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Abstract—The Gram-Schmidt Process (GSP) is used to convert a 

non-orthogonal basis (a set of linearly independent vectors) into an 
orthonormal basis (a set of orthogonal, unit-length vectors). The 
process consists of taking each vector and then subtracting the 
elements in common with the previous vectors. This paper introduces 
an Enhanced version of the Gram-Schmidt Process (EGSP) with 
inverse, which is useful for signal and image processing applications. 
 

Keywords—Digital filters, digital signal and image processing, 
Gram-Schmidt Process, orthonormalization.  

I. INTRODUCTION 
RTHOGONALIZATION processes play a key role in many 
iterative methods used in Correlation Matrix memory [1], 

array signal processing [2], the Kalman Filtering problem [3], 
datamining and bioinformatics [4], among others [5, 6], with 
different implementation possibilities [3, 7-9], however, the 
issues involved in the use of Very-Large-Scale Integration 
(VLSI) technology to implement an adaptive version of the 
GSP, based on the escalator structure, are discussed in [10], 
while alternative versions for optimal filtering and control 
problems without using GSP are discussed in [11-15]. 
Besides, it has a very important field of applications in 
communica-tions, see [16-25]. Returning to the situation at 
hand, the EGSP is useful to perform a stable 
orthonormalization with inverse process, in opposition to 
previous versions that achieve it thanks to impractical or 
unstable algorithmic methods [26, 27], or being stable doesn't 
have inverse, such as Modified GSP [28]. Finally, a good 
orthonormalization algorithm with inver-se is essential for 
filtering and compression in Digital Signal and Image 
Processing. 

The original Gram-Schmidt Process (GSP) is outlined in 
Section II. Inverse of GSP is outlined in Section III. Enhanced 
Gram-Schmidt Process (EGSP) is outlined in Section IV. 
Performance proof is outline in Section V. In Section VI, we 
discuss briefly the employed routines. Finally, Section VI 
provides a conclusion of the paper.  
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II. GRAM-SCHMIDT PROCESS (GSP) 

A. Algebraic Version 
Given a set of key vectors that are linearly independent but 

nonorthonormal, it is possible to use a preprocessor to 
transform them into an orthonormal set; the processor is 
designed to perform a Gram-Schmidt orthogonalization on the 
key vectors prior to association [29, 30]. This way to 
transform is linear, maintaining a one-to-one correspondence 
between the input (key) vectors v1 , v2 , … , vN , and the 
resulting orthonormal vectors u1 , u2 , … , uN , as indicated in:  

 
{ v1 , v2 , … , vN } ⇔ { u1 , u2 , … , uN } 

 
where u1 = v1 , and the remaining un are defined by [30] 
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where (.)T means transpose of (.). The orthogonality of key 
vectors may also be approached using statistical 
considerations. Specifically, if the input space dimension M is 
large and the key vectors have statistically independent 
elements, then they will be close to orthogonality with respect 
to each other [1]. However, the number of coefficients rm,n is  

 

                              rN   = 
( 1)

2
N N −                         (3) 

 
which is independent of the key vectors dimension M, being N 
the number of vectors. 

B. Algorithmic Version 
The algorithmic version of GSP is based on Eq. (1) and (2), 

as shown in Fig. 1. A matrix v (M x N) would be built from 
the base of the input (key) vectors v1 , v2 , … , vN , and its 
columns would be the same vectors. Similarly, with the 
resulting orthonormal vectors u1 , u2 , … , uN , a matrix u (M x 
N) is built whose columns are these vectors. The process will 
also build a vector r (Nr x 1), in terms of Eq. (1), (2) and (3). 
The algorithm as a function is 
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Fig. 1 Gram-Schmidt Process (GSP). 

 
function [u,r] = gsp(v) 
u(:,1) = v(:,1); 
i = 1; 
[M,N] = size(v); 
for n = 2:N 
  acu = 0; 
  for m = 1:n-1 
    r(i) = ((v(:,n)')*u(:,m))/((u(:,m)')*u(:,m)); 
    acu = acu + r(i)*u(:,m); 
    i = i+1; 
  end 
  u(:,n) = v(:,n) - acu; 
end 

III. INVERSE OF GSP (IGSP) 
An algorithmic version of the IGSP is indispensable for 

multiple applications [1-31], therefore, an original process is 
exposed below. However, it is important to mention that this 
version is unstable under certain conditions [28].  

