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Almost periodicity in a harvesting Lotka-Volterra
recurrent neural networks with time-varying delays

Yongzhi Liao

Abstract—By using the theory of exponential dichotomy and
Banach fixed point theorem, this paper is concerned with the problem
of the existence and uniqueness of positive almost periodic solution
in a delayed Lotka-Volterra recurrent neural networks with harvesting
terms. To a certain extent, our work in this paper corrects some result
in recent years. Finally, an example is given to illustrate the feasibility
and effectiveness of the main result.
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I. INTRODUCTION

THE Lotka-Volterra type neural networks, derived from
conventional membrane dynamics of competing neurons,

provide a mathematical basis for understanding neural selec-
tion mechanisms [1]. It was shown that the continuous-time re-
current neural networks can be embedded into Lotka-Volterra
models by changing coordinates, which suggests that the
existing techniques in the analysis of Lotka-Volterra systems
can also be applied to recurrent neural networks [2]. In recent
years, there are some papers concerning with the dynamic
behaviours of Lotka-Volterra recurrent neural networks [1-
4]. In [3], the convergence involving global exponential, or
asymptotic, stability of the following Lotka-Volterra recurrent
neural networks is discussed:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋi(t) = xi(t)

[
ri −

n∑
j=1

aijxj(t)

−
n∑
j=1

bijxj(t− τij(t))

]
, t > 0,

xi(t) = φi(t) > 0, ∀t ∈ [−τ, 0],

(1)

where xi(t) denotes the state of neuron ith at time t. Real
numbers aij and bij represent the synaptic connection weights
from neuron j to neuron i at time t and t−τij(t), respectively,
and ri denotes the external input. The variable delays τij(t) for
i, j = 1, 2, . . . n are non-negative functions satisfying τij(t) ∈
[0, τ ] for t ≥ 0, where τ is a constant.

By using the theory of exponential dichotomy and contrac-
tion mapping principle, many scholars increasingly have their
eye on the existence and uniqueness of almost periodic solu-
tions of all kinds of neural networks (e.g., Shunting inhibitory
cellular neural networks [5], Hopfield neural networks [6],
Cohen-Grossberg neural networks [7-8], etc) in the recent ten
years. Also, Liu et al. [4] focused on studying the existence
and uniqueness of positive almost periodic solution of the

Y.Z. Liao, School of Mathematics and Computer Science, Panzhihua
University, China, e-mail: pzhdxjsjxylyz1@126.com

networks extended from network (1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋi(t) = xi(t)

[
ri(t)−

n∑
j=1

aij(t)xj(t)

−
n∑
j=1

bij(t)xj(t− τij(t))

]
, t > 0,

xi(t) = φi(t) > 0, ∀t ∈ [−τ, 0].

(2)

By using the theory of exponential dichotomy and contrac-
tion mapping principle, the authors obtained some sufficient
conditions for the existence and uniqueness of almost periodic
solution of system (2). Unfortunately, the work in [4] is not
perfect (see Remark 3.1 in Section 3).

In many earlier studies, it has been shown that harvesting
has a strong impact on dynamic evolution of a population,
e.g., see [9-12]. So the study of the population dynamics
with harvesting is becoming a very important subject in
mathematical bio-economics. This paper is concerning with
the almost periodic solution of the following delayed Lotka-
Volterra recurrent neural networks with harvesting terms:

ẋi(t) = xi(t)

[
ri(t)−

n∑
j=1

aij(t)xj(t)

−
n∑
j=1

bij(t)xj(t− τij(t))

]
− hi(t), (3)

where ri(t) > 0, aij(t) > 0, bij(t) > 0, hi(t) > 0
and τij(t) > 0 are all almost periodic functions for each
i, j = 1, 2, . . . , n, hi(t) > 0 represent harvesting terms. The
meanings of the parameters are the same as the corresponding
ones mentioned in system (1). From the point of view of biol-
ogy, we focus our discussion on the existence and uniqueness
of positive almost periodic solution of system (3) by using
the theory of exponential dichotomy and Banach fixed point
theorem. When hi (i = 1, 2, . . . , n) is small enough and close
to zero, then system (3) is approximately equivalent to system
(2). Therefore, our work in this paper corrects the defect in
article [4] to a certain extent.

For any bounded function f ∈ C(R), f+ = sups∈R f(s),
f− = infs∈R f(s). We list some assumptions which will be
used in this paper.

(H1) ri, aij , bij and hi are nonnegative almost periodic
functions with 0 < h−i < r+i , i, j = 1, 2, . . . , n.

