
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

458

Spline basis neural network algorithm for numerical
integration

Lina Yan, Jingjing Di and Ke Wang

Abstract—A new basis function neural network algorithm is
proposed for numerical integration. The main idea is to construct
neural network model based on spline basis functions, which is used
to approximate the integrand by training neural network weights. The
convergence theorem of the neural network algorithm, the theorem
for numerical integration and one corollary are presented and proved.
The numerical examples, compared with other methods, show that
the algorithm is effective and has the characteristics such as high
precision and the integrand not required known. Thus, the algorithm
presented in this paper can be widely applied in many engineering
fields.

Keywords—Numerical integration; Spline basis function; Neural
network algorithm

I. INTRODUCTION

DEFINITE integral is very important in computational sci-
ence and engineering. Under certain conditions, Newton-

Leibniz formula
∫ b
a
f(x) = F (b)−F (a), where F ′(x) = f(x)

can be used to compute definite integrals. However, as is well
known, the primitive of general integrand f(x) is always hard
to obtain or very complicated except a limited number of
types. Moreover, in real problems, the function f(x) is always
presented as a function table without an analytic expression.
Thus, the Newton-Leibniz formula fails to be used in most
cases and we have to seek numerical methods for computing
definite integrals.

By the definition of the definite integral, we can use the
discretization or weighted average approximation of finite
samples of integrand to substitute it, which is the main
idea of numerical integration. With this idea, there are many
methods of numerical integration, such as Newton-Cotes for-
mula, Romberg’s method and Gaussian quadrature[4], [8],
[9]. Newton-Cotes formula is a common method by utilizing
polynomial interpolation to construct numerical integration,
but the convergence can’t be guaranteed in high order case.
Romberg’s method has fast convergence and high precision
while expensive computation cost. Gaussian quadrature also
has fast convergence, high precision and is robust, but the
computation of nodes and coefficients is complicated and the
integrand f(x) is required known. In 2004, Wang, He and
Zeng[10] provided a method based on triangular basis neural
network algorithm which is better than the traditional methods
with higher precision, the integrand not required known and
good to singular integral. The idea utilizing basis function is

Ke Wang is the corresponding author. E-mail: kwang@shu.edu.cn.
The authors are with the Department of Mathematics, College of Sci-

ences, Shanghai University, Shanghai 200444, P.R. China. Yan’s e-mail:
linayan0718@126.com. Di’s e-mail: 419287993@qq.com.

popular with scientists in signal processing, pattern recognition
and artificial neural networks[2], [5], [11], [12], [13]. Spline
function is easy to calculate and has many advantages as
an interpolation function, thus, it’s often used in numerical
computations[3], [6], [7]. Given this, we presents a neural
network algorithm with spline basis function that has higher
precision than Wang, He and Zeng’s, is also good for singular
integral and does not require the integrand known too. There-
fore, the method can solve the integral problems effectively
for systems which are unknown or difficult to be modeled and
has great applications in engineering practice.

II. NEURAL NETWORK MODEL BASED ON SPLINE BASIS
FUNCTION

Because spline function is simple in form, it can be eas-
ily computed. When the interpolation nodes are gradually
increased, not only does it converge to the function itself,
but also its derivative converges to the derivative of the
function[15]. In this paper, the theory of spline approximation
is adequately combined with the neural network principle by
these advantages of spline function. As shown in Fig. 1, the

Fig. 1. Neural network model based on spline basis function

neural network model based on m times spline basis function
is constructed, where ωj is the weight of neural network and
φj(x) is spline basis function. That is

φj(x) =

{
xj , j = 0, 1, · · · ,m,
(x− xj−m)m, j = m+ 1,m+ 2, · · · , N (1)

is the hidden layer neuron incentive function, x ∈ [0, 1].
Suppose the weight matrix W = [ω0, ω1, · · · , ωN]T and the
incentive matrix Φ(x) = [φ0(x), φ1(x), · · · , φN (x)]T. So the
output of the neural network is

y(x) =

N∑
j=0

ωjφj(x) =WTΦ(x). (2)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

459

The error function is

e(t) = f(xk)− y(xk), k = 0, 1, · · · , n, (3)

where n + 1 is the training sample points, n = N −m + 1,
f(x) is the integrand, and the performance index

J =
1

2

n∑
k=0

e2(k). (4)

The weight adjustment is

W (k + 1) =W (k) + ηe(k)Φ(xk), (5)

where 0 < η < 1 is the learning rate.

