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Abstract—This paper presents the mathematical description of
the high-speed rotating system taking into account the influence of
internal and external damping. The mathematical model is obtained
by using the finite element method. The analyzed system is an
automotive turbocharger understood as a rotor-bearing system. The
circular cross-section shaft is equipped with one compressor wheel,
one turbine wheel and is supported by two floating ring bearings.
Based on the model, the dynamical analysis of a turbocharger is
performed and stability conditions are evaluated.

I. INTRODUCTION

Rotating machines are essential parts of equipments used
in many industrial areas. During the operation it is necessary
to monitor their properties and behavior due to the need
of detection of unbalance, failure and some damage. Each
detected adverse effect is reflected by changes in dynamic
characteristics of a rotating system [3]. In order to predict
their behavior in case of failure, the sufficiently accurate
mathematical model of the rotating system must be derived.
The finite element method (FEM) is frequently used tool for
the description of the rotating machines behavior. Therefore,
the principle of this approach is clarified in many publications,
for example in [1].

The turbochargers are regarded as rotating machines. As
indicated in [2], turbochargers have earned a lot of attention
due to wide use of diesel engines in automotive, locomotive,
marine and aerospace applications. Although their function is
primarily to increase the engine performance, the turbocharg-
ers differ in size. While the turbochargers used in automotive
and aerospace applications are light and operate at the speed
around 100 000 rpm, the turbochargers used in marine and
locomotive applications are heavy and operate at the speed
around 30 000 rpm.

In this paper the automotive turbocharger undestood as
rotor-bearing system is analyzed. The structure of a general
automotive turbocharger rotor is shown in Fig. 1.

The automotive turbocharger rotors are distinguished by a
short and relatively thin shaft whose ends are equipped by
massive large wheels (C, T). The characteristic design allow
using the floating-ring bearing system that is of a simple
structure and relatively cheap.

According to [2], a typical automotive turbocharger rotor
weights about 1 kg and is of 200 mm length and of 5-15
mm journal diameter. The bearing subsytem of an automotive
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Fig. 1. Turbocharger configuration scheme.

turbocharger is often represented by floating ring bearings
as the least expensive solution. The floating ring is put in
the bearing clearance between the rotating journal and the
stationary bearing housing. The floating ring bearings are
of two oil-films, the inner film between the journal and
the floating ring and the outer film between the floating
ring and the stationary housing. The stiffness and damping
characteristics of a bearing is affected not only by the oil films
characteristics but also by the rotational speed of the floating
ring. Some assumptions and methods used for modeling of
floating ring bearings are discussed in [4]. In systems that
include turbochargers the engine foundation may occur and
subsequenty the non-linear forces may be induced [5]. This
fact results in the more complicated behavior of a turbocharger
and may even cause unpredictable states.

As in the case of large rotating machines used for example
in power plants the dynamic behavior of turbocharger is
affected by some damping effect, too. Hence, in this paper the
methodology used for building of a turbocharger mathematical
model is explained, then the stability conditions are defined
and the influence of internal and external damping is evaluated
in case of an automotive turbocharger. The methodology for
external and internal damping modeling is described in detail
in [1] .

II. EQUATIONS OF MOTION FOR TURBOCHARGER
ROTOR-BEARING SYSTEM

The rotor-bearing system of turbocharger can be modeled
using the finite element (FE) approach. Therefore, the rotor
bearing system can be divided into subsystems - the shaft, the
added masses and the bearings. In this paper, each subsystem
is modeled independently and the derived single models are
connected, as mentioned in [1].

The flexible rotor shaft of a continuously distributed mass
and of a circular cross-section area A (x), that rotates by
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Fig. 2. Shaft element scheme.

constant angulat velocity ω, is discretized by nodes into finite
elements, see Fig. 2.
Considering bending vibrations of the system, each node
location is described by two lateral displacements vi (x),
wi (x) and by two angular displacements ϑi (x), ψi (x). Then
the position of the shaft element e is given by displacements
of end nodes i and i+1 and the generalized coordinates vector
in fixed coordinates can be written as

q
(e)
XY Z = [vi , ψi, vi+1 , ψi+1 , wi , ϑi , wi+1 , ϑi+1]

T
. (1)

Based on kinetic energy (2) and potential energy (3) of the
shaft finite element

E
(e)
k =

1

2

∫ l

0

[
AvTv + ωTJω

]
dx , (2)

E(e)
p =

1

2

∫ l

0

∫
(a)

