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Improved robust stability criteria of a class of
neutral Lur’e systems with interval time-varying
delays

Longgiao Zhou, Zixin Liu*, Shu Lii

Abstract—This paper addresses the robust stability problem of a
class of delayed neutral Lur’e systems. Combined with the property
of convex function and double integral Jensen inequality, a new
tripe integral Lyapunov functional is constructed to derive some new
stability criteria. Compared with some related results, the new criteria
established in this paper are less conservative. Finally, two numerical
examples are presented to illustrate the validity of the main results.

Keywords—Lur’e system; Convex function; Jensen integral in-
equality; Triple-integral method; Exponential stability.

[. INTRODUCTION

S one of the most important classes of nonlinear sys-

tems, Lur’e system received many researcher’s attention,
because it includes many nonlinear physical systems such as
Lorenz, Chua, and L system as special cases.

Since the notion of absolute stability was first time in-
troduced by Lur’e in [1], the stability analysis for Lur’e
system has been extensively researched (see [2]-[6]) in the past
decades. However, because of the existence of time delays,
stochastic disturbances, parameter uncertainties and so on, the
convergence of Lur’e system may often be destroyed. This
makes the design or performance for the corresponding closed-
loop systems become difficult. Therefore, the stability analysis
of delayed Lur’e system becomes very important. Up to now,
various stability conditions have been obtained, and many
excellent papers and monographs have been available (see
[7]-[12]). Generally speaking, these so-far obtained stability
results for delayed Lur’e system can be mainly classified into
two types: that is, delay-independent and delay-dependent.
Since sufficiently considered the information of time delays,
delay-dependent criteria may be less conservative than delay-
independent ones when the size of time delay is small. For
delay-dependent type, the size of the allowable upper bound
of delay is always regarded as an important criterion to
discriminate the quality between different criteria.

Recently, a great deal of effort has been done to the
stability analysis of delayed Lur’e system with sector and slope
restricted nonlinearities. To enlarge the feasibility region of the
stability criteria, by introducing variables in cross-term, P.G.
Park researched a new bounding technique in [13]. Concerning
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the descriptor method for delayed system, an extensive work
was developed by Fridman in [14]. By employing linear matrix
inequality and matrix decomposing technique, J.W. Cao et al
[6] researched the absolute stability problem of Lur’e control
systems with multiple time delays and nonlinearities, and
established some improved delay-dependent criteria. In [15],
Souza et al dealt with the robust stability problem by extending
the existing technique. By using genetic algorithm, Yu and
Lien studied the stability and stabilization problem in [16]. For
reducing the conservatism, free-weighting technique is also
introduced to research the stability problem of Lur’e system,
and some new improved criteria were established by Y. Chun
in [18].

On the other hand, it can be see that the Jensen in-
equality used in these references only focused on the
relationship between f: Lal(s )Qx( )ds and (f:iT x(s))T

jt s)ds) or between f ft+9“)3 (s)Qx(s)dsdf and

f_ ft+9 x(s)dsdf)T f ft+9 s)dsdf). One nature
questlon 1s whether there ex1sts a relatlonshlp between
ft s)ds and f ft+0 5)dsdf)TQ( f ft-s-o
x(s )dsd&) Thls idea motivates  this study. By using
the property of convex function, we estabhsh the re—
lationship between fth T(5)Qz(s)ds and ( f ff+9
dsd@)TQ(fBT f;e:x(s) dsdf). On the basis of this new
established inequality relationship, a class of new Lyapunov
functional including triple-integral is proposed, and some less
conservative delay-dependent stability criteria are derived.
Finally, two numerical examples are presented to illustrate the
validity of the main results.