A. Convergence theorem of neural network model

Theorem 2.1: Let η be the learning rate. Then the neu-
ral network algorithm is convergent, when 0 < η ≤

2∑N
j=0 |φj(xk)|2

, where N is the number of hidden layer

neurons.
Proof: Let the Lyapunov function V (k) =

1

2
e2(k). Then

�V (k) =
1

2
e2(k + 1)− 1

2
e2(k), (6)

and e(k + 1) = e(k) + �e(k) = e(k) +

(
∂e(k)

∂W

)T
∂e(k)

∂W
,

ΔW = −ηe(k)∂e(k)
∂W

, so

�e(k) = −ηe(k)
(
∂e(k)

∂W

)T
∂e(k)

∂W
= −ηe(k)

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

, (7)

where ‖ · ‖2 =
√∑ | · |2 is the Euclidean norm. So formula

(6) can be rewritten as

�V (k) =
1

2
[e(k) +�e(k)]2 − 1

2
e2(k)

= �e(k)
[
e(k) +

1

2
�e(k)

]
= −ηe(k)

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

[
e(k)− 1

2
ηe(k)

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

]

=

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

e(k)

(
−η + 1

2
η2

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

)
.

(8)

To make the neural network algorithm convergent, we have

−η + 1

2
η2

∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

≤ 0, η > 0,

that is

0 < η ≤ 2∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

. (9)

From (2) and (3), we get

∂e(k)

∂W
=

(
∂e(k)

∂y(xk)

)(
∂y(xk)

∂W

)
= −Φ(xk).

According to (1), it can be proved∥∥∥∥∂e(k)∂W

∥∥∥∥2
2

= ‖−Φ(xk)‖22 = ‖Φ(xk)‖22 =
N∑
j=0

|φj(xk)|2 . (10)

When 0 < η ≤ 2∑N
j=0 |φj(xk)|2

, we have �V (k) < 0.

Consequently, it is shown that the neural network algorithm
is convergent.

B. Algorithm of neural network model

According to the neural network model based on the spline
basis function which is discussed above, we get the following
neural network algorithm for numerical integration:

1) Take the learning rate satisfying Theorem 2.1,

such as η =
2

N + 1
, the training sample set{

xk = a+ b−a
n k|f(xk), k = 0, 1, 2 · · · , n} and the ini-

tial weight matrix W0 = zeros(N +1, 1); Calculate the
incentive matrix Φ(xk) = [φ0(x), φ1(x), · · · , φN (x)]T;
Set the performance index J = 0 and give an infinitely
small positive number ε;

2) Calculate the output of the neural network: y(xk) =∑N
j=0 ωjφj(xk) =WTΦ(xk);

3) Calculate the error function: e(k) = f(xk)− y(xk);
4) Calculate the performance index of the neural network:

J =
1

2

∑n
k=0 e

2(k);
5) Adjust the neural network weight: W (k+1) =W (k)+

ηe(k)Φ(xk);
6) If the sample set is not fully trained, return to step 2

and repeat the above steps; Otherwise, compare the
performance index J and ε: If J > ε, set J = 0,
return to step 2 and repeat the above steps; If J ≤ ε,
end training, output the neural network weights W =
[ω0, ω1, · · · , ωN]T.

C. Theorem for numerical integration

After getting the neural network weights by the above algo-
rithm, we can easily show the following numerical integration
theorem and corollary.

Theorem 2.2: Let a, b be the upper and lower limits of the
integral, 0 ≤ a, b ≤ 1, and ωj be the neural network weights.
Then

I =

∫ b

a

f(x) dx ≈
m∑
j=0

ωj(b
j+1 − aj+1)

j + 1
(11)

+
n−1∑
j=1

ωj+m[(b− xj)
m+1 − (a− xj)

m+1]

m+ 1
. (12)

Corollary 2.3: When a = 0, b < 1, we have

I =

∫ b

0

f(x) dx ≈
m∑
j=0

ωjb
j+1

j + 1
(13)

+
n−1∑
j=1

ωj+m[(b− xj)
m+1 − (−xj)m+1]

m+ 1
. (14)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

460

Remark 2.4: The integral interval is [0, 1] for the numerical
algorithm proposed in this paper, so we need to do some
integral transform to make it fall in [0, 1] if the integral interval
is beyond this scope.

III. NUMERICAL EXAMPLES

In order to illustrate the validity and feasibility of the
algorithm of this paper, some examples that mentioned in
the references[1], [14] are selected and compared with the
traditional integral methods. The numerical results show that
the algorithm is effective and has the characteristics such
as high precision and well-adapted. By the principle of in-
terpolation, the low-order polynomials have less oscillation
and better effectiveness than high-order ones to approximate
known functions[15], so, in general, we take m = 3 or 4, and
cubic spline function is selected in the following examples.

Example 1. Reference[1] use the trapezoidal formula and
Simpson’s method to calculate the integration of integrand

x2, x4,
√
1 + x2,

1

1 + x
, sinx, ex in the interval [0,2], respec-

tively. The results are shown in Table 4.7 of literature [1]. For
our algorithm, we choose the neural network structure shown
in Fig. 1 and select cubic spline basis function as the incentive
function of neurons with the network structure 1 × 120 × 1,
the initial weight zero, learning rate η = 0.0165, the training
sample set {xk = 1

118k|f(xk), k = 0, 1, 2 · · · , 118}, the
stopping criteria is J = 10−7 or iterations = 500, where
f(x) is integrand. The results of our algorithm and those in
references[1], [10], [14] are listed in Table I.