A. An Algebraic Version for the Discrete IGSP 
Based on prior considerations v1 = u1 , and the remaining vn 

are defined by 
 

             vn = un  + ∑
−

=

1

1
,

n

m
nmr um ,     n = 2, 3, … , N     (4) 

 
considering Eq. (2). 

B. Algorithmic Version 
The algorithmic version of IGSP is based on Eq. (4) and 

(2), as shown in Fig. 2.  
 

 
Fig. 2 Inverse Gram-Schmidt Process (IGSP). 

 
 

The algorithm as a function would be: 
 

function v = igsp(u,r) 
v(:,1) = u(:,1); 
i = 1; 
[M,N] = size(u); 
for n = 2:N 
  acu = 0; 
  for m = 1:n-1 
    acu = acu + r(i)*u(:,m); 
    i = i+1; 
  end 
  v(:,n) = u(:,n) + acu; 
end 

 
Finally, a modified version of the traditional GSP exists 

[28], and it is stable, but it doesn't have inverse because it is 
an in-situ method, i.e., it is a destructive algorithm [31]. This 
is the reason for which becomes indispensable a new 
algorithm that being stable has inverse. 

IV. ENHANCED GRAM-SCHMIDT PROCESS (EGSP) 
A. Algebraic Version of Improvement of the Stability 
The developed algorithm is the very traditional version of 

GSP (well known for its bad numerical properties, see [28]), 
modified versions of the same one exist, called Modified GSP 
(MGSP), see [31], but unfortunately, they don’t have inverse, 
because, they are in-situ algorithm, i.e., they are applicable on 
the same set of key vectors, i.e., they constitute destructive 
methods. On the other hand, the unstability happens when the 
denominators of the r elements are close to zero. Therefore, to 
assure the stability it is necessary to apply the following 
procedure on the input (key) vectors v1 , v2 , … , vN : 

 
1. vi 

T vi  = min (v1 
T v1  , v2 

T v2  , …. , vN 
T vN ) 

 
2. ( vi  + bias I ) T  ( vi  + bias I ) = 1, where I =  [ 1 1 …. 1 ] T 

being a (N x 1) vector 
 
3. (N) bias2 + (2 vi 

T I) bias + (-1 + vi 
T vi) = 0 

 
In such a way that the minimum denominator of the 

elements of r are equal to one. 
 
Finally, 
 

bias = -( vi 
T I / N ) + [( vi 

T I / N ) 
2 -( vi 

T vi  / N  ) + (1 / N  )]1/2 
 

B. Algorithmic Version of Improvement of the Stability 
The algorithm as a function is 
 

function [v,bias] = is(v) 
[M,N] = size(v); 
for n = 1:N 
  w(n) = (v(:,n)')*v(:,n); 
end 
[minw,n] = min(w); 
if minw < 1, 
  bias = -(sum(v(:,n))/N)–(((sum(v(:,n))/N)^2)– 
          (w(n)/N)+(1/N))^(1/2); 
else 
  bias = 0; 
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end 
v = v + bias * ones(M,N); % see Fig.1 

 
Fig. 3 Bias inclusion for the redefinition of matrix V. 

 
C. Algorithmic Version of EGSP 
The improvement of the stability is based on previous 

development, as shown in Fig. 1. Therefore, the final 
algorithmic version of GSP improved in stability, i.e., EGSP, 
can be observed in Fig. 4.  

 

 
Fig. 4 GSP improved in stability (EGSP). 

 
The following programs represent the complete process 
 

% input of v 
[v,bias] = is(v); 
[u,r] = gsp(v); 
% bias, u and r are transmitted 
 
% or 
 
% input of v 
[u,r,bias] = egsp(v); % EGSP as a function 
% bias, u and r are transmitted 
 
