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Explicit Solutions and Stability of Linear
Differential Equations with multiple Delays

Felix Che Shu

Abstract—We give an explicit formula for the general solution of
a one dimensional linear delay differential equation with multiple
delays, which are integer multiples of the smallest delay. For an
equation of this class with two delays, we derive two equations with
single delays, whose stability is sufficient for the stability of the
equation with two delays. This presents a new approach to the study
of the stability of such systems. This approach avoids requirement
of the knowledge of the location of the characteristic roots of the
equation with multiple delays which are generally more difficult to
determine, compared to the location of the characteristic roots of
equations with a single delay.

Keywords—Delay Differential Equation, Explicit Solution, Expo-
nential Stability, Lyapunov Exponents, Multiple Delays.

I. INTRODUCTION

DELAY Equations play an important role in mathematical
modelling. This is a consequence of the fact that effects

of delays are inherent in the dynamics of many systems
which are of interest to humanity. However, solutions of Delay
Differential Equations are difficult to get in explicit form in
general. This causes inconveniences in many situations when
dealing with Delay Differential Equations.

The classical method of solving linear Delay Differential
Equations is the step method. This is an iterative procedure, by
which the Delay Equation is solved on successive intervals of
a suitable length, if an appropriate initial function is specified.

If the equation has more than one delay or even if it has one
delay but is multidimensional, then the terms of the solution
obtained using the step method do not always follow easily
recognizable patterns. This makes it difficult to find explicit
representations for solutions of these equations.

In [3], we gave an explicit formula for the solution of a two
dimensional irreducible linear system of Delay Differential
Equations. The formula was used in [4] to prove a stability
result for these systems.

The use of the explicit formula in the study is advantageous
compared to traditional approaches to the study of the stability
of these systems in that it does not require knowledge of the
roots of the characteristic function of the multidimensional
system, which in general are difficult to find.

In what follows, we shall prove similar results for one
dimensional equations with multiple delays. We will give a
formula which is applicable to obtain an explicit representation
of the solution of any linear Delay Differential Equation of the
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form

ź(t) = az(t) +

d∑
j=1

bjz(t− jr

d
), t ≥ 0, (1)

z(t) = ϕ(t), t ∈ [−r 0], (2)

where (b1, . . . , bd) ∈ Rd, r > 0, a ∈ R, d ∈ {1, 2, 3 , . . .}
and ϕ is integrable and use it in proving a stability result for
solutions of these equations when d = 2.

Although the method is applicable to the case d ≥ 3, our
interest in the case d = 2 is mainly due to the fact that the
computations and notation involved can be kept simple.

II. PREREQUISITES

In this section, we fix notation and the conventions by which
we abide in the sequel. Throughout, N := {1, 2, · · · }, N∗ :=
N ∪ {0}, Z := N∗ ∪ {−n : n ∈ N}, d ∈ N, r > 0, a ∈ R,
(b1, . . . , bd) ∈ Rd and we consider the equation (1), (2).

We shall deal with vectors of real numbers as well as sets
of real numbers. By a vector, we shall understand an ordered
collection of objects, which are not necessarily distinct. A set
will be a collection of objects whose members are distinct, but
not necessarily ordered. For a vector X of numbers, we will
use the notation {x ∈ X : C} to refer to the entries of X for
which the condition C holds and �{x ∈ X : C} will denote
the number of entries of X , for which C holds. We shall use
the same notation for sets but it will be clear from the context
whether we are dealing with sets or vectors. We shall use the
usual notation (x1, x2, . . . , xn) for n-dimensional row vectors
with entries x1, . . . , xn.
∅ shall denote either the empty set or the empty vector i.e.,

the vector with no entries.
θ will be a numerical symbol with value 1 and hence θx =

xθ = x for all x ∈ R.

Given the equation (1), we associate with it, the sequence
{Em}m∈Z

of sets, defined by

Em :=

⎧⎨⎩
∅ : m < 0
{θ} : m = 0

∪dj=1bjEm−j : m ≥ 1,

and define E := ∪{Em : m ∈ Z}. In this definition,
bjEm−j := {bjx : x ∈ Em−j}.
Remark II.1. (i) To enable elements of Em to be distinct

and hence, that Em is actually a set, products bjx in
the definition of Em shall not be commutative. Note that
elements of E are algebraic expressions involving the
coefficients b1, . . . , bd in (1) and θ. If x ∈ R, then we
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define x∅ := ∅. The symbol 0 will be used to represent the
real number zero. Expressions having numerical value
zero shall also be represented by this symbol, where it
is convenient to do so.

We shall write xm for the product
m×︷ ︸︸ ︷

x · · ·x and replace
expressions having value 1 by θ, where it is convenient.

