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Permanence and global attractivity of a delayed
predator-prey model with mutual interference

Kai Wang and Yanling Zu

Abstract—By utilizing the comparison theorem and Lyapunov
second method, some sufficient conditions for the permanence and
global attractivity of positive periodic solution for a predator-prey
model with mutual interference m ∈ (0, 1) and delays τi are
obtained. It is the first time that such a model is considered with
delays. The significant is that the results presented are related to the
delays and the mutual interference constant m. Several examples are
illustrated to verify the feasibility of the results by simulation in the
last part.
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I. INTRODUCTION

IN this paper, we consider the permanence and global
attractivity of a delayed predator-prey population model

with mutual interference in the form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = x(t)(a1(t) − b1(t)x(t − τ1) − c1(t)ym(t − τ2)),
ẏ(t) = y(t)(−a2(t) − b2(t)y(t − τ3) + c2(t)x(t)ym−1(t)),
x(θ) = ϕ(θ) � 0, θ ∈ [−τ, 0], ϕ(0) = ϕ0 > 0,

y(θ) = ψ(θ) � 0, ψ ∈ [−τ, 0], ψ(0) = ψ0 > 0,
(PP)

where τi(i = 1, 2, 3) are nonnegative constants, τ =
max1�i�3{τi}, ϕ and ψ are continuous on [−τ, 0]; x(t) and
y(t) denote the size of prey and predator at time t, respectively;
ai, bi and ci(i = 1, 2) are continuous and bounded above and
below by positive constants; m ∈ (0, 1) is mutual interference
constant, which was introduced by Hassell in 1971, see [1]–[3]
for more details.

Recently, there are some literatures on studying the species
dynamics, such as the permanence, positive periodic solutions,
positive almost periodic solution, global attractivity etc., of
the population model with mutual interference, see [4]–[15]
for more details. It was pointed by Kuang(1993) [16] that any
model of species dynamics without delays is an approximation
at best, more detailed arguments on the importance and use-
fulness of time-delays in realistic models may also be found in
the classical books of Macdonald (1989) [17] and Gopalsamy
(1992) [18]. But there are few literatures on considering the
delays in population model with mutual interference in the
form of model (PP).
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The structure of this paper is as follows. In section 2, some
useful lemmas and definitions are presented. In section 3,
by using the comparison theorem we estimate the eventually
upper and lower bounds of all positive solutions for system
(PP) and present some sufficient conditions for the permanence
of the (PP) model, and by applying the Brouwer fixed point
theorem we prove the existence of positive periodic solutions
for system (PP) under some sufficient conditions. In section 4,
sufficient conditions are presented for the global attractivity of
the system (PP). Lastly, several examples are given to verify
the feasibility of the results by simulation.

For the sake of convenience, we set

fL = inf
t∈E

{f(t)}, fU = inf
t∈E

{f(t)},
where f is a continuously bounded function defined on interval
E = [0,+∞), and denote

M1 =
aU1
bL1

exp{aU1 τ1}, M2 =
[
cU2 M1

aL2

] 1
1−m

,

M3 = min
{

K1

bU1
exp

{
(K1 − bU1 M1)τ1

}
,
K1

bU1

}
,

M4 =
[
K2

aU2

] 1
1−m

, K1 = lim inf
t→+∞ (a1(t) − Mm

2 c1(t)),

K2 = lim inf
t→+∞

(
M3c2(t) − M2−m

2 b2(t)
)
,

g1(t) = β

[
b1(t) − (a1(t) + M1b1(t) + Mm

2 c1(t))×∫ t+τ1

t

b1(l)dl − M1b1(t + τ2)
∫ t+τ1+τ2

t+τ2

b1(l)dl

]

− c2(t)Mm−1
4

[
1 + M2

∫ t+τ3

t

b2(l)dl

]
,

g2(t) =
[
b2(t) −

(
a2(t) + M2b2(t) + M1M

m−1
4 c1(t)

