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Abstract—In this paper, 3D image based composite unit cell is 

constructed from high resolution tomographic images. Through-
thickness thermal diffusivity and in-plane Young’s modulus are 
predicted for the composite unit cell. The accuracy of the image 
based composite unit cell is tested by comparing its results with the 
experimental results obtained from laser flash and tensile test. The FE 
predictions are in close agreement with experimental results. 
Through-thickness thermal diffusivity and in-plane Young’s modulus 
of a virgin C/C composite are predicted by replacing the properties of 
air (porosity) with the properties of carbon matrix. The effect of 
porosity was found to be more profound on thermal diffusivity than 
young’s modulus. 
 

Keywords—Porosity, C/C composite, image based FE modelling, 
CMC. 

I. INTRODUCTION 
T is well established that the presence of manufacturing 
porosity in ceramic matrix composites (CMCs) has a direct 

effect on their thermal and mechanical properties. As a result, 
it is essential to predict thermal and mechanical properties of 
CMCs at an early stage in the design process [1]. 
Unfortunately, due to lack of homogeneity in woven fibre 
reinforced composites, it is not always possible to calculate 
the equivalent thermal and mechanical properties of such 
materials by using a specific set of equations such as the rule 
of mixture. For such materials with complex architectures, 
finite element method has been employed with a high degree 
of reliability and accuracy. This has led to a reduction in the 
amount of experimental work and hence the design and 
development costs. However, the geometrical complexity of 
the manufacturing porosity makes it impossible to be 
modelled. Due to that, the image based modelling technique, 
which allows a detailed 3-D model of a specimen to be created 
from high resolution tomographic images, has been used in 
this study. 

 In this work, the thermal and mechanical behaviour (with 
and without porosity) of a 2D C/C composite is investigated 
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using the image based finite element modelling technique. The 
real macro-structures of the composite, directionality of the 
carbon tows, and the presence of different phases, including 
all types of porosity, are taken into account by converting 
tomographic images to a detailed 3D finite element model of 
the composite unit cell. 

II. EXPERIMENTAL SET UP 

A. Material under Investigation 
A carbon matrix composite reinforced with 

polyacrylonitrile (PAN) carbon fibres was provided by the 
XingheMuzi Carbon Co. [2] for use within this study. This 
composite was fabricated from ten layers of a 2D 2/2 twill 
weave cloth, using the liquid impregnation technique. The 
principle of this technique is to infiltrate the reinforcement 
preform with liquid polymeric resin, followed by pyrolysis to 
convert the resin into carbon matrix. Further cycles of 
impregnation are then used to densify the composite. Finally, 
the composite is carbonised by heating to 2300oC.  

B. X-ray Tomography 
A Nikon Metris Custom Bay laboratory X-ray micro-

tomography instrument was used to acquire raw 3D 
tomographic data on the C/C composite. In X-ray micro-
tomography, the specimen is irradiated with an X-ray beam 
and the reduction in X-ray intensity measured after 
transmission through the sample. Some of the X-ray photons 
are absorbed by the sample, while the remainder pass through 
the specimen and are measured by the detector. A series of 
projections at different angular rotations from 0° to 360° were 
taken to acquire a 3D representation of the composite. 

C. Laser Flash Test 
The through-thickness thermal diffusivity of the C/C 

composite was measured by using a laser flash system (Model 
LFA 457, NETZSCH Group, Germany). This technique was 
first proposed by Parker et al. [3]. It works on the principle of 
applying a laser pulse on the entire front face of a disc 
specimen for few milliseconds, and recording the temperature 
changes as a function of time on the opposite face of the test 
piece. From the recorded data the required time to reach the 
temperature equivalent to half of the maximum temperature, 
which is called the half rise time (t1/2), is obtained. Thermal 
diffusivity is then calculated as follows:  
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