(ii) Let m ≥ 1 and n ≥ 1, then

Em = ∪dj1=1bj1Em−j1 = ∪dj1=1 ∪dj2=1 bj1bj2Em−j1−j2 .

If we proceed this way, then after n recursions we arrive
at Em =

∪dj1=1 · · · ∪djn=1 bj1 · · · bjnEm−j1−···−jn . (3)

For any n ≥ 1 and m ≥ 1, Em−j1−···−jn={ ∅ : m− j1 − · · · − jn < 0
{θ} : m− j1 − · · · − jn = 0.

(4)

From (3), it follows that for any n ≥ 1 and (j1, . . . , jn)
such that jl ∈ {1, . . . , d}, l = 1, . . . , n, we have
bj1 · · · bjnEm−j1−···−jn ⊆ Em and hence by (4), if
m− j1 − · · · − jn = 0, then bj1 · · · bjn ∈ Em.

(iii) From (ii), it is obvious that for m ≥ 1, elements of
Em are precisely the elements bj1 · · · bjn of E for which
m = j1 + · · ·+ jn, jl ∈ {1, . . . , d}, l ∈ {1, . . . , n}, for
some n ≥ 1.

The following notation will be used in many of our argu-
ments:

Definition II.1. If x ∈ E, then we define

(i) ε(x) :=

{
(j1, . . . , jn) : x �= θ, x = bj1 · · · bjn

∅ : x = θ.

(ii) β(x) := ∅, if x = θ and
β(x) := {i1, . . . , ik}, if x �= θ, 1 ≤ i1 < . . . < ik ≤ d,
where i1, . . . , ik are the distinct entries of ε(x).
As an example, if ε(x) = (2, 1, 2, 3, 1, 2, 3) then β(x) :=
{1, 2, 3}.

(iii) mx(j) := �{l ∈ ε(x) : l = j}, j ∈ {1, . . . , d}.
(v) χ(x) := ((i1,mx(i1)), . . . , (ik,mx(ik))), if x �= θ,

β(x) = {i1, . . . , ik} and χ(x) := (0, 0) if x = θ.

Remark II.2. (i) If x, y ∈ E, then χ(x) = χ(y) ⇐⇒
β(x) = β(y) and mx(j) = my(j) for all j ∈ β(x) ⇐⇒
ε(x) is a permutation of ε(y).

Also note that if x ∈ E, x �= θ and (v, w) is an entry of
the vector χ(x), then v ≥ 1 and w ≥ 1.

(ii) If x, y ∈ E, ε(x) := (j1, . . . , jn) and ε(y) :=
(k1, . . . , km) then we define the vector (ε(x), ε(y)) by

(ε(x), ε(y)) := (j1, . . . , jn, k1, . . . , km).

For the product xy we have

ε(xy) =

⎧⎪⎪⎨⎪⎪⎩
(ε(x), ε(y)) : x �= θ and y �= θ

ε(x) : y = θ
ε(y) : x = θ
∅ : x = θ and y = θ.

(iii) From (ii), if x, y ∈ E, then mxy(j) = mx(j) +
my(j), j ∈ {1, . . . , d}.

(iv) We will make it a convention that the order of the indices
in the definitions of χ(x) and β(x) is the same, and is
such that 1 ≤ i1 < · · · < ik ≤ d.

Definition II.2. For x ∈ E, we define
p(x) :=

∑
{i∈β(x)}

mx(i), q(x) :=
∑

{i∈β(x)}
imx(i) and

v(x) :=
∏

{i∈β(x)}
(mx(i))!.

Note that p(θ) = q(θ) = 0 and v(θ) = 1 since β(θ) = ∅.
The following lemmas are a consequence of the preceding
definitions and remarks:

Lemma II.1. (i) If x, y ∈ E, then p(xy) = p(x)+p(y) and
q(xy) = q(x) + q(y). Further,

(ii) if β(x) ∩ β(y) = ∅, then v(xy) = v(x)v(y).

Proof: (i) If x = y = θ, then xy = θ, hence since
p(θ) = 0, it follows that p(xy) = p(x) + p(y).

If x = θ and y �= θ, then xy = y. Therefore p(xy) = p(y)
and hence p(xy) = p(x)+ p(y), since p(x) = 0. If y = θ and
x �= θ, then the argument is similar.

Assume now that x �= θ and y �= θ. Let
χ(x) = ((i1,mx(i1)), . . . , (ik,mx(ik))) and χ(y) =
((j1,my(j1)), . . . , (jl,my(jl))).