II. PRELIMINARIES
Consider the following delayed neutral Lur’e system:

y(t) — Cy(t — h(t)) = (A+ AA(t))y(t)

+(B+AB())y(t —7(t)) + (D + AD()) f(a(t)), 0

o(t) = HTy(t), vt > 0,

y(s) = ¢(s), s € [=maz{hy,7u},0],
where y(t) € R"™ denotes the state vector; o(t) € R™ is
the output vector; H = (hy,ha,  + ,hpm)nxm € R™™,;

f(o(t)) € R™ denotes the nonlinear function in feedback
path, which has the following form:

flo(®) = [f1(o1(t)), f2(o2(t)), -+, fn(om(t)]"
o(t) = [o1(t),02(t), - ,om(t)]" 2
2 [hiy(t),h3y(t), - hyy(®)]"
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which satisfies a sector condition with f,( ), (i=1,2,---,m)
belong to sector [I; 1], where I;,l} are known constant
scalars. C, A, B, D are constant know matrices of appropriate
dimensions. AA, AB,AD denote the time-varying uncer-
tainties, which are assumed to satisfy [AA, AB,AD]

W F(t)[En, Es, Es], where W, Ey, E5, E3 are know real con-
stant matrices, and F(t) satisfies | F(¢) ||< 1,v& > 0.
The delay 7(¢) is assumed to satisfy: 0 < 7, < 7(¢) <
Tuy T(t) < 7 < 1. Note L= = diag(ly,l5, - ,1,;),
Lt = diag(lf,15,--- ,1F). For further discussion, we can
make a translation for system (1) as follows. For any matrices
Ny, Ny of appropriate dimensions, by using Newton-Leibnitz
formula, we can obtain the following zero equations:

Witrat)~ [ worts— [ [ itopasan <o
No[my(t) — /ttﬂ y(s)ds — /Oﬂ /t; y(s)dsdf] = 0.

By using above two zero equations, system (1) can be rewritten
as

y(t) = Cy(t — h(t)) + (A+TuN1 + T N2)y(t)
+ By(t —7(t)) + Df(c(t)) + Wp(t)

- Nl(/ s)ds + / / s)dsdf)
t—Ty —Tu +9

— No (/ s)ds + / / s)dsdb),
t—7 —T +9

p(t) = F(t)q(t),
q(t) = Evy(t) + Eay(t — 7(1)) + Esf(a(t)).

3)

Before deriving the main results, the following lemmas are
needed.

Lemma 2.1: [18] For any positive definite symmetric con-
stant matrix () and scalar 7 > 0, such that the following
integrations are well defined, then

/_r /t+(9
_ /_T/+9 s)dsdf) TQ/ /:_oy(s)dsde).

Additional, the result on integral inequality obtained by J.H.
Park in [19] can be redescribed as

Lemma 2.2: [19] For any positive definite symmetric con-
stant matrix (), any matrix F' of appropriate dimensions, and
scalar 7 > 0, such that the following integration are well
defined, then

s)dsdf <

0
- [T @Qis)ds < W FEW-+€T (OFT QT e,

where &(t) 1s an augmented vector of appropriate dimensions
including ft s)ds as a sub-vector.

III. MAIN RESULTS

In this section, we attempt to establish some new practically
computable stability criteria for system (1). By constructing
a new Lyapunov functional including tripe-integral item, we
obtain the following stability result.

Theorem 3.1: For given scalars 7; > 0,7, > 0,7 > 0,
L~ = diag(iy ly, ---,1;), LT = dmg(l1 , l+ ERNARE
system (1) is globally exponentially stable if p(C) <1
and there exist positive definite diagonal matrices D =
diag{dy,ds, - ,d}, Ay = diag{hi, Aae - Aa}, Ay =
diag{oy, oo, -+ ,an}, I' = diag{y1, Y2, -+ ,Yn}, symmetric
positive definite matrices P, Q1 ,Q1, Q2, @3, 4, and arbi-
trary matrices Fy, Fo, N1, No, M1, Mo, Ms, M, of appropriate
dimensions such that the following condition holds:

= FT FT
2
* —%Qz 0 <0,
2
* * *%Qs

where = = (Z;;)
En=(P—L HH" A+ LTHHT D)(A+7,Ny +71Ny)