(H2) There exist positive constants ηi ∈[
r+
i
h+
i

r−
i

,
(r+

i
)2h+

i

r−
i
h−
i

)
(i = 1, 2, . . . n) such that

sup
s∈R

{
−ri(s)+

n∑
j=1

2aij(s)+

n∑
j=1

2bij(s)

}
< −ηi < 0,
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where i = 1, 2, . . . n.
The organization of this paper is as follows. In Section 2, we

give some basic definitions and necessary lemmas which will
be used in later sections. In Section 3, by using Banach fixed
point theorem, we obtain some sufficient conditions ensuring
existence and uniqueness of positive almost periodic solution
of system (3). Finally, an example is given to illustrate that
the result of this paper is feasible.

II. PRELIMINARIES

Now, let us state the following definitions and lemmas,
which will be useful in proving our main result.

Definition 2.1. ([13, 14]) x ∈ C(R,Rn) is called almost
periodic, if for any ε > 0, it is possible to find a real number
l = l(ε) > 0, for any interval with length l(ε), there exists a
number τ = τ(ε) in this interval such that ‖x(t+τ)−x(t)‖ <
ε, ∀t ∈ R. The collection of those functions is denoted by
AP (R,Rn).

Definition 2.2. ([13, 14]) Let y ∈ C(R,Rn) and P (t) be a
n× n continuous matrix defined on R. The linear system

ẏ(t) = P (t)y(t)

is said to be an exponential dichotomy on R if there exist
constants k, λ > 0, projection S and the fundamental matrix
Y (t) satisfying

‖Y (t)SY −1(s)‖ ≤ ke−λ(t−s), ∀t ≥ s,

‖Y (t)(I − S)Y −1(s)‖ ≤ ke−λ(s−t), ∀t ≤ s.

Lemma 2.1. ([13, 14]) If the linear system ẏ(t) = P (t)y(t)
has an exponential dichotomy, then almost periodic system

ẏ(t) = P (t)y(t) + g(t)

has a unique almost periodic solution y(t) which can be
expressed as follows:

y(t) =

∫ t

−∞
Y (t)SY −1(s)g(s) ds

−
∫ ∞

t

Y (t)(I − S)Y −1(s)g(s) ds.

Lemma 2.2. ([14, 15]) Let a, b ∈ AP (R,R). If

M(a) = lim
T→∞

1

T

∫ T

0

a(s) ds �= 0,

then ẏ(t) = a(t)y(t) + b(t) exists a unique almost periodic
solution y(t) can be written as follows

y(t) =

⎧⎨⎩
∫ t
−∞ e

∫ t

s
a(u) du

b(s) ds, m(a) < 0,

− ∫ +∞
t

e

∫ t

s
a(u) du

b(s) ds, m(a) > 0.

Lemma 2.3. (Banach fixed point theorem [16]) Assume
that (B, ρ) is a complete metric space, T : (B, ρ) → (B, ρ) is
a contraction mapping, i.e., there exists λ ∈ (0, 1), such that

ρ(Tx, Ty) ≤ λρ(x, y), ∀x, y ∈ B.

Then T has a unique fixed point in B.

III. EXISTENCE AND UNIQUENESS OF POSITIVE ALMOST
PERIODIC SOLUTION

In this section, we study the existence and uniqueness of
almost periodic solution of system (3) by using Banach fixed
point theorem.

Let

ki :=
h−i
r+i

, li :=
r+i h

+
i

r−i ηi
, i = 1, 2, . . . n.

By (H2), it is easy to see that ki < li ≤ 1, i = 1, 2, . . . n.
Set

B =

{
x = (x1, x2, . . . , xn)

T ∈ AP (R,Rn) :

ki ≤ xi(t) ≤ li, ∀t ∈ R, i = 1, 2, . . . n

}
with the distance ρ(x, y) from x to y is defined by

ρ(x, y) = max
1≤i≤n

{sup
t∈R

|xi(t)− yi(t)|},

where x(t) = (x1(t), x2(t), . . . , xn)
T , y(t) =

(y1(t), y2(t), . . . , yn)
T ∈ B. Obviously, (B, ρ) is a complete

metric space.
Theorem 3.1. Assume that (H1)-(H2) hold, then system

(3) has a unique almost periodic solution in B.
Proof: For ∀ϕ = (ϕ1, ϕ2, . . . , ϕn)

T ∈ B , we consider
the almost periodic solution of nonlinear almost periodic
differential

ẋi(t)=ri(t)xi(t)− ϕi(t)

[ n∑
j=1

a1j(t)ϕj(t)

+
n∑
j=1

bij(t)ϕj(t− τij(t))