Now β(xy) = (β(x)\β(y))∪ (β(y)\β(x))∪ (β(x)∩β(y)),
which is a disjoint union. Using Remark II.2(iii),

p(xy) =
∑

{i∈β(xy)}
mxy(i)

=
∑

{i∈β(x)\β(y)}
mxy(i) +

∑
{i∈β(y)\β(x)}

mxy(i) +∑
{i∈β(x)∩β(y)}

mxy(i)

=
∑

{i∈β(x)\β(y)}
mx(i) +

∑
{i∈β(y)\β(x)}

my(i) +∑
{i∈β(x)∩β(y)}

(mx(i) +my(i))

=

( ∑
{i∈β(x)\β(y)}

mx(i) +
∑

{i∈β(x)∩β(y)}
mx(i)

)

+

( ∑
{i∈β(y)\β(x)}

my(i) +
∑

{i∈β(x)∩β(y)}
my(i)

)
=

∑
{i∈β(x)}

mx(i) +
∑

{i∈β(y)}
my(i) = p(x) + p(y).

The proof of the second assertion of (i) is similar.

(ii) v(xy) =
∏

{i∈β(xy)}
mx(i)!

=
∏

{i∈β(x)}
mx(i)!

∏
{i∈β(y)}

mx(i)! = v(x)v(y).

Lemma II.2. For any j ∈ {1, . . . , d} and x ∈ E,

(i) p(bjx) = p(x) + 1
(ii) q(bjx) = q(x) + j.
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Proof: By Lemma II.1(i), p(bjx) = p(bj) + p(x) and
q(bjx) = q(bj) + q(x). Since ε(bj) = (j), it follows that
β(bj) = {j} and mbj (l) = δjl, l = 1, . . . , d, where δ is
the kronecker symbol. Therefore, p(bj) = mbj (j) = 1 and
q(bj) = jmbj (j) = j.

Lemma II.3. (i) For m ≥ 0 and x ∈ E, q(x) = m if and
only if x ∈ Em.

(ii) If d = 1, then for all m ≥ 1, {x ∈ Em : 1 �∈ β(x)} = ∅.
(iii) If d = 2, then for all m ≥ 2, {x ∈ Em : 1 �∈ β(x)} ={ {bk2} : m = 2k

∅ : m odd .
(iv) For d ≥ 1, {x ∈ Em : 1 �∈ β(x)} �= ∅ for all m ≥ 2⇐⇒

d ≥ 3.

Proof: (i) For m = 0, x ∈ E0 ⇐⇒ x = θ ⇐⇒ q(x) = 0.

Let now x ∈ E, m ≥ 1 and χ(x) =
((i1,mx(i1)), . . . , (ik,mx(ik))) for some k ≥ 1. For
n ≥ 1, let

Ωmn := {bj1bj2 · · · bjn ∈ E : jl ∈ {1, . . . , d},

l = 1, . . . , n and
n∑
l=1

jl = m},

then by Remark II.1(iii),

x ∈ Em ⇐⇒ x ∈ ∪∞n=1Ωmn

⇐⇒ i1mx(i1) + · · ·+ ikmx(ik) = m (5)
⇐⇒ q(x) = m, (6)

where (5) and (6) follow from the definitions of the quantities
χ(x) and q(x).

(ii) Here, we simply note that if d = 1, then Em = {bm1 }
for all m ≥ 1 and so {1} = β(x) for all x ∈ Em.

(iii) Let d = 2, k ≥ 1 and m = 2k, then
x ∈ E2k and 1 �∈ β(x)

⇐⇒ x ∈ b1E2k−1 ∪ b2E2(k−1) and 1 �∈ β(x)

⇐⇒ x ∈ b2E2(k−1) and 1 �∈ β(x), (7)

where (7) follows from the fact that 1 ∈ β(b1x) for all x ∈ E.
Therefore,

x ∈ E2k and 1 �∈ β(x)⇐⇒ x ∈ b2E2(k−1) and 1 �∈ β(x). (8)

We will now prove the assertion by induction on k. When
k = 1, then E2 = {b21, b2} and thus the assertion is true
for k = 1. Assume that the assertion is true for k = n, for
some n ≥ 1, i.e., x ∈ E2n and 1 �∈ β(x) ⇐⇒ x = bn2 .
Using (8) and the assumption of the induction in this order,
for k = n+1, it follows that x ∈ E2(n+1) and 1 �∈ β(x)⇐⇒
x ∈ b2E2n and 1 �∈ β(x)⇐⇒ x = bn+1

2 .

Let now d = 2, k ≥ 1 and m = 2k + 1, then arguments
similar to those made in the case m = 2k, lead to the following
conclusion:

x ∈ E2k+1 and 1 �∈ β(x)⇐⇒ x = bk2b1 and 1 �∈ β(x). (9)

Since 1 ∈ {1, 2} = β(bk2b1), the right hand side of (9) is a
contradiction, implying that {x ∈ Em : 1 �∈ β(x)} = ∅.