% where 
 
function [u,r,bias] = egsp(v) 
[M,N] = size(v); 
for n = 1:N 
  w(n) = (v(:,n)')*v(:,n); 
end 
[minw,n] = min(w); 
if minw < 1, 
  bias = -(sum(v(:,n))/N)–(((sum(v(:,n))/N)^2) 
         –(w(n)/N)+(1/N))^(1/2); 
else 
  bias = 0; 
end 

v = v + bias * ones(M,N); 
u(:,1) = v(:,1); 
i = 1; 
for n = 2:N 
  acu = 0; 
  for m = 1:n-1 
    r(i) = ((v(:,n)')*u(:,m))/((u(:,m)')*u(:,m)); 
    acu = acu + r(i)*u(:,m); 
    i = i+1; 
  end 
  u(:,n) = v(:,n) - acu; 
end 

 
Considering the improvement of the stability, the IEGSP 

algorithm will be as shown in Fig. 5 

 
Fig. 5 IEGSP. 

 
and the following programs represents the complete inverse 
process 

 
% bias, u and r are recived 
v = igsp(u,r); 
v = si(v,bias); 
 
% where 
 
function v = si(v,bias) 
[M,N] = size(v) ; 
v = v - bias * ones(M,N); % see Fig.3 
 
% or 
 
function v = iegsp(u,r,bias) 
v(:,1) = u(:,1); 
i = 1; 
[M,N] = size(u); 
for n = 2:N 
  acu = 0; 
  for m = 1:n-1 
    acu = acu + r(i)*u(:,m); 
    i = i+1; 
  end 
  v(:,n) = u(:,n) + acu; 
end 
v = v - bias * ones(M,N); 

V. PERFORMANCE PROOF 

A. Output-Imput Size Rate (OISR) Without Improvement of 
the Stability 
The OISR for GSP (i.e., GSP-OISR) is: 
 

                             OISRGSP − =  
)(

)()(
v

ru
size

sizesize +                    (5) 
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Replacing in order, the corresponding dimensions, in Eq. 
(5)  
 

                             OISRGSP − =  
NM

NNM r+                        (6) 

 
considering Eq. (3) 
 

                        OISRGSP − =  
NM

NN
NM

2
)1( −

+
                  (7) 

 
and simplifying 
 

           OISRGSP − =  
M
NM

2
12 −+                      (8) 

 
However, for practical considerations M >> N [1, 5, 8-15], 

then GSP-OISR ≅ 1, being M the input space dimension, and 
N the number of vectors of such space. Similarly, and for 
identical considerations, the IGSP-OISR ≅ 1, too. 

B. Output-Imput Size Rate (OISR) with Improvement of the 
Stability 

The OISR for GSP (i.e., GSP-OISR) is: 
 

             OISRGSP − =  
)(

1)()(
v

ru
size

sizesize ++                  (9) 

 
Replacing in order, the corresponding dimensions, in Eq. (9)  
 

                     OISRGSP − =  
NM

NNM r 1++                    (10) 

 
considering Eq. (3) 
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            (11) 

 
and simplifying 
 

            OISRGSP − =  
NM

NNNM 2

2
22 −−+

         (12) 

 
For identical considerations to the previous case GSP-OISR 

≅ 1 and IGSP-OISR ≅ 1, too. 

VI. EMPLOYED ROUTINES 
The used routines are the functions: egsp() and iegsp(), 

besides the following ones 
 
 

 
M = input('M = '); 
N = input('N = '); 
v = rand(M,N); 
[u,r,bias] = egsp(v); 
aux = po(u)’; % proof of orthogonality 
v = iegsp(u,r,bias); 
 
% and 
 
function aux = po(u) 
i = 1; 
[M,N] = size(u); 
for a = 1:N-1 
  for b = a+1:N 
    aux(i) = u(:,a)'*u(:,b); 
    i = i+1; 
  end 
end 

 
The second routine proves the orthogonalization of the 

vectors caused by the EGSP, while the first use to all the other 
routines is to verify the operation of the IEGSP. 

VII. CONCLUSIONS 
An algorithm for a discrete version of the IGSP is 

performed. The GSP generates a matrix u and a vector r 
which can be stored or transmitted starting from the matrix v, 
while the IGSP will reconstruct to the original matrix u based 
on the matrix v and the vector r. Since for practical 
considerations [1, 5, 8-15] the size of the vector r is 
insignificant compared with the size of the matrices v and u, 
then GSP-OISR and IGSP-OISR are approximately equal to 
one, see Eq. (8). The computer simulations show null error 
when applying GSP followed by IGSP regarding to the matrix 
v.  
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