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Abstract—In this paper, application of the complexity reduction
approach based on half- and quarter-sweep iteration concepts with
Jacobi iterative method for solving composite trapezoidal (CT) al-
gebraic equations is discussed. The performances of the methods
for CT algebraic equations are comparatively studied by their ap-
plication in solving linear Fredholm integral equations of the second
kind. Furthermore, computational complexity analysis and numerical
results for three test problems are also included in order to verify
performance of the methods.
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I. INTRODUCTION

I INTEGRAL equations provide an important tool for solv-
ing various scientific problems, such as boundary value

problems for both ordinary and partial differential equations.
Their historical progress is strongly connected to the solution
of boundary value problems in potential theory and had a
significance impact on the development of functional analysis
[7]. Consequently, in this paper, numerical solutions for inho-
mogeneous second kind linear integral equations of Fredholm
type given in the form

ϕ(x) −
∫ β

α

K(x, t)ϕ(t)dt = f(x), x ∈ [α, β] (1)

are considered. The function f(x) ∈ L2[α, β] is given,
K(x, t) ∈ L2([α, β] × [α, β]) is the kernel of the integral
equation and ϕ(x) is the unknown function to be determined.

There is a large literature on numerical methods for solving
problem (1), for instance refer [2-6, 8-11, 13, 14, 16]. The
applications of numerical methods for problem (1) mostly lead
to dense linear systems and sometimes the condition number
of the corresponding matrices is large. The computational
complexity of setting-up the matrix and then solving the
corresponding linear system is huge when the order of the
matrix is large.

Consequently, in this paper, implementation and perfor-
mance of the complexity reduction approach based on half-
[1] and quarter-sweep [12] iteration concepts with Jacobi
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iterative method for solving composite trapezoidal (CT) al-
gebraic equations arise from the discretization of the problem
(1) are shown. The basic idea of the complexity reduction
approach is to speed-up the computational time by reducing
the computational complexity of the solution method. The
combinations of half- and quarter-sweep iteration concepts
with Jacobi iterative method are known as the Half-Sweep
Jacobi (HSJ) and Quarter-Sweep Jacobi (QSJ) methods re-
spectively. Meanwhile, the standard Jacobi method also can
be called as Full-Sweep Jacobi (FSJ) method.

The rest of this paper is organized as follows. The deriva-
tions of the CT algebraic equations are explained in Section
II. In Section III, the formulations of the FSJ, HSJ and
QSJ methods for solving generated CT algebraic equations
are elaborated. The latter section of this paper will discuss
the computational complexity of the Jacobi methods with
corresponding CT algebraic equations for solving problem (1).
Some numerical results are presented in Section V to assert
the performance of the methods and concluding remarks are
given in final section.

II. TRAPEZOIDAL ALGEBRAIC EQUATIONS

In this section, application of the CT scheme for discretizing
problem (1) will be discussed. An implementation of the CT
scheme for problem (1) leads to CT algebraic equations which
will be solved by using FSJ, HSJ and QSJ methods. However,
for HSJ and QSJ methods, the standard CT algebraic equation
needs to modify by combining the half- and quarter-sweep
iteration approaches respectively.

Let interval [α, β] divided uniformly into even N subin-
tervals and the discrete set of points of x and t given
by xi = α + ih(i = 0, 1, 2, · · · , N − 2, N − 1, N) and
tj = α + jh(j = 0, 1, 2, · · · , N − 2, N − 1, N) respectively,
where the constant step size, h is defined as follows

h =
β − α

N
. (2)

Before further explanation, the following notations will be
applied for simplicity

Ki,j = K(xi, tj)
ϕ̂i = ϕ̂(xi)
ϕ̂j = ϕ̂(tj)
fi = f(xi)

⎫⎪⎪⎬
⎪⎪⎭ . (3)

As discussed in [10], a CT algebraic equation for approxi-
mation values of ϕ is



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

526

ϕ̂i−
N∑
j=0

wjKi,jϕ̂j = fi, i = 0, 1, 2, · · · , N−2, N−1, N (4)

where solution ϕ̂ is an approximation of the exact solution ϕ
to (1) and wj is the weights of CT scheme that satisfy the
following conditions

wj =
{

h
2 , j = 0, N
h, otherwise

. (5)

The standard CT algebraic equation as derived in (4) is also
can be referred as full-sweep CT (FSCT) algebraic equation.