(iv) Assume first that d ≥ 3. If m ≥ 2, then m = 2k + j,
where j ∈ {0, 1} and k ≥ 1. If m = 2k, i.e. j = 0, then it
follows from (i) that bk2 ∈ E2k, since q(bk2) = 2k. Similarly,
if m = 2k + 1, i.e. j = 1, then it also follows from (i)
that b3bk−1

2 ∈ E2k+1. Note that the assumption that d ≥ 3 is
relevant, in order that b3 should exist. It is easy to see that
1 �∈ β(bk2) and 1 �∈ β(b3b

k−1
2 ).

For the other direction of the equivalence, assume on the
contrary that d ≤ 2. We have to show that there exists m ≥ 2,
such that {x ∈ Em : 1 �∈ β(x)} = ∅. If d = 2 and m ≥ 2 is
odd, then by (iii), {x ∈ Em : 1 �∈ β(x)} = ∅. If d = 1 and
m ≥ 2 is arbitrary, then by (ii), {x ∈ Em : 1 �∈ β(x)} = ∅.

Lemma II.4. Let d ≥ 1. If n ≥ 1 and ψ : E → R, then
n∑

m=1

∑
{x∈Em}

ψ(x) =

d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

ψ(bjx).

Proof: Since Em = ∪dj=1bjEm−j , a disjoint union, we
have

n∑
m=1

∑
{x∈Em}

ψ(x) =
n∑

m=1

d∑
j=1

∑
{x∈Em−j}

ψ(bjx)

=

d∑
j=1

n∑
m=1

∑
{x∈Em−j}

ψ(bjx)

=
d∑
j=1

n−j∑
m=1−j

∑
{x∈Em}

ψ(bjx).

Since Em = ∅ for m < 0, using the convention that∑
{x∈∅}

f(x) = 0 for any real function f , it follows that

d∑
j=1

n−j∑
m=1−j

∑
{x∈Em}

ψ(bjx) =
d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

ψ(bjx).

III. EXPLICIT SOLUTIONS OF LINEAR EQUATIONS WITH
MULTIPLE DELAYS

Definition III.1. (i) We call a real valued function
z : [−r ∞)→ R, a solution of (1) (2), if it is continuous,
satisfies (1) Lebesgue almost everywhere on [0 ∞) and
(2).

(ii) The fundamental solution associated with (1), is the
solution of (1) (2), when ϕ in (2) is given by ϕ(t) =
1{0}(t), t ∈ [−r 0].

If ϕ in (2) is arbitrary but integrable, then it can be shown
that the solution to the equation (1) (2) which we denote by
zϕ, is given by zϕ(t) := ϕ(t), t ∈ [−r 0] and for t ≥ 0

zϕ(t) := z(t)ϕ(0) +

d∑
j=1

bj

0∫
− jr

d

z(t− s− jr

d
)ϕ(s)ds, (10)

where z denotes the fundamental solution. In view of this, we
shall first of all be interested in determining the fundamental
solution of (1).
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Proposition III.1. Let d ≥ 1 and consider the equation (1).
Let z(t), t ≥ −r denote its fundamental solution and

y(t) :=

⎧⎪⎨⎪⎩
1{0}(t) : t ∈ [−r 0]

[ dtr ]∑
m=0

∑
{x∈Em}

h(t, x, p(x), q(x), d) : t ≥ 0,
(11)

where

h(t, x, k, l, d) := x
(t− lr

d )
k

k!
exp{a(t− lr

d
)},

then y(t) = z(t) for all t ≥ 0.

Proof: Since z(t) = y(t) for all t ∈ [−r 0], we will show
by induction that z(t) = y(t) on the intervals [nrd

(n+1)r
d ], n =

0, 1, 2, · · · .
Let t ∈ [0 r

d ), then [dtr ] = 0, hence by (11), y(t) =
h(t, θ, p(θ), q(θ), d) = eat.

Solving (1) on the interval [0 r
d ), with the initial condition

z(t) = 1{0}(t), t ∈ [−r 0], we have z(t) = eat +
t∫

0

ea(t−s)
d∑
j=1

bjz(s − jr

d
)ds = eat, since for s ∈ [0 r

d ),

z(s − jr
d ) = 0, j = 1, . . . , d. This shows that z(t) = y(t)

for all t ∈ [0 r
d ).

If t = r
d , then [dtr ] = 1. Since E0 = {θ}, E1 = {b1},

p(θ) = q(θ) = 0 and p(b1) = q(b1) = 1, y(
r

d
) =

1∑
m=0

∑
{x∈Em}

h(
r

d
, x, p(x), q(x), d)

= ea
r
d +

b1
p(b1)!