Eε2xdAdx , (3)

where v is the velocity vector of a FE lateral displacement, ω
is the angular velocity vector of a spherical movement, J is the
inertia matrix, E is Young modulus and εx is a proportional
elongation of the FE. Considering the approximation along the
shaft element e by cubic polynomials, then the mass matrix
M(e), the stiffness matrix K(e) and the gyroscopic matrix G(e)

describing the FE can be obtained from Lagrange’s equations
in form

M(e) =

[
S−T
1 (I1 + I2)S

−1
1 0

0 S−T
2 (I1 + I2)S

−1
2

]
, (4)

G(e) =

[
0 −2S−T

1 I2S
−1
2

−2S−T
2 I2S

−1
1 0

]
, (5)

K(e) =

[
S−T
1 I3S

−1
1 0

0 S−T
2 I3S

−1
2

]
, (6)

where Ii (i=1,2,3) are auxiliary integral matrices of constant
value and Sj (j=1,2) are matrices resulting from the poly-
nomial approximation of displacements. The specific form of

matrices Ii, Sj and the detailed derivation are presented in
[1].

Furthermore, the effect of damping forces acting on the FE
is suitable for inclusion in the mathematical model. Damping
forces are induced by rotor working conditions (so-called
external damping) and by material deformations (so-called
internal damping). Assuming the external damping forces
depending on lateral absolute velocity of FE the Rayleigh
dissipation function of external damping can be expressed as

R
(e)
E =

1

2

∫ l

0

(
bEY v̇

2 (x, t) + bEZẇ
2 (x, t)

)
dx . (7)

The bEY , bEZ
[
kgm−1s−1

]
are coefficients of viscous damp-

ing per unit lenght. Using the simplifying assumption of
isotropic external damping the external damping matrix cor-
responding with bending oscillations can be derived in fixed
coordinate XY Z frame as

B
(e)
E = bE

[
S−T
1 IΦS

−1
1 0

0 S−T
2 IΦS

−1
2

]
. (8)

On the other hand internal damping forces are induced by
deformations of the shaft element, therefore it is needed to be
described in the rotational coordinate system xyz connected
with the shaft element. Then the normal stress is proportional
to the longitudinal strain velocity and the Railegh dissipation
function of isotropic internal damping can be expresed as

R
(e)
I =

1

2

∫ l

0

∫
(A)

bIEε
2
xdAdx (9)

where the bI [s] is the viscous proportional internal damping
coefficient. Then the internal damping matrix of shaft element
can be written as

B̄
(e)
I = bIEJ

[
S−T
1 IΦ′′S−1

1 0

0 S−T
2 IΦ′′S−1

2

]
. (10)

in the rotating coordinate frame xyz.
Because the other matrices describing the shaft element

are derived in the fixed coordinate frame XY Z the internal
damping matrix B̄

(e)
I must be transformed from the rotating

coordinate frame xyz into fixed coordinate frame XY Z. Using
the relation between vectors of generalized coordinates in fixed
frame q

(e)
XY Z and the vector of generalized coordinates in

rotating frame q
(e)
xyz

q
(e)
XY Z = T (t)q(e)

xyz (11)

where T (t) is a time-dependent transformation matrix. Then
the internal damping effect is described by two time-dependent
matrices - the internal damping matrix B

(e)
I (t) and circulation

matrix C
(e)
I (t) in the fixed coordinate frame XY Z.

All matrices describing the shaft element are derived in
the fixed coordinate frame XY Z that is characterized by
generalized coordinates vector q

(e)
xyz in form (1). Therefore

the motion of each shaft element can be described by matrix
equation of motion
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Fig. 3. Rigid disc sheme.

M
(e)

q̈
(e)

XY Z
+
(
B

(e)

E
+ B

(e)

I
+ ω0G

(e)
)
q̇
(e)

XY Z
+
(
ωC

(e)

I
+ K

(e)
)
q
(e)

XY Z
= 0 .

(12)

B. Rigid discs

In this paper each added mass attached to the shaft is
regarded as an axisymmetric rigid disc that is fixed to the
shaft in the chosen node i, see Fig. 3.
Using Lagrange’s approach the mathematical description is
based on the rigid disc kinetic energy Edk

E
(d)
k =

1

2
mvTSvS +

1

2
ωTi Iωi . (13)

Using the adjustments specified in [1] and Lagrange’s equa-
tions the mass matrix M(d) and the gyroscopic matrix G(d)

are derived in the fixed coordinate frame XY Z defined by the
vector of generalized coordinates

qi = [vi wi ϑi ψ]
T
. (14)

Then the matrices can be written in the following form

M(d) =

⎡
⎢⎢⎢⎢⎣

m 0 0 ma

0 m −ma 0

0 −ma I +ma2 0

ma 0 0 I +ma2

⎤
⎥⎥⎥⎥⎦ , (15)

G(d) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 I0

0 0 −I0 0

⎤
⎥⎥⎥⎥⎦ . (16)

In contrast to the shaft element modeling, the rigid disc
is affected only by isotropic external damping forces acting
on the surface of the body. In case of bending vibrations the
external damping matrix can be expressed as

B
(d)
E =

⎡
⎢⎢⎢⎢⎣
b
(d)
EY 0 0 0

0 b
(d)
EZ 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (17)

where b
(d)
EY , b(d)EZ are the external damping coefficients. The

external damping matrix (17) is derived in fixed coordinate
frame described by vector of generalized coordinates (14) too.