)×∫ t+τ3

t

b2(l)dl − M2b2(t + τ3)
∫ t+2τ3

t+τ3

b2(l)dl

]
,

g3(t) = c2(t)
[
M3 − M1M2

∫ t+τ3

t

b2(l)dl

]
,

g4(t) = βc1(t + τ2)
[
1 + M1b1(t + τ2)

∫ t+τ1+τ2

t+τ2

b1(l)dl

]
,

G1(t) =g2(t) + (1 − m)Mm−2
2 g3(t) − mMm−1

4 g4(t),

G2(t) =g2(t) + (1 − m)Mm−2
4 g3(t) − mMm−1

4 g4(t),

G3(t) =g2(t) + (1 − m)Mm−2
4 gL3 − mMm−1

4 g4(t),

where β is a given positive constant.
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II. LEMMAS AND DEFINITIONS

In this section, we give some important lemmas and defini-
tions, which will be used in next sections.

Lemma 2.1. ( See [19]) If a > 0, b > 0 and ż(t) � (�
) b− a z(t) for t � 0, z(0) > 0, then the following inequality
holds

z(t) � (�)
b

a
+
(

z(0) − b

a

)
exp{−a t}

or
lim inf
t→+∞ y(t) � b

a
, lim sup

t→+∞
y(t) � b

a
.

Lemma 2.2. ( See [20], [21] ) If a > 0, b > 0, τ � 0, for t ∈
R, and ẏ(t) � y(t)(b−a y(t−τ)), then there exists a constant
T > 0 such that

y(t) � b

a
exp{b τ} for t � T.

Lemma 2.3. If a > 0, b > 0, τ � 0, for t ∈ R, and
ẏ(t) � y(t)(b − a y(t − τ)), and lim supt→+∞ y(t) � M,

then

lim inf
t→+∞ y(t) � min

{
b

a
exp{(b − aM)τ}, b

a

}
.

The proof is similar to that of [20] and [21], so we omit it
here.

Definition 2.1. System (PP) is said to be permanent if there
exist positive numbers M � m such that any positive solution
of (PP) satisfying

m ≤ lim inf
t→+∞{x(t), y(t)} � lim sup

t→+∞
{x(t), y(t)} � M.

Definition 2.2. System (PP) is called globally attractive, if

lim
t→+∞(|x(t) − x0(t)| + |y(t) − y0(t)|) = 0,

for any two positive solutions (x(t), y(t)) and (x0(t), y0(t))
of system (PP).

III. PERMANENCE AND POSITIVE PERIODIC SOLUTIONS

In this section, the permanence of the (PP) model is dis-
cussed. Some sufficient conditions are presented for it.

Theorem 3.1. If K1 > 0 and K2 > 0, then system (PP) is
permanent.

Proof. Suppose that (x(t), y(t)) is any positive solution of
system (PP). We first estimate the eventually upper bounds of
the positive solution (x(t), y(t)) of system (PP). From the first
equation of model (PP), we get

ẋ(t) � x(t)
(
aU1 − bL1 x(t − τ1)

)
,

it follows from Lemma 2.2 that there exists constant T1 > 0
such that

x(t) � M1 for t > T1.

Similarly, from the second equation of system (PP) we can
get

ẏ(t) � ym(t)
(
cU2 M1 − aL2 y1−m(t)

)
,

i.e.,

d(y1−m(t))
d t

� (1 − m)
(
cU2 M1 − aL2 y1−m(t)

)
for t > T1.

The above inequality and Lemma 2.1 yield

y1−m(t) � cU2 M1

aL2
+
[
ψ1−m

0 − cU2 M1

aL2

]
exp

{
(m − 1)cU2 M1t

}
,

which yields
lim sup
t→+∞

y(t) � M2. (1)

We now estimate the eventually lower bounds of the positive
solution (x(t), y(t)) of the system. From (1) and the first
equation of model (PP) we get

ẋ(t) � x(t)
(
a1(t) − c1(t)Mm

2 − bU1 x(t − τ1)
)
, t → +∞.