(
r

d
− r

d
)ea(

r
d− r

d ) = ea
r
d .

Also, since z is continuous, z(
r

d
) = ea

r
d . Therefore, z(t) =

y(t) for all t ∈ [0 r
d ].

The assertion is therefore true for n = 0.

Let n ≥ 1 and assume that z(t) = y(t) for all t ∈
[ (k−1)r

d
kr
d ] and k = 1, . . . , n. We will now show that

z(t) = y(t), for all t ∈ [nrd
(n+1)r
d ].

By assumption, z(t) = 1{0}(t), t ∈ [−r 0] and for t ∈
(0, nrd ],

z(t) =

[ dtr ]∑
m=0

∑
{x∈Em}

h(t, x, p(x), q(x), d). (12)

If 1 ≤ n < d and s ∈ [nrd
(n+1)r
d ), then s− jr

d ∈ [−r 0) for
j = n+ 1, . . . , d and hence z(s− jr

d ) = 0, j = n+ 1, . . . , d.
If n ≥ d and s ∈ [nrd

(n+1)r
d ), then s − jr

d ≥ 0 for all
j = 1, . . . , d and hence since s ∈ [nrd

(n+1)r
d ) if and only if

[dr (s − jr
d )] = n − j, it follows from (12) that for n ≥ d, if

s ∈ [nrd
(n+1)r
d ) then for any j ∈ {1, . . . , d}, z(s − jr

d ) =
n−j∑
m=0

∑
{x∈Em}

h(s, x, p(x), (j + q(x)), d) otherwise.

Hence for t ∈ [nrd
(n+1)r
d ), z(t) = ea(t−

nr
d )z(

nr

d
) +

t∫
nr
d

ea(t−s)
d∧n∑
j=1

bj

n−j∑
m=0

∑
{x∈Em}

h(s, x, p(x), (j + q(x)), d)ds =

ea(t−
nr
d )

n∑
m=0

∑
{x∈Em}

h(nrd , x, p(x), q(x), d)

+
d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

bjx

t∫
nr
d

(s− (j+q(x))r
d )p(x)

p(x)!
ds×

exp{a(t− (j+q(x))r
d )}

=
n∑

m=0

∑
{x∈Em}

x
(nrd − q(x)r

d )p(x)

p(x)!
ea(t−

q(x)r
d ) (13)

+

d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

h(t, bjx, (p(x) + 1), (q(x) + j), d)

−
d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

bjx
(nrd − (j+q(x))r

d )p(x)+1

(p(x) + 1)!
ea(t−

(j+q(x)r)
d ). (14)

Letting ψ(x) := x
(nrd − q(x)r

d )p(x)

p(x)!
ea(t−

q(x)r
d ) in Lemma

II.4 and using Lemma II.2, we obtain
z(t) = eat +

d∧n∑
j=1

n−j∑
m=0

∑
{x∈Em}

h(t, bjx, (p(x) + 1), (q(x) + j), d).

Using Lemmas II.2 and II.4 again with ψ(x) :=
h(t, x, p(x), q(x), d), we get

z(t) =

n∑
m=0

∑
{x∈Em}

h(t, x, p(x), q(x), d) = y(t).

Therefore, y(t) = z(t) for all t ∈ [
nr

d

(n+ 1)r

d
).

Since z is continuous on [0 ∞), z

(
(n+ 1)r

d

)
=

lim
u↑ (n+1)r

d

z(u) =
n∑

m=0

∑
{x∈Em}

h(
(n+ 1)r

d
, x, p(x), q(x), d).

Also,

y

(
(n+ 1)r

d

)
=

n+1∑
m=0

∑
{x∈Em}

h(
(n+ 1)r

d
, x, p(x), q(x), d)

=
n∑

m=0

∑
{x∈Em}

h(
(n+ 1)r

d
, x, p(x), q(x), d), where the last

equality results from Lemma II.3(i). Therefore, z(t) = y(t)

for all t ∈ [nrd
(n+1)r
d ] which completes the proof.

The following result which we will need is well known:

Corollary III.1. The fundamental solution of the equation,
ź(t) = az(t) + bz(t − r), t ≥ 0 is given for t ≥ 0, by

z(t) =

[ tr ]∑
m=0

bm

m!
(t−mr)m exp{a(t−mr)}.
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Proof: For the proof, let d = 1 in Proposition III.1 and
note that in this case, b = b1, hence Em = {bm} and q(bm) =
p(bm) = m, for all m.

For the rest of this section, we assume that d ≥ 3. By virtue
of Lemma II.3(iv), we define the following sets Mk, for k ∈ Z
with Mk non-empty, k ≥ 0:

Mk :=

⎧⎪⎪⎨⎪⎪⎩
∅ : k < 0
{θ} : k = 0
{b1} : k = 1

{x ∈ Ek : 1 �∈ β(x)} : k ≥ 2.