Now, let consider the following finite grid networks that
show the even distribution of node points for formulating half-
sweep CT (HSCT) and quarter-sweep CT (QSCT) algebraic
equations.

Fig. 1. Distribution of uniform node points for the half-sweep case.

Fig. 2. Distribution of uniform node points for the quarter-sweep case.

By referring Figs. 1 and 2, only node points of type •
will be involved during iteration process. Meanwhile, solution
for the remaining points will be computed directly after the
convergence criterion is satisfied. Thus, by employing the half-
and quarter-sweep iteration concepts, the HSCT and QSCT
algebraic equations are as follow

ϕ̂i −
N∑

j=0,2,4

wjKi,jϕ̂j = fi, i = 0, 2, 4, · · · , N − 4, N − 2, N

(6)
and

ϕ̂i −
N∑

j=0,4,8

wjKi,jϕ̂j = fi, i = 0, 4, 8, · · · , N − 8, N − 4, N

(7)
respectively. The weights, wj for HSCT and QSCT algebraic
equations will satisfy the following relation

wj =
{

h, j = 0, N
2h, otherwise

(8)

and

wj =
{

2h, j = 0, N
4h, otherwise

(9)

respectively.
Following the conventional process, FSCT, HSCT and

QSCT algebraic equations can be written as the following
matrix form

Aϕ̂ = f (10)

where A = (ai,j) ∈ R
( N

p +1)×( N
p +1) is a real matrix with

ai,j =
{

1 − wjKi,j , i = j
−wjKi,j , i �= j

(11)

and ϕ̂, f ∈ R
N
p +1. The value of p, which corresponds to one,

two and four denote the FSCT, HSCT and QSCT algebraic
equations. It is obvious that, applications of the half- and
quarter-sweep iteration concepts reduce order of the matrix
from (N + 1) to (N2 + 1) and (N4 + 1) respectively.

III. JACOBI ITERATIVE METHODS

The FSJ, HSJ and QSJ iterative methods to solve the
corresponding FSCT, HSCT and QSCT algebraic equations
are formulated in terms of a splitting of the matrix A

A = D − L − U (12)

where the components of D = (di,j), L = (li,j) and U =
(ui,j) are defined by

di,j =
{

ai,j , i = j
0, i �= j

(13)

li,j =
{ −ai,j , i > j

0, i ≤ j
(14)

and

ui,j =
{ −ai,j , i < j

0, i ≥ j
(15)

respectively.
The FSJ, HSJ and QSJ methods begin with an arbitrary

initial datum, ϕ̂(0) ∈ R
N+1, ϕ̂(0) ∈ R

N
2 +1 and ϕ̂(0) ∈ R

N
4 +1

respectively, and then produce a sequence of vectors, ϕ̂(k) for
k = 1, 2, 3, · · · by solving

Dϕ̂(k+1) = (L + U)ϕ̂(k) + f, k = 0, 1, 2, · · · . (16)

It is noted that, D must be invertible for the FSJ, HSJ and QSJ
methods to be applicable. The iteration matrices of the FSJ,
HSJ and QSJ methods i.e. TFSJ , THSJ and TQSJ respectively
are given by

TFSJ = THSJ = TQSJ = D−1(L + U). (17)

The iterative steps of the methods are then defined, respec-
tively, by
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FSJ:

ϕ̂(k+1) = TFSJ ϕ̂(k) + D−1f (18)

HSJ:

ϕ̂(k+1) = THSJ ϕ̂(k) + D−1f (19)

QSJ:

ϕ̂(k+1) = TQSJ ϕ̂(k) + D−1f (20)

for k = 0, 1, 2, · · ·. The FSJ, HSJ and QSJ methods are
convergent if and only if the spectral radius of the iteration
matrices is less than unity i.e. ρ(TFSJ) < 1, ρ(THSJ) < 1
and ρ(TQSJ) < 1 respectively.

Based on (18)-(20), the generalized algorithm of FSJ, HSJ
and QSJ methods associated with FSCT, HSCT and QSCT
algebraic equations respectively to solve problem (1) would be
described in Algorithm 1. The value of p which corresponds
to one, two and four represent the FSJ, HSJ and QSJ methods.