It follows from K1 > 0 and Lemma 2.3 that

lim inf
t→+∞ x(t) � M3.

On the other hand, the second equation of system (PP) yields

ẏ(t) � ym(t)
(
c2(t)M3 − b2(t)M2−m

2 − aU2 y1−m(t)
)
,

as t → +∞. Thus Lemma 2.1 and K2 > 0 yield

lim inf
t→+∞ y(t) � M4.

The proof is now finished.

If all coefficients in model (PP) are continuously periodic
functions, i.e., it is a periodic system, then Theorem 3.1 and
the Brouwer fixed point theorem yield the following result.

Theorem 3.2. If model (PP) is an ω-periodic system, then
Theorem 3.1 yields that the ω-periodic model (PP) has at least
one positive ω-periodic solution.

IV. GLOBAL ATTRACTIVITY

In this section, we will present some sufficient conditions
for the global attractivity of model (PP). Assume that all
conditions in Theorem 3.1 hold, and β can be chosen freely
in R+.

Theorem 4.1. If gL3 � 0 and lim inf
t→+∞{g1(t), G1(t)} > 0,

then system (PP) is globally attractive.

Theorem 4.2. If gU3 � 0 and lim inf
t→+∞{g1(t), G2(t)} > 0,

then system (PP) is globally attractive.

Theorem 4.3. If gL3 < 0 < gU3 and lim inf
t→+∞{g1(t), G3(t)} >

0, then system (PP) is globally attractive.

The proofs of the above theorems are similar, thus we only
present the complete proof of Theorem 4.1.

Proof. Suppose that (x0(t), y0(t)) and (x(t), y(t)) are any two
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positive solutions of system (PP), by Theorem 3.1 one know
that there exists positive constant T such that

M3 � x0(t), x(t) � M1; M4 � y0(t), y(t) � M2 for t > T.

Define the Lyapunov functional by

V (t) = V1(t) + V2(t) + V3(t) for t > T,

where

V1(t) = β |lnx(t) − lnx0(t)| + |ln y(t) − ln y0(t)| ,
V2(t)

= β

∫ t

t−τ2
c1(s + τ2)|ym(s) − ym0 (s)|ds

+ β

∫ t+τ1

t

∫ t

l−τ1
b1(l)(a1(s) + M1b1(s) + Mm

2 c1(s))

× |x(s) − x0(s)|dsdl + βM1

∫ t+τ1

t

∫ t

l−τ1
b1(l)b1(s)

× |x(s − τ2) − x0(s − τ2)|dsdl + βM1

∫ t+τ1

t

∫ t

l−τ1
× b1(l)b1(s)c1(s)|ym(s − τ2) − ym0 (s − τ2)|dsdl

+
∫ t+τ3

t

∫ t

l−τ3
b2(l)|y(s) − y0(s)|

× (a2(s) + M2b2(s) + M1M
m−1
4 c1(s))dsdl

+ M2

∫ t+τ3

t

∫ t

l−τ3
b2(l)b2(s)|y(s − τ3) − y0(s − τ3)|dsdl

+ M1M2

∫ t+τ3

t

∫ t

l−τ3
b2(l)c2(s)|ym−1(s) − ym−1

0 (s)|dsdl

+ M2M
m−1
4

∫ t+τ3

t

∫ t

l−τ3
b2(l)c2(s)|x(s) − x0(s)|dsdl

and

V3(t)

=βM1

∫ t

t−τ2

∫ s+τ1+τ2

s+τ2

b1(l)b1(s + τ2)|x(s) − x0(s)|dlds

+ βM1

∫ t

t−τ2

∫ s+τ1+τ2

s+τ2

b1(l)b1(s + τ2)c1(s + τ2)

× |ym(s) − ym0 (s)|dlds

+ M2

∫ t

t−τ3

∫ s+2τ3

s+τ3

b2(l)b2(s + τ3)|y(s) − y0(s)|dlds.