+HA+ 7Ny + 1 No) (P~ L"HHTAy + LTHH" D)”
+Qu + (P +72)HAo(LT — L7)HT
+211Q1 4 27,Q1 —2HL TLTHT,
By =ATM],
Si3=PD—- L HH"A\D+L*HH"DD
+H(A+ 7Ny +1No)T (A — D)H
+HT(LY + L™) + Ar MY,
4 =PB—L HH"AMB+L"HH"DB,
Ei5=PC— L HH"A,C + LYHH"DC + A" MY,
E16 = PNy — LHH"A Ny + LYHH' DN, = Z4 4,

i,j=1,2,---,12, and

Z17= PNy — L HH"A\N, + LYHHT DN, = E, 13,
Eii2=PW - L HH'MW

+LYHHT"DW + A" MY,
2 2
_ T 72
Eao = 5[@2 + ?Qs — Mz — Mj,

Eoz = —M; + M3 D,

Hos = M3B, Zp5 = —MJ} + MsC,

Eo10 = MW — M,

Z33 = H'(A\D — DD)

+(AMD — DD)TH — 2T + My D + MI D,
Zs34 = H'(AMB — DB) + M B,

Z35 = H' (M C — DC) + MyC + DT MY,
= HT(—A1 Ny + DN,) = E3.19,

= H"(~A1Ny + DNy) = Z3.11,

[I]

[I]
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Es2=HT (MW + DW) + MyW + DT M} The time derivative of V'(y(t)) along the trajectory of system
_ (1) is given as V(y(t)) = Vi(y(t)) + Va(y(t)) + Va(y(t)) +
Eaa=—(1=7)Qu, Ess=B" M3, E412 =BT MY, Va(y(t)), where
E55 = MaC + CT My, Z510 = MoW + CTM], Viy(t) =
- 1 1~ 297 () Py(t) + 2 (0 (V) HT —y" ()L HH"]x
Ees = ——Q1, Er7r = ——Q1, , R S .
Tl Tu Avg(t) +2[y” ()LTHH™ — f* (o(t))H" |Dy(2),
_ 2 _ 2 =207 () (P—-L HH A+ LTHH"D
:88:—[f2HA2(L+—L )HT“FTQIL E’ ()( T ~ .1 )
7 7 + [ (a(t)H (A — D)]y(t)
2 2 - =247 (t)(P— L HH A + L"HH" D)x
= + YHT + 2
299 = 7[?5HA2(L — L ) + TSQIL (A+7-uN1 +TLN2)y(t)
) +2y7(t)(PB - L HH"A\B + L"HHTDB)y(t — 7(t))
E10,10 = —ﬁQz By + 297 () (PC = L"HH A C + LYHH" DC)y(t — h(t))
i
. +2y"(t)(PD — L"HH"MD + LTHH"DD) f(o(t))
511’11 = —7@3 — FQ, 512112 = MW + WTMZ, + 2yT(t)( PN; + LiHHTAlNl

F= [07070707070707070,Fl7070]7
F =10,0,0,0,0,0,0,0,0,0, Fy,0].

Proof: Choose a new class of Lyapunov functional can-
didate as follows:

V(y(t)) = Vi(y(t)) + Va(y(t)) + Va(y(t)) + Va(y(t)),
where
hTy(t)
Va(y(1) = " (1) Py(t +zz{/ 1 s)ds

hTy(t)
+/O di(iFs — fi(s))ds}

—22{[71// 00,(3)[fi(o(5))

—1; 0i(s)|dsdudd}

+22{/_n/ / ;0i(8) [l oi(s) = filoi(s))]dsdpdd}
+2Z{/_m/ / ;0i(8) [ fi(0i(s)) — 17 0i(s)]dsdpd}
¥ 22{ / ) A / [ o)~ £t

+2/ / $)Q1y(s)dsdb

—T t+9

+2/ / Qly )dsdb,
—Tu +9

$)Q2y(s)dsdudl

L,/ [
L L

Vily(t)) = / O

$)Q39(s)dsduds,

— LYHH"DNy) /t y(s)ds
Jt—Ty

+ 2yT (£)(=PNo + L"HHT A1 N,

— LYHH"DN,) /t y(s)ds
.