C. Bearings

As already mentioned, in practice turbocharger rotors are
supported using floating ring bearings that can be understood
as bearing two oil film in the series [4]. To determine their
stiffness and damping characteristics at a given speed, it is
necessary to take into account not only the stiffness and
damping parameters of both oil films but also to determine the
effect of the floating ring speed [4]. If the bearing is simplified
as a short journal bearing and the linear dependency between
induced forces, deformations and damping is assumed, then
the forces induced in the bearing b can be expressed as

⎡
⎢⎢⎢⎢⎣
Pv

Pw

Pϑ

Pψ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
byy byz 0 0

bzy bzz 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Bi

⎡
⎢⎢⎢⎣
v̇i

ẇi

ϑ̇i

ψ̇i

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
kyy kyz 0 0

kzy kzz 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ki

⎡
⎢⎢⎢⎣
vi

wi

ϑi

ψi

⎤
⎥⎥⎥⎦ , (18)

where Bi is the damping matrix and Ki is the stiffness matrix
of the bearing placed in ith node. The parameters bij , kij are
dependent onthe shaft rotational speed ω.

D. Whole rotor-bearing system model

As mentioned above, the rotating system is composed of
three types of elements - the shaft, the rigid discs and the
bearing supports. These components must be joined, therefore
the matrices describing the shaft element must be transformed
from fixed coordinate system ˜XY Z characterized by (1)
into the system characterized by (14). This operation can be
performed using permutation matrix that ensures the required
rearrangement of elements of vectors and of matrices. Then the
mathematical model of whole rotation system can be expressed
in form

MΣq̈ (t)+(BE +BI +BB + ωG)︸ ︷︷ ︸
BΣ

q̇ (t)+(K+CI +KB)︸ ︷︷ ︸
KΣ

q (t) = 0 .

(19)
The mass matrix MΣ, the damping matrix BΣ and the stiffness
matrix KΣ are composed from matrices describing single
elements according to Fig. 4.

III. MODAL PROPERTIES SPECIFYING AND STABILITY
ASSESSMENT

According to [1] the first step in determining the dynamic
properties is the identification of modal properties. It involves
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Fig. 4. Block matrix structure.

in calculation of eigenvalues and of eigenvectors. The next step
is stability assessment on the basis of computed eigenvalues.
The eigenvalue problem solution is based on the equation (19)
describing the analyzed system. If at least one of the matrices
is asymmetrical then the model composed of transposed ma-
trices must be set up, too. Considering solutions of equations
describing the system motion in form

q (t) = q · eλt , resp. r (t) = r · eλt , (20)

the equations of motion can be modified as

(
λ2MΣ + λBΣ +KΣ

)
q = 0 resp.

(
λ2MT

Σ + λBT
Σ +KT

Σ

)
r = 0 .

(21)
The nontrivial solution of problems (21) exists for

det
(
λ2MΣ + λBΣ +KΣ

)
= 0 resp. det

(
λ2MT

Σ + λBT
Σ +KT

Σ

)
= 0 .
(22)

It is known that the roots of equations (22) are identical and are
called eigenvalues λν . They may be complex conjugate in pairs
(λν = −αν±βν) or real (λν = −αν). The unique eigenvector
can clearly be assigned to each eigenvalue, in detail in [1].

Many criterions of stability of dynamic systems are defined.
Therefore, if the stability of a rotating system is evaluated the
criterion should be mentioned for clarification. In this case the
stability of a rotating system is evaluated based on computed
eigenvalues.

Generally, the eigenvalue λν is a complex number. Whereas
the imaginary part provides some information on the natural
frequency of vibrations, the stability of a rotating system is
affected by the real part of the eigenvalue. Three different
situations may occur:

1) all eigenvalues are of negative real parts (αν > 0),
then the analyzed system is considered asymptotically
stable,

2) at least one eigenvalue or a couple of complex conjugate
eigenvalues is of zero real part (αν = 0), then the
analyzed system is on the stability threshold,

3) at least one eigenvalue or a couple of complex conjugate
eigenvalues is of positive real part (αν < 0), then the
analyzed system is considered unstable.

