 -- 
Pf2 -- 0.88 -- 
Pf3 -- 0.86 --- 

pten1 -- 0.82 -- 
pten2 -- 0.76 -- 
ROA -- 0.45 -- 
Age -- 0.55 -- 

Profit -- 0.58 -- 
NSeuros -- -- 0.89 
Nemp -- -- 0.97 
Pact1 -- -- 0.72 
share -- - 0.90 

kaplab -- -- 0.57 
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