From Table I, we can see that our algorithm has higher
precision than others even triangular basis neural network
algorithm.

TABLE I
THE COMPARISON OF NUMERICAL INTEGRATION METHODS

f(x) x2 x4
√
1 + x2

1

1 + x
sinx ex

Exact value 2.667 6.400 2.958 1.099 1.416 6.389
Trapezoidal 4.000 16.000 3.326 1.333 0.909 8.389
Simpson’s 2.667 6.667 2.964 1.111 1.435 6.421
Triangular 2.665 6.393 2.959 1.101 1.415 6.388
Our results 2.667 6.402 2.958 1.098 1.416 6.390

Example 2. In order to show the algorithm has the ability to
calculate singular integrals, we consider the following singular
integral

f(x) =

⎧⎪⎨⎪⎩
e−x, 0 ≤ x < 1,

e−
x
2 , 1 ≤ x < 2,

e−
x
3 , 2 ≤ x < 3.

The accurate integral value is 1.5460. For our algorithm, take
neural network hidden layer neurons N = 120, learning
rate η = 0.165, and select the training sample set {xk =
1

118k|f(xk), k = 0, 1, 2 · · · , 118}, J = 10−7. The integral
result is 1.5462 (It’s 1.5467 in [10]) and integral error curve
is shown in Fig. 2.

We can see that our algorithm has higher precision than
triangular basis neural network algorithm and has very good
approximation effect for singular integral. Moreover, the con-
vergence rate is quite fast.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

E
rr

or

Fig. 2. Integral error curve

IV. CONCLUSION

We propose a basis function neural network algorithm
for numerical integration. We construct the neural network
model based on spline basis functions, which is used to
approximate the integrand by training neural network weights.
The convergence theorem of the neural network algorithm,
the theorem for numerical integration and one corollary are
presented and proved. The numerical examples, compared with
other methods, show that the algorithm is effective and has
the characteristics such as high precision and the integrand
not required known. Thus, the algorithm presented in this
paper can be widely applied in many engineering fields.
Furthermore, we can discuss the numerical differentiation with
the same idea, which will be the next work.

ACKNOWLEDGMENT

This work was supported by Shanghai College Teachers
Visiting abroad for Advanced Study Program (B.60-A101-
12-010) and Shanghai Leading Academic Discipline Project
(J50101).

REFERENCES

[1] R.L. Burden and J.D. Faires, Numerical Analysis(Seventh Edition),
Brooks/Cole, Thomson Learning, Inc., 2001.

[2] F. Castillo, J. Arellano and S. Sánchez, Statistical approach to basis
function truncation in digital interpolation filters, World Academy of
Science, Engineering and Technology 39 (2009) 622-626.

[3] C. Dagnino, Product integration of singular integrands based on cubic
spline interpolation at equally spaced nodes, Numerische Mathematik
57 (1990) 97-104.

[4] K. Deb, Multi-objective genetic algorithms: problem difficulties and
construction of test problems, Evolutionary Computation 7(1999) 205-
230.

[5] K. Elleuch and A. Chaari, Modeling and identification of hammerstein
system by using triangular basis functions, World Academy of Science,
Engineering and Technology 51 (2011) 1332-1336.

[6] S. Gao, Z. Zhang and C. Cao, Differentiation and numerical integral of
the cubic spline interpolation, Journal of Computers 6 (2011) 2037-2044.

[7] Y. Isomoto, Numerical integration by bicubic spline function, Informa-
tion processing in Japan 15 (1975) 16-20.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

461

[8] J.H. Shen, Fundamentals of Numerical Calculation (in Chinese), Tongji
University Press, Shanghai, 1999.

[9] N.C. Wang, A Concise Guide to Numerical Analysis (in Chinese),
Higher Education Press, Beijing, 1997.

[10] X.-H. Wang, Y.-G. He and Z.-Z. Zeng, Numerical integration study
based on triangle basis neural network algorithm (in Chinese), Journal
of Electronics and Information Technology 26 (2004) 394-399.

[11] S. Yan, X. Chen, S. Dai and Q. Zhang, A kind of fast numerical
integration method based on neural network algorithm, International
Journal of Digital Content Technology and its Applications 6 (2012)
403-410.

[12] J. Yang and T. Du, Neural network algorithm for solving triple integral,
2010 Sixth International Conference on Natural Computation (ICNC
2010) 1 (2010) 412-416.

[13] Z.-Z. Zeng, Y.-N. Wang and H.Wen, Numerical integration based on
a neural network algorithm, Computing in Science & Engineering 8
(2006) 42-48.

[14] Y.-Q. Zhou, M. Zhang and B. Zhao, Solving numerical integration
based on evolution strategy method (in Chinese), Chinese Journal of
Computers 31 (2008) 196-206.

[15] A.J. Zou and Y.N. Zhang, Basis Function Neural Networks and their
Applications (in Chinese), Sun Yat-sen University Press, Guangzhou,
2009.