+2yT (t)(=PNy + L"HHT AL Ny

— L"HHTDNy) / ’ / t i(s)dsdb @
— Ty Jt+0

+ 247 (t)(=PNs + L’HI;TAlNg

,L+HHT5N2)/O /tey(s)dst
-7 Jt+

+ 2y (t)(PW — L HH" AW + LTHH" DW)p(t)

(
+2fT(c(t))HT (Ay — D)(A + 7o N1 + 7iN2)y(t)
+2fT(c(t)HT (A1 B — DB)y(t — 7(t))
+2fT(o(t))H (AC = DCYy(t — h(t))
+2fT(o(t))H (A D — DD) f(o(t))
+2f"(a(t) H (A — D)Wp(1).
+2f () H" (- A1N1+DN1)/ y(s s

+2fT(cr(t))HT(—A1N2+DN2)/ y(s)ds
+2f ( (t))H ( A1N1+DN1)/ / dsd@
- t+0

+2fT(c(t))HT (—A1 N> +DN2)/ / y(s)dsd#.
-7 +6

Vz( (t) =
22{ /_ ) / o (O fi(oi(t)) — 1o ()| dpud8

- / / it + Wfi(o(t + 1)) — 17 os(t + o)) dpdd)

+2Z{/_T1/ aioi(t) ot
" 22{ / ) /9 o)1 (04(8)) — 1703 (8] dudd

— filoi(t))ldpdo
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_[ /a,.,gi(tw)[fi(ai(tw))
—1 U:t-l-ﬂ )ldpdo}

HZ{/—m/ o (D)[IF o (t

_/w/e aioi(t+ )l oi(t + p)

— fi(O'i(t + ,u))]dud&}

w2y OQuO =2 [ 4T (5)Qu(s)ds

— filoi(t))ldpdo

2T OO =2 [ 4T Q(s)ds

2
7

—22{@107 [fi(o:(t)) — l'iUv:(t)]j

//am [fi(oi(s
77’1 t+6

+22{a201 lal

T ot
*‘Fz t+6

+22{(1 gz fz Uz )

~ &)
/ / a;0;(3)[fi(oi(s)) — 17 0i(s)]dsdb}
Shdar

+22{aoz ot maz(m%

/ / a;o;i(s l oi(s
—Tu Jt+60

= Filos(s))ldsdd} + 2m” (D Qu(t)
2 [ Qs+ 2T (OG0

— 17 0i(s)]dsdo}

Tz

- file)) T

fl(UZ( ))]dﬂw}

o ‘:\]w

I o4(t)]

no

— Q/t yT(s)Qly(s)ds
o

+Za”“ (OIF = 1o (t)

/ / a;o;(s l — 1, ]oi(s)dsdf
—T +0

[l =17 ou(t)

/;Tu /+9a oi(s — 17 ]oi(s)dsdf}
+2myT () Quy(1) 2/ s)Q1y(s
+ 27,7 ( Qﬂ/ 2/ Qly

Notice that

—l7]oi(t) = Tiy" () HAo[LT —L7|H y(t),

E aZTl Ul
g a;imio;(t

From Lemma 2.1, we have

QZ{ / / a;04(s
— / / ) HAS[L
—T +9
—7—2/ / y(s)dsdd)T HAL[LT
l —7; Jt+6
0 t
fL*]HT(/ / y(s)dsdo).
—7; Jt+0

Similarly,

22{ /_ / o (s)[IF = 17 ]04(s)dsd6)}

< _%(17,,, /Hey(s)dsde)THAg[L*
- L‘]HT(/_OW /t; y(s)dsdd).

Additional, let f( ) = xTQ:Jc where @ > 0, then f"(z) =
Q >0.Setz =12 f ft+9 s)dsdf, T > 0, from Jensen
integral 1nequahty we have

= le(/OT /t;a:(s)dsdﬂ)TQ(/OT /t; x(s)dsdf)

:f(% /_OT /t;x(s)dsdl?)

<[ sara
(

O =17 ]oi(t) = miy" (O HA[LT—L7IH y ().

o(s)dsdf}

— L7 |H y(s)dsd

(/H-e z(s)ds)}de

_ 1/ 02{(—;/tiex(s)ds)TQ(—;/t;ac(s)ds)}dO
/ 02f(—;/;9c(s)ds)d9

))dsdf

</
/

L
e

t
t—1
t

_1

-

1

- / —0f (x

T T Jt+0

1

- / —027 x(s)dsdf

T T Jt+0
s—t
/ —027 x(s)dfds

™ (s—1)

2

2 e )ds ©
<3 [ aTwes)

Thus, we have

- / 27 (3)Qu(s)ds <

920
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This means that

. / YT (5)Quy(s)ds <

Lo [ [ osan
—%(/ V@[ o)