Computing its Dini derivative along system (PP), we have

D+V1(t)|(PP )

� − βb1(t)|x(t) − x0(t)| − b2(t)|y(t) − y0(t)|

+ b2(t)
∣∣∣∣
∫ t

t−τ3
(ẏ(s) − ẏ0(s))ds

∣∣∣∣
+ βc1(t)|ym(t − τ2) − ym0 (t − τ2)|

+ βb1(t)
∣∣∣∣
∫ t

t−τ1
(ẋ(s) − ẋ0(s))ds

∣∣∣∣
+ c2(t)sgn(y(t) − y0(t))(x(t)ym−1(t) − x0(t)ym−1

0 (t)).

(2)

Meanwhile, we have

sgn(y(t) − y0(t))(x(t)ym−1(t) − x0(t)ym−1
0 (t))

� − x(t)|ym−1(t) − ym−1
0 (t)| + ym−1

0 (t)|x(t) − x0(t)| (3)

and ∫ t

t−τ1
(ẋ(s) − ẋ0(s))ds

=
∫ t

t−τ1
(x(s) − x0(s))(a1(s) − b1(s)x0(s − τ1))

− c1(s)ym0 (s − τ2))ds

+
∫ t

t−τ1
x(s){b1(s)(x0(s − τ1) − x(s − τ1))

+ c1(s)(ym0 (s − τ2) − ym(s − τ2))}ds

(4)

and ∫ t

t−τ3
(ẏ(s) − ẏ0(s))ds

=
∫ t

t−τ3
(y(s) − y0(s))(−a2(s) − b2(s)y0(s − τ3)

+ c2(s)x0(t)ym−1
0 (s))ds

−
∫ t

t−τ3
b2(s)y(s)(y(s − τ3) − y0(s − τ3))ds

+
∫ t

t−τ3
c2(s)y(s)(x(s)(ym−1(s) − ym−1

0 (s))

+ ym−1
0 (s)(x(s) − x0(s)))ds.

(5)

Substitution of (3), (4) and (5) into (2) yields

D+V1(t)|(PP )

�
(
c2(t) Mm−1

2 − βb1(t)
) |x(t) − x0(t)|

− b2(t)|y(t) − y0(t)| − M3c2(t)|ym−1(t) − ym−1
0 (t)|

+ βc1(t) |ym(t − τ2) − ym0 (t − τ2)|

+ βb1(t)
{∫ t

t−τ1
|x(s) − x0(s)|

× (a1(s) + M1b1(s) + Mm
2 c1(s))ds

+ M1

∫ t

t−τ1
(b1(s)|x0(s − τ1) − x(s − τ1)|

+ c1(s)|ym0 (s − τ2) − ym(s − τ2)|)ds

}

+ b2(t)
{∫ t

t−τ3
|y(s) − y0(s)|

× (a2(s) + M2b2(s) + M1M
m−1
4 c1(s))ds

+ M2

∫ t

t−τ3
b2(s)|y(s − τ3) − y0(s − τ3)|ds

+ M1M2

∫ t

t−τ3
c2(s)|ym−1(s) − ym−1

0 (s)|ds

+ M2M
m−1
4

∫ t

t−τ3
c2(s)|x(s) − x0(s)|ds

}
.

(6)
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Note that
V ′

2(t)

= βc1(t + τ2)|ym(s) − ym0 (t)|
− βc1(t)|ym(t − τ2) − ym0 (t − τ2)|
+ β(a1(t) + M1b1(t) + Mm

2 c1(t))

×
∫ t+τ1

t

b1(l)dl |x(t) − x0(t)|

− βb1(t)
∫ t

t−τ1
(a1(s) + M1b1(s) + Mm

2 c1(s))