IV. NUMERICAL SIMULATIONS AND RESULTS ANALYSIS

The objective of this paper is to analyze the influence of
internal and external damping on the dynamic properties of

the high-speed rotating turbocharger and assess the impact
on the stability. The turbocharger rotor-bearing system shown
in Fig. 5 is composed of the flexible steel shaft fitted with
the added masses understood as rigid discs and of two non-
identical hydrodynamic bearings.
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Fig. 5. Turbocharger sheme after discretization.

A. Turbocharger parameters

With regard to the position of connected rigid discs the rotor
shaft was discretized using 12 nodes. Thus, 11 finite elements
of parameters specified in the table Tab. I were defined by its
end nodes. The parameters of 4 added masses are mentioned
in Tab. II. It is necessary to note that the geometric parameters
of the shaft finite elements listed in Tab. I and added masses
in Tab. II are normalized.

TABLE I
SHAFT ELEMENTS PARAMETERS.

e D̃(e) l̃(e)

1 1 0.66
2 0.69 0.18
3 0.69 0.68
4 0.69 0.68
5 0.69 0.18
6 0.48 0.28
7 0.48 0.81
8 0.48 1
9 0.48 0.03
10 0.48 0.27
11 0.37 0.15

TABLE II
ADDED MASSES PARAMETERS.

i m̃(i) Ĩ
(i)
0 Ĩ(i) ã(i) D̃

(i)
xy = D̃

(i)
xz D̃

(i)
yz

1 1 0.98 1 0.91 0 9.1 · 10−12

7 0.10 0.16 0.01 0 0 0
8 0.27 0.32 0.23 0 0 0
9 0.02 0.002 0.001 0 0 0

The modeled turbocharger rotor is supported by two bear-
ings of different stiffness and damping characteristics depend-
ing on rotational velocity ω. For the left bearing (L) the



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

1970

dependencies of parameters are shown in Fig. 6, 7, for the
right bearing (R) in Fig. 8, 9. The values of bearing coefficients
were calculated from measured parameters of real bearings.

Fig. 6. Stiffness parameters dependency- bearing L.

Fig. 7. Damping parameters dependency- bearing L.

Fig. 8. Stiffness parameters dependency- bearing P.

Fig. 9. Damping parameters dependency- bearing R.

B. Computed results

The turbocharger rotor-bearing system stability is evaluated
for the speed range n ∈< 25000, 250000 >. The internal and
external damping acting on the steel shaft is characterized by
coefficients bI = 4 · 10−3s and bE = 6 · 10−3kgm−1s−1.

Values of damping coefficients are determined on the basis of
known damping ratio value for rotors at n = 0 rpm. Using
the same procedure the external damping coefficient b(d)E =
5 · 10−2kgm−1s−1expressing the influence on rigid discs is
computed for n = 0 rpm.

For the turbocharger decsribed above the dependencies
between real parts of eigenvalues Re{λν} and rotating speed n
were obtained. Firstly, the system without internal and external
damping effect was analyzed, see Fig. 10. In this case only the
damping effect of bearing supports represented by matrix BB

is included. As shown inn Fig. 10, the threshold of stability
is located nearby 160000 rpm.

Fig. 10. Dependency of real parts of eigenvalues on rotating speed for
undamped system.

Then the system including internal and external damping
effect was analyzed, see Fig. 11. In this case all the damping
effect mentioned in finite element model (19) is included. As
shown in Fig. 11, the threshold of stability is located nearby
40000 rpm. It is mu lower rotating speed n than in the first
case.

Fig. 11. Dependency of real parts of eigenvalues on rotating speed for
damped system.

V. CONCLUSION

The aim of this paper was to analyze the internal and
external damping effects on dynamical characteristics of the
high-speed rotating machine called the turbocharger. This type
of devices is widely used in automotive industry. Although
the detailed analysis is performed before the start of produc-
tion, the undesirable behavior can cause during its operation.
Therefore the appropriate model of analysed system must be
set up and all impacts affect the system must be evalued.
Therefore the finite element model was updated by internal
and external damping effects. The computed results show that
damping effects play an important role in the field of the high-
speed working system stability. Based on computed results, in
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this case the damping effect consideration results in decrease
of threshold stability value.

It is very important to note that the presented finite element
model is only the basic model. In the case of turbocharger,
the bearing supports are of more fragmented construction
including so-called a floating ring. Therefore this approach
is designed only for zoom in the dynamical characteristics of
turbocharger and it will be refined.
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