— Z/t yT(s)ély(s)ds <

/TuTu /+9 s)dsdf) T Q1 ( /Ou /t;y(s)dsde)

—i</ v @ [ o).
Namely, ’ ’

Va(y()) <y ()[(77 + 7o) HAo (LT — L7)H”
+ 27’1@1 + QTqu]y( )

- (/On /t;y(s)dsde)T[leHAz(L+ —L)H"
+7—%Q1] /Oﬂ /t; y(s)dsdf

y /_ Om / ;} y(s)dsde)T[%HAz(ﬁ _1yHT
+ Q1 [T /+6 s)dsdf

—%(/ v Q[ et

L e y(5)ds);

Va(y(t)) = /ﬂ/ [0 ()Q29(t)

+/—ru/e " (0)Qsu(t) — §" (t + 1) Qsy(t + p))dpde

9 (t+ 1) Qay(t + ) dpdo

= 5" (0Qui(t) + 5 (DQsi (1)
/ / 5)Q2y(s)dsdf
/ / 5)Q2y(s)dsdf
l
2
1

<

PO + T ()

/ / s)dsdf) " Qa( /_ . /+6 s)dsdf)
/ / s)dsdf)” Qs /_ - /Ha s)dsdf)

$)Q29(s)dsdl

27'u

)
1
-3 $)Q29(s)dsd.

T
L

O]

From Lemma 2.2, for arbitrary matrix F; of appropriate
dimensions,

77 ()Q2y(s)ds
+0
< 9 / V() FEr) + / L OFT Qs Fe(yds
.Y / |, 9(s)s) FE() — 06T ()77 Q3 (),

where¢” (1) = [y (1), 37 (1), £ (o(0)). y(t —7(0)). it ~ h(1).
Lyt s)ds, [ yT(s)ds, [0 [, v (s)dsdd, [°[f,

b

Y (s)dsdd, [0 [, 9" (s)dsdo, [°[L., 9" (s)dsdf, p(t)"].
Thus, we have

—7/ / $)Q29(s)dsdb
-7 +€

[ | / [ i s

0
- / 0T () FT Q5 Fe(t)de, )

/_n /t+9 )dsdb)FE(E)

+ ZH(t)F%?F&(t)-

Similarly, for arbitrary matrix F5 of appropriate dimensions,

—7/ / $)Q39(s)dsdb
—Tu t+€

/ /9 s)dsd6)Fe(t) (10)
e

+ DT () T Q7 P,

Combined with inequalities 7- (10) we have

Va(y ( ) < *y ( )Q2y(t) + *y (t)st(t)

([Tl/+9 5)dsdf) FE(1)
—QﬂLﬂsmw&w

+ TP Qs e + TEET (0 FT Q5 e,

(11)

=y (1) Quy(t)

—(L=7()y" (t = 7(1))Qay(t — 7(t)) (12)
y" (1) Quy(t) — (1 —wy” (t — 7(t))Qay(t — 7(t)).

Furthermore, for positive definite diagonal matrix I', arbitrary
matrices M7, Ms, M3, My of appropriate dimensions, we have

=2 (a())Tf(o(t) +2y" ()HT(LT + L7) f(y(t))
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—2yT(W)HL TLYH y(t) > 0,

27 (o(£)) Mi[=9(t) + Cy(t — h(t))

+Ay(t) + By(t — 7(t)) + Df(o(t)) + Wp(t)] =

2y(t — h(t))" Ma[—g(t) + Cy(t — h(t))

+Ay(t) + By(t — 7(t)) + Df (o)) + Wp(t)] =

97 (6) Ma[—g(t) + Cy(t — h(t))

+Ay(t) + By(t —7(t)) + Df(a(t)) + Wp(t)] =
p” (t)Ma[—5(t) + Cy(t — h(1))

+Ay(t) + By(t — 7(t)) + Df(o(t)) + Wp(t)] = 0.