× |x(s) − x0(s)|ds

+ βM1b1(t)
∫ t+τ1

t

b1(l)dl |x(t − τ2) − x0(t − τ2)|

+ βM1c1(t)b1(t)
∫ t+τ1

t

b1(l)dl|ym(t − τ2) − ym0 (t − τ2)|

− βM1b1(t)
∫ t

t−τ1
(b1(s)|x(s − τ2) − x0(s − τ2)|

+ c1(s)|ym(s − τ2) − ym0 (s − τ2)|)ds

+
(
a2(t) + M2b2(t) + M1M

m−1
4 c1(t)

)
×
∫ t+τ3

t

b2(l)dl |y(t) − y0(t)|

− b2(t)
∫ t

t−τ3
|y(s) − y0(s)|(a2(s) + M2b2(s)

+ M1M
m−1
4 c1(s))ds

+ M2b2(t)
∫ t+τ3

t

b2(l)dl |y(t − τ3) − y0(t − τ3)|

− M2b2(t)
∫ t

t−τ3
b2(s)|y(s − τ3) − y0(s − τ3)|ds

+ M1M2c2(t)
∫ t+τ3

t

b2(l)dl|ym−1(t) − ym−1
0 (t)|

− M1M2

∫ t

t−τ3
b2(l)c2(s)|ym−1(s) − ym−1

0 (s)|ds

+ M2M
m−1
4 c2(t)

∫ t+τ3

t

b2(l)dl |x(t) − x0(t)|

− M2M
m−1
4 b2(t)

∫ t

t−τ3
c2(s)|x(s) − x0(s)|ds

(7)
and

V ′
3(t)

=βM1

∫ t+τ1+τ2

t+τ2

b1(l)b1(t + τ2)(|x(t) − x0(t)|
+ c1(t + τ2)|ym(t) − ym0 (t)|)dl

− βM1b1(t)
∫ t+τ1

t

b1(l)(|x(t − τ2) − x0(t − τ2)|
+ c1(t)|ym(t − τ2) − ym0 (t − τ2)|)dl

+ M2b2(t + τ3)
∫ t+2τ3

t+τ3

b2(l)dl|y(t) − y0(t)|

− M2b2(t)
∫ t+τ3

t

b2(l)dl|y(t − τ3) − y0(t − τ3)|.

(8)

From (6)-(8), we obtain

D+V (t)

=D+V1(t) + V ′
2(t) + V ′

3(t).

�
(
c2(t) Mm−1

2 − βb1(t)
) |x(t) − x0(t)|

− b2(t)|y(t) − y0(t)| − M3c2(t)|ym−1(t) − ym−1
0 (t)|

+ βc1(t + τ2)|ym(t) − ym0 (t)|
+ β(a1(t) + M1b1(t) + Mm

2 c1(t))

×
∫ t+τ1

t

b1(l)dl |x(t) − x0(t)|

+
(
a2(t) + M2b2(t) + M1M

m−1
4 c1(t)

)
×
∫ t+τ3

t

b2(l)dl |y(t) − y0(t)|

+ βM1b1(t + τ2)
∫ t+τ1+τ2

t+τ2

b1(l)dl(|x(t) − x0(t)|

+ c1(t + τ2)|ym(t) − ym0 (t)|)

+ M2b2(t + τ3)
∫ t+2τ3

t+τ3

b2(l)dl |y(t) − y0(t)|

+ M1M2c2(t)
∫ t+τ3

t

b2(l)dl|ym−1(t) − ym−1
0 (t)|

+ M2M
m−1
4 c2(t)

∫ t+τ3

t

b2(l)dl |x(t) − x0(t)|

� −
(

βb1(t) − c2(t) Mm−1
2 − β(a1(t) + M1b1(t)

+ Mm
2 c1(t))

∫ t+τ1

t

b1(l)dl − M2M
m−1
4 c2(t)

×
∫ t+τ3

t

b2(l)dl − βM1b1(t + τ2)
∫ t+τ1+τ2

t+τ2

b1(l)dl

)

× |x(t) − x0(t)| −
[
b2(t) − (a2(t) + M2b2(t)

+ M1M
m−1
4 c1(t))

∫ t+τ3

t

b2(l)dl − M2b2(t + τ3)