Lemma III.1. Let m ≥ 1 and x ∈ E, then x ∈ Em if and
only if

(a) χ(x) = (1,m) or
(b) there exists n ∈ {1, . . . ,m − 2} and y ∈ Mm−n, such

that χ(x) = ((1, n), χ(y)) or
(c) x ∈Mm, m ≥ 2.

Proof: Let m ≥ 1 and x ∈ Em, then x = bj1 · · · bjk for
some k ∈ {1, . . . ,m}, where jl ∈ {1, . . . , d}, l ∈ {1, . . . , k}.
By Lemma II.3(i), q(x) = m, hence, either k = m in which
case jl = 1 for all l ∈ {1, . . . , k}, i.e. χ(x) = (1,m) or
1 �∈ β(x) in which case x ∈Mm, m ≥ 2 or there exists n such
that 1 ≤ n < k ≤ m and mx(1) = n. In this case, x = bn1y
for some y ∈ E with 1 �∈ β(y) and y �= θ since n < m and
q(x) = m. Since 1 �∈ β(y), it follows that y �= b1 and hence
y �∈ {θ, b1}. Since χ(x) = ((1, n), χ(y)) and q(bn1 ) = n, it
follows from Lemma II.1(i) that q(y) = m−n. Lemma II.3(i)
now implies that y ∈ Em−n. Since y �∈ {θ, b1}, it follows
that q(y) ≥ 2 i.e. m − n ≥ 2 and hence n ≤ m − 2. Since
y ∈ Em−n and 1 �∈ β(y), it follows that y ∈Mm−n.

The other direction of the equivalence follows simply from
the fact that if x satisfies (a) (b) or (c), then q(x) = m and
hence Lemma II.3(i) implies that x ∈ Em.

Let us define the following relation “∼” on E; for x, y ∈ E,

x ∼ y if χ(x) = χ(y).

“∼” is an equivalence relation on E. For x ∈ E, let [x] denote
its equivalence class relative to ”∼” and E\ ∼ be the quotient
set of E relative to “∼”, then E = ∪{[x] : [x] ∈ E\ ∼}.

If x is such that χ(x) = ((i1,mx(i1)), . . . , (ik,mx(ik))),
define

x := b
mx(i1)
i1

b
mx(i2)
i2

· · · bmx(ik)
ik

.

We will chose x to represent [x]. θ shall represent its class,
i.e. θ = θ.

We note that if x ∈ Ek, k ≥ 1, then since θx = xθ = x for
all x ∈ R, x = b

mx(1)
1 y, where y ∈ Mk−mx(1), mx(1) ≥ 0

and b01 = θ.

Let Mk :=

{ ∅ : k < 0
{x : x ∈Mk} : k ≥ 0,

then it follows that x ∈ Mk ⇐⇒ x ∈ Mk and hence by

Lemma III.1, for m ≥ 1,

x ∈ Em ⇐⇒ x ∈ {bm1 } ∪ ∪m−2
n=1 {bn1y : y ∈Mm−n} ∪Mm

⇐⇒ x ∈ {bm1 } ∪ ∪m−2
n=0 b

n
1{y : y ∈Mm−n}

⇐⇒ x ∈ {bm1 } ∪ ∪m−2
n=0 b

n
1Mm−n

⇐⇒ x ∈ {bm1 } ∪ ∪mk=2b
m−k
1 Mk.

Since M1 = {b1} and bm1 = bm−1
1 b1, it follows that x ∈

Em ⇐⇒ x ∈ ∪mk=1b
m−k
1 Mk. Let

Γm := ∪mk=1b
m−k
1 Mk, m ≥ 1,

then by Proposition III.1, for t ≥ 0,

z(t) = eat +

[ dtr ]∑
m=1

∑
{x∈Em}

h(t, x, p(x), q(x), d)

= eat +

[ dtr ]∑
m=1

∑
{x∈Γm}

∑
{y∈Em:y∈[x]}

h(t, y, p(y), q(y), d).

If y ∈ [x], then p(x) = p(y), q(x) = q(y) and further x
and y have the same numerical value.

Therefore

z(t) = eat +

[ dtr ]∑
m=1

∑
{x∈Γm}

(�[x])h(t, x, p(x), q(x), d)

= eat +

[ dtr ]∑
m=1

∑
{x∈Γm}

h(t, x, p(x), q(x), d)p(x)!

v(x)
, (15)

where (15) follows from the following Lemma:

Lemma III.2. Let x ∈ E, then �[x] =
p(x)!

v(x)
.