)
)
)
(
)+
(

Hence, combined with Schur complement [22], we can obtain

V() <€ (0250 + 7T OFT Q5 Fe()

FILET () FTQ; Fe(D) < 0

This means that system (1) is asymptotically stable. If p(C) <
1, then system (1) is exponentially stable, which completes the
proof. u
Remark 3.1: Different from [10]-[14], in the proof
of Theorem 3.1, we estabhsh the relatlonshlp between
— [} a"(s)Qx(s)ds and ([°_ [} ,x(s)dsdd)TQ([°, [\,
x(s)dsdf). On the bas1s ‘of this new relatlonshlp,
items f Tl ft+0 Yy dsd@ f ft+9 yT (s)dsdb,
f . ff 4o 97 (s)dsd®, f ft o y7(s)dsdf are 1ntr0duced as
the state of 5 (t ) this may “reduce crlterlon s conservatism
Remark 3.2: In [16], [17], time-varying delay h(t) is re-
quested to satisfy 0 < h; < h(t) < hy, and A(t) < pu.
However, in this paper, we have no registration for h(t). This
means that h(¢) can be no bound, even non derivable.
Remark 3.3: As mentioned in [20], Theorem 3.1 gives a
stability criterion for system (1) with 0 < 77 < 7(t) < 7o,
7(t) < 7, where 7 is a given constant. In many cases, T is
unknown. Considering this case, a rate-independent criteria for
a delay satisfying 0 < 7; < 7(t) < 7, is derived as follows.
Theorem 3.2: For given scalars 7, > 0,7, > 0, L™ =
diag(I7 0y, -+ ,17), LT = diag(lF, 15, ---1F), sys-
tem (1) is globally exponentially stable if p(C) < 1
and there exist positive definite diagonal matrices D =
diag{dy, da, ---, dp}, A1 = diag{A1, A2, -+, A}, Ao =
diag{alv Q- ,Ckn}, I'= dlag{’xlv’ Y25 77”}7 Symmetric
positive definite matrices P, Q1,Q1,Q2,Qs3, and arbitrary
matrices Fi, Fy, N1, No, My, My, M3, My, M5 of appropriate
dimensions such that the following condition holds:

FT FT

[

<0,

*
|
%‘JM
O
(V)
o

* * —2Qs
where = = (Zij) 4,5 =1,2,--+,12,
Ei=(P—L HH"Ay+ LTHH"D)(A+ . Ny
+71 Ny )+ (A+7 N1 +7No) T (P—L-HH" Ay +LTHH" D)7,

+ (247 HA (LT =L ) HT +271Q1 +27,Q1—2HL TLTH”,

2517-9934
No:5, 2013

S4=PB-L HH'A\B+ L*HH"DB + AT M7,
Zp4 = M3B — MT
Z34 = HT'(A\B — DB) + M, B+ D" M,

Eg4 = M5+ M =45 = BT M + 0T M7,

- TasT
:.4’12 = W M5 5

the rests sub-matrices of = are the same as =.
Proof: Choosing Q4 = 0 in Theorem 3.1, and notice that

2y(t — ()" ()Ms[=§(t) + Cy(t — h(t))
+Ay(t) + By(t — (1)) + Df (o (1)) + Wp(t)] =

one can easily obtains this result, which completes the proof.
|
Remark 3.4: In many cases, 7; = 0, which researched in
[6], [7], [16], [17]. In this time, similar to the proof of Theorem
3.1, a simplified criterion can be derived as follows.
Corollary 3.1: For given scalars 7, > 0,7 > 0, L™ =
diag(l7,ly, -+ ,0;), LT = diag(l;r, l2+, SUF), sys-
tem (1) is globally exponentially stable if p(C) < 1
and there exist positive definite diagonal matrices D =
diag{dy,dz,--- ,dn}, A1 = diag{\1, A2, -+, An}, Ao =
diag{or, 0z - @y}, T = diag{y1. 2. 7}, symmetric
positive definite matrices P, 1, @3, 4, and arbitrary matrices
Fy, N1, My, My, Ms, M, of appropriate dimensions such that
the following condition holds:

ﬁT
2 <0,
* +Q3

,9, and

[1]

where = = (Z;;) i,j =1,2,-
En=(P—-L HHTA, + L+HHT5)(A +7uN1)
+(A+ 7, N)T(P— L~HH" Ay + LYHHTD)T + Q4
+72HA (LT —
S =ATMT,
Sy =PD—L HH"A\D+ L*HH"DD
+(A+7,N)T (A, — DYH + HU(LT + L) + Ap MY,
Ewu=PB-—L HH"A\B+ L"HHTDB,
E15=PC— L HH"AC + LTHHTDC + AT MY,
Hi6 = PNy