×
∫ t+2τ3

t+τ3

b2(l)dl

]
|y(t) − y0(t)|

− c2(t)
(

M3 − M1M2

∫ t+τ3

t

b2(l)dl

)
|ym−1(t) − ym−1

0 (t)|

+ βc1(t + τ2)
(

1 + M1b1(t + τ2)
∫ t+τ1+τ2

t+τ2

b1(l)dl

)

× |ym(t) − ym0 (t)|
= − g1(t)|x(t) − x0(t)| − g2(t)|y(t) − y0(t)|
− g3(t)|ym−1(t) − ym−1

0 (t)| + g4(t)|ym(t) − ym0 (t)|.
(9)
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In view of gL4 > 0 and gL3 � 0, we get from the mean value
theorem that

g4(t)|ym(t) − ym0 (t)| � mMm−1
4 g4(t)|y(t) − y0(t)|, (10)

g3(t)|ym−1(t)−ym−1
0 (t)| � (1−m)Mm−2

2 g3(t)|y(t)−y0(t)|.
(11)

Combination of (9)-(4.11) yields

D+V (t)

� − g1(t)|x(t) − x0(t)| − (g2(t) + (1 − m)Mm−2
2 g3(t)

− mMm−1
4 g4(t))|y(t) − y0(t)|.

It follows from assumptions that there must exist two positive
constants λ and γ such that

D+V (t) � −λ|x(t) − x0(t)| − γ | y(t) − y0(t)| for t > T.

Thus, V (t) is non-increasing on [0,+∞). Integrating the
above inequality from T to t we obtain

V (t) + λ

∫ t

T

|x(t) − x0(t)|dt + γ

∫ t

T

| y(t) − y0(t)| dt

�V (0) < +∞ for t > T.

By applying Barbǎlat’s Lemma [22], we have

lim
t→+∞ |x(t) − x0(t)| = 0 and lim

t→+∞ | y(t) − y0(t)| = 0.

The proof is now finished.

Remark 1. It follows from the mean value theorem and gU3 �
0 that

g3(t)|ym−1(t)−ym−1
0 (t)| � (1−m)Mm−2

4 g3(t)|y(t)−y0(t)|.
(12)

If (11) is replaced by (12), then the proof of Theorem 4.2 is
obtained immediately. Similarly, in view of gL3 < 0 we have

g3(t)|ym−1(t) − ym−1
0 (t)| � (1 − m)Mm−2

4 gL3 |y(t) − y0(t)|,
which yields that Theorem 4.3 holds.

V. EXAMPLES AND SIMULATION

In system (PP) we let

a1(t) = 12 + 0.01 sin t, b1(t) = 6, c1(t) = 0.3 + 0.29 sin t,

a2(t) = 5 − 0.01 sin t, b2(t) = 3.4, c2(t) = 1.2 + 0.1 sin t.

Example 5.1. Take τ1 = 0.01, τ2 = 0, τ3 = 0.1 and m =
1/3, and choose β = 2. We obtain

M1
.= 2.25709856, M2

.= 0.450910134, K1
.= 11.55757282,

M3
.= 1.88840248, K2

.= 1.175749967, M4
.= 0.113688327,

gL1
.= 0.86559480, gL3

.= 1.696604746, GL
1

.= 0.735131706.

According to Theorems 3.1 and 3.2 we claim that the
system is permanent and has 2π-periodic positive solution,
and according to Theorem 4.1 we assert that the system is

globally attractive, see Figure 1 for more details.
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Figure 1. Evolution of the solutions of Example 5.1 with initial values:

(φ(t), ψ(t)) = (1.9, 0.24; 1.95, 0.3; 2, 0.2; 2.1, 0.24), ∀t ∈ [−1, 0].

Example 5.2. Let τ1 = 0.01, τ2 = 0, τ3 = 0.1 and m = 0.9
and β = 1. We obtain

M1
.= 2.2570986, M2

.= 0.004942348, K1
.= 11.98991596,

M3
.= 1.9675316, K2

.= 2.154403597, M4
.= 0.000216219,

gL1
.= 0.6258010, gL3

.= 2.160112597, GL
1

.= 75.95693025.