Algorithm 1. FSJ, HSJ and QSJ algorithms
i. Set ϕ̂(0) and ε

ii. Iteration cycle
for k = 0, 1, 2, · · · until convergence do

for i = 0, p, 2p, · · · , N − 2p, N − p, N

Compute
ϕ̂

(k+1)
i = 1

ai,i
(fi −

∑i−p
j=0,p,2p ai,jϕ̂

(k)
j −∑N

j=i+p,i+2p,i+3p ai,jϕ̂
(k)
j )

iii. Convergence test. If the converge criterion is satisfied i.e.
the maximum norm ‖ ϕ̂(k+1) − ϕ̂(k) ‖∞≤ ε (where ε is the
convergence criterion), go to Step (iv), otherwise, repeat the
iteration cycle (i.e., go to Step (ii))
iv. Stop

After the iteration process, additional calculation is required
for HSJ and QSJ methods to calculate the remaining points.
In this paper, second order Lagrange interpolation (SOLI)
technique [11] will be utilized to compute the remaining
points. The formulations to calculate remaining points using
SOLI technique for HSJ and QSJ methods are defined as

ϕ̂i =
{

3
8 ϕ̂i−1 + 3

4 ϕ̂i+1 − 1
8 ϕ̂i+3, i = 1, 3, 5, · · · , N − 3

3
4 ϕ̂i−1 + 3

8 ϕ̂i+1 − 1
8 ϕ̂i−3, i = N − 1

(21)
and

ϕ̂i =

⎧⎪⎪⎨
⎪⎪⎩

3
8 ϕ̂i−2 + 3

4 ϕ̂i+2 − 1
8 ϕ̂i+6, i = 2, 6, 10, · · · , N − 6

3
4 ϕ̂i−2 + 3

8 ϕ̂i+2 − 1
8 ϕ̂i−6, i = N − 2

3
8 ϕ̂i−1 + 3

4 ϕ̂i+1 − 1
8 ϕ̂i+3, i = 1, 3, 5, · · · , N − 3

3
4 ϕ̂i−1 + 3

8 ϕ̂i+1 − 1
8 ϕ̂i−3, i = N − 1

(22)
respectively.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

An estimation amount of the computational work has been
conducted in order to evaluate the computational complexity
of FSJ, HSJ and QSJ methods with corresponding CT approx-
imation equations for solving problem (1). The computational
work is estimated by considering the arithmetic operations
performed per iteration. In estimating the computational work
for FSJ, HSJ and QSJ methods, the value of each element in
A is store in advance.

From Algorithm 1, it can be observed that N , N
2 and N

4
additions/subtractions (ADD/SUB) operations are involved for
FSJ, HSJ and QSJ methods respectively in computing a value
for each node point in the solution domain. Whereas, N + 2,
N
2 +2 and N

4 +2 multiplications/divisions (MUL/DIV) opera-
tions are required for FSJ, HSJ and QSJ methods respectively.

However, for HSJ and QSJ methods, the iteration process
are carried out only on N

2 + 1 and N
4 + 1 node points re-

spectively. Thus, additional two ADD/SUB and six MUL/DIV
arithmetic operations are required to calculate a remaining
node point after convergence by using SOLI technique. Hence,
the total arithmetic operations involved for FSJ, HSJ and QSJ
methods for solving problem (1) are summarized in Table I.

TABLE I
TOTAL COMPUTING OPERATIONS INVOLVED FOR THE FSJ, HSJ AND QSJ

METHODS

Per Iteration
Methods Arithmetic Operations Total Computing After

ADD/SUB MUL/DIV Operations Convergence
[a] [b] [a+b]

FSJ N2 + N N2 + 3N + 2 2N2 + 4N + 2 -

HSJ N2

4
+ N

2
N2

4
+ 3N

2
+ 2 N2

2
+ 2N + 2 4N

QSJ N2

16
+ N

4
N2

16
+ 3N

4
+ 2 N2

8
+ N + 2 6N

V. NUMERICAL SIMULATIONS AND RESULTS

To investigate the performance of the FSJ, HSJ and QSJ
methods, the following second kind linear Fredholm integral
equations which will generate nonsingular matrix A by using
CT scheme were used as the test problems.