]
− hi(t), (4)

where i = 1, 2, . . . n. Notice that M(ri) > 0, i = 1, 2, . . . n.
Thus, by Lemma 2.2, we obtain that the system (4) has exactly
one almost periodic solution:

xϕ(t) = (xϕ1 (t), x
ϕ
2 (t), . . . , x

ϕ
n(t))

T ,

where

xϕi (t) =

∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ϕi(s)

[ n∑
j=1

aij(s)ϕj(s)

+

n∑
j=1

bij(s)ϕj(s− τij(s))

]
+ hi(s)

}
ds,

in which i = 1, 2, . . . n.
Now, we give a mapping T defined on B by setting

T (ϕ) = (T1(ϕ), T2(ϕ), . . . , Tn(ϕ))
T

= (xϕ1 , x
ϕ
2 , . . . , x

ϕ
n)
T , ∀ϕ ∈ B.

First, we prove that the mapping T is a self-mapping from
B to B. In fact, ∀ϕ ∈ B, in view of definition of T , we have

Ti(ϕ)(t) ≥
∫ +∞

t

e
−
∫ s

t
ri(u) duhi(s) ds

≥ h−i
r+i

= ki, ∀t ∈ R, i = 1, 2, . . . n. (5)
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On the other hand, it follows that

Ti(ϕ)(t)

=

∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ϕi(s)

[ n∑
j=1

aij(s)ϕj(s)

+

n∑
j=1

bij(s)ϕj(s− τij(s))

]
+ hi(s)

}
ds

≤
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
li

[ n∑
j=1

aij(s)lj

+
n∑
j=1

bij(s)lj

]
+ hi(s)

}
ds

≤
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
li

[ n∑
j=1

aij(s)

+
n∑
j=1

bij(s)

]
+ hi(s)

}
ds

≤
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
li

[ n∑
j=1

2aij(s)

+

n∑
j=1

2bij(s)

]
+ hi(s)

}
ds

≤
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
li
[
ri(s)− ηi

]
+ hi(s)

}
ds

≤
∫ +∞

t

[
ri(s)e

−
∫ s

t
ri(u) du − ηie

r+
i
(s−t)

]
li ds+

h+i
r−i

= li

∫ +∞

t

[
ri(s)e

−
∫ s

t
ri(u) du

]
ds

−li
∫ +∞

t

ηie
r+
i
(s−t) ds+

h+i
r−i

= −li
∫ +∞

t

d
(
e
−
∫ s

t
ri(u) du

)
ds

ds

−li
∫ +∞

t

ηie
r+
i
(s−t) ds+

h+i
r−i

= li − li

∫ +∞

t

ηie
r+
i
(s−t) ds+

h+i
r−i

≤ (1− ηi

r+i
)li +

h+i
r−i

= li, ∀t ∈ R, i = 1, 2, . . . n. (6)

By (5) and (6), we get that T is a self-mapping from B to
B.

Next, we show that T : B → B is a contraction mapping.
In fact, for ∀ϕ,ψ ∈ B, we have

Ti(ϕ)− Ti(ψ)

=

∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ϕi(s)

[ n∑
j=1

aij(s)ϕj(s)

+

n∑
j=1

bij(s)ϕj(s− τij(s))

]
+ hi(s)

}
ds

−
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ψi(s)

[ n∑
j=1

aij(s)ψj(s)

+

n∑
j=1

bij(s)ψj(s− τij(s))

]
+ hi(s)

}
ds,

where i = 1, 2, . . . n. Under definition of ρ(x, y), we have

|Ti(ϕ)− Ti(ψ)|0
:= sup

t∈R
|Ti(ϕ)(t)− Ti(ψ)(t)|

= sup
t∈R

∣∣∣∣ ∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ϕi(s)

[ n∑
j=1

aij(s)ϕj(s)

+

n∑
j=1

bij(s)ϕj(s− τij(s))

]
+ hi(s)

}
ds

−
∫ +∞

t

e
−
∫ s

t
ri(u) du

{
ψi(s)

[ n∑
j=1

aij(s)ψj(s)

+

n∑
j=1

bij(s)ψj(s− τij(s))

]
+ hi(s)

}
ds

∣∣∣∣
≤ sup

t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du

×
{ n∑
j=1

aij(s)

∣∣∣∣ϕi(s)ϕj(s)− ψi(s)ψj(s)

∣∣∣∣
+

n∑
j=1

bij(s)

∣∣∣∣ϕi(s)ϕj(s− τij(s))

−ψi(s)ψj(s− τij(s))

∣∣∣∣} ds

= sup
t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du

×
{ n∑
j=1

aij(s)