Proof: The assertion is easily verified for x ∈ E0. We
will assume henceforth that x ∈ Em, m ≥ 1. Let χ(x) =
((i1,mx(i1)), . . . , (ik,mx(ik))). In view of Remark II.2(i), to
determine �[x], we determine the number of possible ways of
dividing mx(i1)+ · · ·+mx(ik) distinct objects into k groups
of sizes mx(i1), . . . ,mx(ik). Each of these ways corresponds
to ε(y) for some y for which χ(x) = χ(y), i.e. y ∈ [x]. This

number is given by
(mx(i1) + · · ·+mx(ik))!

mx(i1)! · · ·mx(ik)!
=

p(x)!

v(x)
.

Let
H(t, x, d) :=

h(t, x, p(x), q(x), d)p(x)!

v(x)

= x
(t− q(x)r

d )p(x)ea(t−
q(x)r

d )

v(x)
,

then it follows that

Z(t) = eat +

[ dtr ]∑
m=1

m∑
k=1

∑
{x∈Mk}

H(t, bm−k
1 x, d)

= eat +

[ dtr ]∑
k=1

[ dtr ]∑
m=k

∑
{x∈Mk}

H(t, bm−k
1 x, d).

We have thus proven the following Theorem:
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Theorem III.1. For d ≥ 3, let z(t) be the fundamental
solution of (1), then for t ≥ 0,

z(t) = eat +

[ dtr ]∑
k=1

[ dtr ]∑
m=k

∑
{x∈Mk}

H(t, bm−k
1 x, d).

IV. THE EQUATION ź(t) = az(t) + bz(t− r

2
) + cz(t− r)

When d = 2, it follows from Lemma II.3(iii) that Mk = ∅
for odd k ≥ 2. The sets M2k which are not empty have a very
simple structure. We will derive a more explicit representation
of the fundamental solution in this case to use in our study of
stability.

Lemma IV.1. Let d = 4 and for m ∈ N∗ let

Nm := {x ∈ Em : β(x)∩{1, 3} = ∅}, Nm := {x : x ∈ Nm}
and

Λm := {bm−2j
2 bj4 : j = 0, . . . , [

m

2
]}. (16)

(i) If m ∈ N∗ is odd then Nm = ∅.
(ii) For all m ∈ N∗, it holds that


N2m = Λm. (17)

Proof: (i) The assertion is clear when m ∈ {0, 1}. We
will now show that if m ≥ 2, b1 = b3 = 0, b2 �= 0, b4 �= 0
and there exists x ∈ Em which has a numerical value different
from 0, i.e., β(x) ∩ {1, 3} = ∅, then m is even. Since x ∈
Em, m ≥ 2, b1 = b3 = 0 and x has a numerical value
different from 0, x = bα2

2 bα4
4 . Therefore, q(x) = m = 2α2 +

4α4 = 2(α2 + 2α4) and hence m is even.

(ii) We will prove (17) for m = 2k+1, k ∈ N∗, the proof
for m = 2k being similar. Let m = 2k+1, with k ∈ N∗. It is
easy to see that Λm ⊆ N2m. On the other hand, let x ∈ N2m,
then x = bα2 b

j
4, with j ≥ 0, α ≥ 0 and q(x) = 2m = 2α+4j.

Therefore m − 2j = α, j ≥ 0, α ≥ 0. This is equivalent
to saying that x = bm−2j

2 bj4, where 0 ≤ j ≤ m
2 . Since m is

odd, 0 ≤ j ≤ [m2 ], showing that x ∈ Λm.

We can now prove the following theorem:

Theorem IV.1. Let z(t) be the fundamental solution of
ź(t) = az(t) + bz(t− r

2
) + cz(t− r), then for t ≥ 0,

z(t) =

[ tr ]∑
k=0

[ 2tr ]−2k∑
m=0

bmck

m!k!
(t− (m+ 2k)r

2
)m+k ×

exp{a(t− (m+ 2k)r

2
)}. (18)

Proof: Let z be the fundamental solution of the equation

ź(t) = az(t) + b1z(t− r

4
) + b2z(t− 2r

4
) +

b3z(t− 3r

4
) + b4z(t− 4r

4
). (19)

We shall set b1 = b3 = 0, i.e., the solution we obtain is the
fundamental solution of the equation,

ź(t) = az(t) + b2z(t − r

2
) + b4z(t − r), and then we show

that for t ≥ 0, z(t) is given by

z(t) =

[ tr ]∑
k=0

[ 2tr ]−2k∑
m=0

H(t, bm2 bk4 , 4). By Theorem III.1, the

fundamental solution of (19) is given for t ≥ 0 by

z(t) = eat +

[ 4tr ]∑
m=1

[ 4tr ]∑
k=m

∑
{x∈Mm}

H(t, bk−m1 x, 4)