Test Problem 1 [15]

ϕ(x) −
∫ 1

0

(4xt − x2)ϕ(t)dt = x, x ∈ [0, 1] (23)

and the analytical solution is given by

ϕ(x) = 24x − 9x2.

Test Problem 2 [10]

ϕ(x)−
∫ 1

0

(x2+t2)ϕ(t)dt = x6−5x3+x+10, x ∈ [0, 1] (24)

with the analytical solution

ϕ(x) = x6 − 5x3 +
1045
28

x2 + x +
2141
84

.
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Test Problem 3 [13]

ϕ(x) −
∫ π

2

0

(
1
2
xt)ϕ(t)dt = sin(x) − x

2
, x ∈ [0,

π

2
] (25)

and the analytical solution is of the form

ϕ(x) = sin(x).

For the comparative analysis, the following criteria i.e.
k - Number of iterations
CPU - CPU time in seconds
RMSE - Root mean squared error [6]
are considered. The value of initial datum, ϕ̂(0) is set to be
zero for all the test problems. The algorithm codes for the
simulations were developed using Borland C++ Version 5.02
and performed on a PC with processor Intel(R) Core(TM) 2
CPU T5500 (1.66Hz, 1.67Hz) and 1022MB RAM. Throughout
the simulations, the convergence test considered ε = 10−12

and carried out on eight different values of N . The simulation
results of the tested FSJ, HSJ and QSJ methods for test
problems 1 to 3 are recorded in Tables II to IV. Based on
Tables II to IV, percentage gains in terms of CPU time for
HSJ and QSJ iterative methods compared to the FSJ method
are tabulated in Table V. Meanwhile, in Table VI to VIII, the
ratio between two consecutive error i.e. RN = |RMSEN |

|RMSE2N | is
given.