∣∣∣∣(ϕi(s)− ψi(s)

)
ϕj(s)

+ψi(s)

(
ϕj(s)− ψj(s)

)∣∣∣∣
+

n∑
j=1

bij(s)

∣∣∣∣(ϕi(s)− ψi(s)

)
ϕj(s− τij(s))

+ψi(s)

(
ψj(s− τij(s))− ϕj(s− τij(s))

)∣∣∣∣}ds

≤ sup
t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du ×

{ n∑
j=1

aij(s)

∣∣∣∣ϕj(s) + ψi(s)

∣∣∣∣
+

n∑
j=1

bij(s)

∣∣∣∣ϕj(s− τij(s)) + ψi(s)

∣∣∣∣}ds · ρ(ϕ,ψ)

≤ sup
t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du ×

{ n∑
j=1

aij(s)

+

n∑
j=1

bij(s)

}(
lj + li

)
ds · ρ(ϕ, ψ)

≤ sup
t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du

{ n∑
j=1

2aij(s)
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+
n∑
j=1

2bij(s)

}
ds · ρ(ϕ,ψ)

≤ sup
t∈R

∫ +∞

t

e
−
∫ s

t
ri(u) du[ri(s)− ηi] ds · ρ(ϕ,ψ)

≤ sup
t∈R

(∫ +∞

t

ri(s)e
−
∫ s

t
ri(u) du ds

−
∫ +∞

t

er
+
i
(s−t)ηi ds

)
· ρ(ϕ,ψ)

≤ (
1− ηi

r+i

)
ρ(ϕ,ψ), i = 1, 2, . . . n. (7)

It follows from (7) that

ρ(T (ϕ), T (ψ)) ≤ max
1≤i≤n

{
1− ηi

r+i

}
ρ(ϕ,ψ) = λρ(ϕ,ψ),

where λ = max1≤i≤n
{
1 − ηi

r+
i

} ∈ [0, 1), which implies that
the mapping T : B → B is a contraction mapping. Therefore,
the mapping T possesses a unique fixed point

x∗ = (x∗1, x
∗
2, . . . , x

∗
n)
T ∈ B, Tx∗ = x∗.

So system (3) has a unique almost periodic solution. This
completes the proof.

Remark 3.1. In article [4], by using the contraction map-
ping principle, Liu et al. obtained that system (2) has a unique
positive almost periodic solution in Ω, where

Ω =

{
x = (x1, x2, . . . , xn)

T ∈ AP (R,Rn) :

xi(t) ≥ 0+,
n∑
i=1

ρixi(t) ≤ 1, ∀t ∈ R, i = 1, 2, . . . n

}
,

in which ρi (i = 1, 2, . . . , n) are positive constants and 0+ is
defined as follows:

Definition 3.1. (See Definition 1 in [4]) Define 0+ as a
positive number, which is infinitely close to, yet not equal to,
0, and satisfying

0+ = α0+, ∀ |α| ∈ (0,+∞).

However, think carefully and we find that the number 0+

defined by Definition 3.1 (i.e., Definition 1 of [4]) does not
exist. Therefore, Ω defined in [4] is invalid and their work is
not perfect.

Remark 3.2. When hi (i = 1, 2, . . . , n) is small enough
and close to zero, then system (3) is approximately equivalent
to system (2). Therefore, our work in this paper corrects the
defect in article [4] to a certain extent.

IV. AN EXAMPLE

Example 4.1. Consider the following Lotka-Volterra recur-
rent neural networks with harvesting terms:

ẋi(t) = xi(t)

[
1−

2∑
j=1

aij(t)xj(t)

−
2∑
j=1

bij(t)xj(t− 1)

]
− 0.1. (8)

where bij(s) = 0.1 sin2(
√
3s) (i, j = 1, 2) and(

a11(s) a12(s)
a21(s) a22(s)

)
= 0.1

(
sin2(

√
2s) cos2(

√
3s)

cos2(
√
5s) cos2(

√
7s)

)
.

Then system (8) has a unique positive almost periodic solu-
tion.

Proof: Corresponding to system (3), a+ij = 0.1, b+i = 0.1,
r−i = 1 and h+i = h−i = 0.1, i, j = 1, 2. Taking η1 = η2 =
0.2. By a easy calculation, we obtain

sup
s∈R

{
− ri(s) +

2∑
j=1

2aij(s) +

n∑
j=1

2bij(s)

}
< −0.2 < 0,

where i = 1, 2, which implies that (H2) in Theorem 3.1 holds.
It is easy to verify that (H1) in Theorem 3.1 is satisfied and
the result follows from Theorem 3.1. This completes the proof.
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