One can see from Figure 2 that the prey and predator are
permanent, which is the same as Example 5.1.
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Figure 2. Evolution of the solutions of Example 5.2 with initial values:
(φ(t), ψ(t)) = (1.9, 0.5e-3; 2, 0.2e-2; 1.95, 0.1e-2; 2.1, 0.24e-2), ∀t ∈
[−1, 0].

Example 5.3. Let τ1 = 0.01, τ2 = 0, τ3 = 0.1 and m = 1.
We see from Figure 3 that the predator is extinct finally.
Comparison of Examples 5.1, 5.2 and 5.3 yields that the
mutual interference constant m can influence the permanence
of the predator. But it doesn’t influence the permanence of the
prey, which is only dependent on the coefficients a1, b1 and c1.
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Figure 3. Evolution of the solutions of Example 5.3 with initial values:

(φ(t), ψ(t)) = (1.9, 0.5e-6; 2, 0.2e-6; 1.95, 0.1e-6; 2.1, 0.24e-6),∀t ∈
[−1, 0].

Example 5.4. In this example we consider the special case
that τ1 = τ3 = 0, m = 1/2, β = 1 and τ2 = 0 and 100,
respectively. By calculating we have

M1
.= 2.00166667, M2

.= 0.271937517, K1
.= 11.70232898,

M3
.= 1.95038816, K2

.= 1.663276495, M4
.= 0.110218234,

gL1
.= 2.08423493, gL3

.= 2.145426980, GL
1

.= 10.94943628.

Comparison of Figures 4 and 5 shows that the delay τ2 has
no intrinsic influence on the permanence of the species in
these examples. In fact, it follows from b1(t) = 6 that g1, g2

and g3 are independent of the delay τ2.
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Figure 4. Evolution of the solutions of Example 5.4 with τ2 = 0 and initial

values: (φ(t), ψ(t)) = (1.5, 0.3; 2.5, 0.1; 1.5, 0.1; 2.5, 0.3),∀t ∈ [−1, 0].
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Figure 5. Evolution of the solutions of Example 5.4 with τ2 = 100 and
initial values: (φ(0), ψ(0)) = (1.5, 0.3; 2.5, 0.1; 1.5, 0.1; 2.5, 0.3),∀t ∈
[−1, 0].

VI. CONCLUSIONS

In this paper we study a predator-prey model with mutual
interference and delays. By applying the comparison theorem
and constructing suitable Lyapunov functional we present
some sufficient conditions for the permanence and global
attractivity of the model. The results obtained are both delay-
dependent and mutual interference-dependent. Some interest-
ing phenomenons are found.

Conclusion 1. If m = 1, that is there is no mutual
inference between the prey and predator, then from figure 6
one can easily see that the prey is permanent but the predator
is extinct eventually. So the mutual interference can effect
the population of the predator. In the real world we must
consider the predator-prey model under the influence of mutual
interference.

Conclusion 2. One can see from the formula of gi, i =
1, 2, .., 4 that the delays τ1 and τ3 can not only influence the
permanence of the model (PP) but also the global attractivity
of the model. In order to guarantee the permanence and global
attractivity of the model (PP), the delays τ1 and τ3 should be
small enough.

Conclusion 3. Theorem 3.1 yields that the delay τ2 doesn’t
influence the permanence of the model (PP). Furthermore, we
claim that the delay τ2 has no essential influence on the global
attractivity of the model (PP).

Actually, if τ1 = τ3 = 0, then Theorem 3.1 is delay-
independent. Moreover,

g1(t) = βb1(t) − Mm−1
4 c2(t), g2(t) = b2(t),

g3(t) = M3c2(t), g4(t) = βc1(t + τ2).

Obviously, gL3 � 0. If c1(t) ≡const., then Theorems 4.1-4.3
are also delay-independent.
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