TABLE II
NUMERICAL RESULTS FOR TEST PROBLEM 1

N Methods k CPU RMSE

FSJ 441 0.54 2.298936×10−02

60 HSJ 431 0.22 9.259511×10−02

QSJ 417 0.18 3.809464×10−01

FSJ 447 0.98 5.710787×10−03

120 HSJ 441 0.62 2.288247×10−02

QSJ 431 0.26 9.216458×10−02

FSJ 450 2.39 1.423744×10−03

240 HSJ 447 1.44 5.697425×10−03

QSJ 441 0.70 2.282893×10−02

FSJ 452 7.34 3.554802×10−04

480 HSJ 450 2.49 1.422073×10−03

QSJ 447 0.96 5.690738×10−03

FSJ 453 22.90 8.881543×10−05

960 HSJ 452 9.03 3.552712×10−04

QSJ 450 2.63 1.421237×10−03

FSJ 453 88.25 2.219716×10−05

1920 HSJ 453 27.28 8.878930×10−05

QSJ 452 8.59 3.551667×10−04

FSJ 454 346.04 5.548459×10−06

3840 HSJ 453 102.93 2.219390×10−05

QSJ 453 25.58 8.877624×10−05

FSJ 454 1375.82 1.387004×10−06

7680 HSJ 454 380.54 5.548051×10−06

QSJ 453 94.82 2.219227×10−05

TABLE III
NUMERICAL RESULTS FOR TEST PROBLEM 2

N Methods k CPU RMSE

FSJ 122 0.18 2.156110×10−02

60 HSJ 120 0.03 8.639489×10−02

QSJ 116 0.02 3.481134×10−01

FSJ 123 0.26 5.354126×10−03

120 HSJ 122 0.10 2.142512×10−02

QSJ 120 0.07 8.585374×10−02

FSJ 123 0.73 1.334163×10−03

240 HSJ 123 0.45 5.337100×10−03

QSJ 122 0.28 2.135749×10−02

FSJ 124 1.94 3.330043×10−04

480 HSJ 123 0.77 1.332033×10−03

QSJ 123 0.36 5.328644×10−03

FSJ 124 6.47 8.318457×10−05

960 HSJ 124 2.60 3.327378×10−04

QSJ 123 1.13 1.330976×10−03

FSJ 124 25.63 2.078786×10−05

1920 HSJ 124 9.16 8.315125×10−05

QSJ 124 2.08 3.326056×10−04

FSJ 125 97.57 5.195932×10−06

3840 HSJ 124 32.82 2.078369×10−05

QSJ 124 8.87 8.313472×10−05

FSJ 124 366.20 1.298852×10−06

7680 HSJ 125 119.66 5.195412×10−06

QSJ 124 26.49 2.078163×10−05

TABLE IV
NUMERICAL RESULTS FOR TEST PROBLEM 3

N Methods k CPU RMSE

FSJ 62 0.04 1.366109×10−03

60 HSJ 60 0.02 1.591867×10−03

QSJ 58 0.01 2.504905×10−03

FSJ 62 0.09 1.302078×10−03

120 HSJ 62 0.05 1.357905×10−03

QSJ 60 0.03 1.582288×10−03

FSJ 63 0.47 1.284182×10−03

240 HSJ 62 0.20 1.298065×10−03

QSJ 62 0.07 1.353719×10−03

FSJ 63 1.09 1.278724×10−03

480 HSJ 63 0.30 1.282186×10−03

QSJ 62 0.16 1.296047×10−03

FSJ 63 4.80 1.276863×10−03

960 HSJ 63 1.13 1.277727×10−03

QSJ 63 0.71 1.281186×10−03

FSJ 63 19.38 1.276149×10−03

1920 HSJ 63 5.73 1.276365×10−03

QSJ 63 1.14 1.277229×10−03

FSJ 63 60.31 1.275846×10−03

3840 HSJ 63 15.44 1.275900×10−03

QSJ 63 3.79 1.276116×10−03

FSJ 63 225.80 1.275708×10−03

7680 HSJ 63 59.15 1.275721×10−03

QSJ 63 19.52 1.275775×10−03
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TABLE V
PERCENTAGE GAINS OF THE HSJ AND QSJ METHODS COMPARED WITH

FSJ METHOD

Methods Test Problem 1 Test Problem 2 Test Problem 3
(%) (%) (%)

HSJ 36.73 - 72.35 38.35 - 83.34 44.44 - 76.46
QSJ 66.66 - 93.11 61.64 - 92.77 66.66 - 94.12

TABLE VI
RN FOR THE TEST PROBLEM 1

N FSJ HSJ QSJ

60 - - -
120 4.025603 4.046552 4.133328
240 4.011105 4.016283 4.037184
480 4.005129 4.006422 4.011594
960 4.002460 4.002782 4.004074
1920 4.001207 4.001284 4.001605
3840 4.000599 4.000617 4.000695
7680 4.000319 4.000306 4.000323

TABLE VII
RN FOR THE TEST PROBLEM 2

N FSJ HSJ QSJ

60 - - -
120 4.027006 4.032411 4.054726
240 4.013097 4.014375 4.019842
480 4.006444 4.006733 4.008053
960 4.003198 4.003251 4.003561
1920 4.001594 4.001597 4.001664
3840 4.000795 4.000793 4.000803
7680 4.000403 4.000393 4.000395

TABLE VIII
RN FOR THE TEST PROBLEM 3

N FSJ HSJ QSJ

60 - - -
120 1.049176 1.172296 1.583090
240 1.013936 1.046099 1.168845
480 1.004268 1.012384 1.044498
960 1.001457 1.003490 1.011599
1920 1.000559 1.001067 1.003098
3840 1.000237 1.000364 1.000872
7680 1.000108 1.000140 1.000267

VI. CONCLUDING REMARKS

In the present paper, performance of the half- and quarter-
sweep iteration concepts with Jacobi iterative method for the
solution of CT algebraic equations associated with the nu-
merical solutions of the second kind linear Fredholm integral
equations has been investigated. From the results obtained, it
can be observed that QSJ method solved the test problems
1 to 3 with minimum number of iterations and fastest CPU
time. However, in some cases, number of iterations for FSJ,
HSJ and QSJ methods are similar. Whereas, accuracy of
numerical solutions obtained via HSJ and QSJ methods are

in good agreement compared to the FSJ method for solving
test problems 1 to 3. Based on Table VI to VIII, the ratio RN

tends to four for the test problems 1 and 2, and to one for the
test problem 3.
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