LYHT +27,Q1 —2HL TLTHT,

— L HH"A\N, + LYHH"DN, = Z, 3,
E19=PW—L HH"AMW
+LtHHT"DW + A" MT,

Eop = %3Q3 — Mz — MY, Zo3 = —M; + M3D,
Eo4 = M3B, S5 = —My + M3C,

Sp9 = MzW — M[,
S35 = HT(A\D — DD)
—2I' + My D + M{' D™,

+(MD—DD)TH
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S5y = H'(AM\B — DB) + M; B,
Sa5 = HY (M C — 50) + M,C + DTMT,
Z36 = HT(—A Ny + DNy) = Bz,

Z39 = H (MW + DW) + MyW + D" M],

Epu=—(1—-7)Q4, 45 = BTMI, 249 = BT M],
S55 = MaC + CT MY, Z510 = MoW + CT M,

= 1~

Ze6 = —— 1,

- _ 2 ~
B = [TQHA2( —L7)H" + ﬁQlL

Sgs = — o 2Q3+F2, Eo9 =MW +W'M[,

F =10,0,0,0,0,0,0, F»,0].

IV. NUMERICAL EXAMPLES

In this section, two numerical examples will be presented
to show the validity of the main result derived in this paper.

Example 4.1: In order to compare with previews results
easily, consider the delayed system (1) with parameters given
by [16], [17]

o-[; 2)a-[3 2]
SER RN

Ja 0 o on_ o0
AB_[O 82},D_AD_{OO}.

Time-varying delay h(t) = h is constant, w, o; and 0;, (i =
1,2) denote the uncertainties which satisfy —1 < w < 1,
-16 < a1 <1, =0.05 < ap < 0.05, =0.1 < 91 < 0.1,
—0.3 < 05 < 0.3. For ; = 0.5,w = £0.1, Yu and Lie ones
[16] gave out the upper bounds of 7, for different values of
h(t). At the same time, they also gave out the upper bounds
of T, for different w when 7, = 0,7L(t) = 0.1. In Ref [17],
Yin and Zhong improved the criteria obtained in [16], and
gave out different comparisons results. However, these results
obtained in [16], [17] require h(t) must be differentiable
and h(t) has upper bound. Compared with these previews
results, our criteria established in this paper are h(t) and h(t)
independent. Additional, the maximun_1 values of 7, obtained
in [17] are 1.172 and 0.991 when h(t) = 0 and w = 0
respectively. By Theorem 3.1, for ; = 0.5,w = 0.1, we
can get the maximum value of 7, is 1.101. By Corollary 3.1,
the maximum value of 7, is 1.203 when 7; = 0,w = 0, this
means that our method is less conservative and more effective
than the existing ones.

Example 4.2: Consider the delayed system (1) with param-
eters given by [17], [21]

0.2 0.1 -2 0.5 1 04
=01 na A=W W ]=[0 B

~0.5 0.2
D= [ —0.75 } :O’H:{ }:O’

AA=AB=AD =0,

For 7, = 0, the stable problem of this system was researched
in [17], [21]. When A(t) = 0.2, the maximum upper bound
delay of 7, obtained in [21] is 1.8344 , and the maximum
upper bound delay of 7,, obtained in [17] is 1.8412. However,
by using Corollary 3.1, we can get the maximum upper bound
delay of 7, is 1.9423. Additional, we do not require /() is
bounded, it even can be non-differentiable. This implying that
our criteria established in this paper are less conservative and
more effective than the existing ones.

V. CONCLUSIONS

Combined with Lyapunov stable theory and double integral
inequality, we researched a class of neutral Lur’e systems with
interval time-varying delays. Different from previous work on
this topic, the property of convex function is introduced to
research the stability of Lur’e system, and a new Lyapunov
functional including triple integral has been proposed to de-
rive some less conservative delay-dependent stability criteria.
Numerical examples show that the new criteria derived in this
paper are less conservative than some previous results obtained
in the references cited therein.
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