= eat +

[ 4tr ]∑
m=1

∑
{x∈Mm}

H(t, x, 4) (20)

=

[ 4tr ]∑
m=0

∑
{x∈Mm}

H(t, x, 4)

=

[ 12 [
4t
r ]]∑

m=0

∑
{x∈M2m}

H(t, x, 4) (21)

=

[ 12 [
4t
r ]]∑

m=0

∑
{x∈N2m}

H(t, x, 4). (22)

(20) holds because b1 = 0, while (21) holds because of Lemma
IV.1(i) and (22) holds because b3 = 0. By lemma IV.1 (ii),

z(t) =

[ 12 [
4t
r ]]∑

m=0

[m2 ]∑
k=0

H(t, bm−2k
2 bk4 , 4)

=

[ 12 [
1
2 [

4t
r ]]]∑

k=0

[ 12 [
4t
r ]]∑

m=2k

H(t, bm−2k
2 bk4 , 4)

=

[ tr ]∑
k=0

[ 2tr ]∑
m=2k

H(t, bm−2k
2 bk4 , 4)

=

[ tr ]∑
k=0

[ 2tr ]−2k∑
m=0

H(t, bm2 bk4 , 4).

Remark IV.1. Note that the expression obtained when c =

0 in (18) is y(t) :=

[ 2tr ]∑
m=0

bm

m!
(t − mr

2
)mea(t−

mr
2 ), which by

Corollary III.1 is the fundamental solution of ý(t) = ay(t) +
by(t− r

2 ) on [0 ∞) and the expression obtained when b = 0

in that formula is w(t) :=

[ tr ]∑
k=0

ck

k!
(t − kr)kea(t−kr), which

is the fundamental solution of ẃ(t) = aw(t) + cw(t − r) on
[0 ∞). This is what we would expect, but it suggests more:
it suggests that some properties of solutions of equations with
multiple delays may be deduced from properties of solutions
of equations with single delays. This is indeed the case as seen
for example in what follows.

Lemma IV.2. For t ≥ 0, consider the equation

ź(t) = az(t) + bz(t− r

2
) + cz(t− r). (23)
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Let G denote its fundamental solution and x∗ be the funda-
mental solution of the equation

x́(t) =
a

2
x(t) + (|b|e− ar

4 )x(t− r

2
), (24)

then

|G(t)| ≤
[ tr ]∑
m=0

|c|m
m!

(t−mr)mx∗(t−mr)e
a
2 (t−mr). (25)

Proof: Since [ 2tr ] − 2m = [ 2(t−mr)r ], it follows from
theorem IV.1 that for t ≥ 0,
|G(t)| =∣∣∣∣∣∣
[ tr ]∑
m=0

[
2(t−mr)

r ]∑
k=0

bkcm

k!m! (t− (k+2m)r
2 )k+mea(t−

(k+2m)r
2 )

∣∣∣∣∣∣
= |

[ tr ]∑
m=0

cm

m!
e

a
2 (t−mr)

[
2(t−mr)

r ]∑
k=0

bk(e−
ar
4 )k

k!
×

(t−mr − kr

2
)k+me

a
2 (t−mr− kr

2 )|

≤
[ tr ]∑
m=0

|c|m
m!

(t−mr)me
a
2 (t−mr)

[
2(t−mr)

r ]∑
k=0

(|b|e− ar
4 )k

k!
×

(t−mr − kr

2
)ke

a
2 (t−mr− kr

2 ).

By Corollary III.1, it follows that for t ≥ 0,

|G(t)| ≤
[ tr ]∑
m=0

|c|m
m!

e
a
2 (t−mr)(t−mr)mx∗(t−mr).

Using the notation of Lemma IV.2 we have the following
corollary:

Corollary IV.1. (i) There exists λ0 ∈ R for which the
following holds: For all λ > λ0, there exists a constant
M(λ) > 0 such that |G(t)| ≤M(λ)wλ(t), t ≥ 0, where
wλ is the fundamental solution of ẃ(t) = (a2 +λ)w(t)+
|c|w(t− r).

(ii) Let λ0 be as in (i). For each λ > λ0, there exists
μ0(λ) ∈ R such that for all μλ > μ0(λ) we have
|G(t)| ≤M(λ, μλ)e

μλt for some constant M(λ, μλ).

Proof: (i) Let h denote the characteristic function of (24).
By [1], Theorem 5.2, if λ0 := max{Re λ : h(λ) = 0}, then
for all λ > λ0, there exists a constant M(λ) such that x∗(t) ≤
M(λ)eλt, t ≥ 0. From this and Lemma IV.2, it follows that
for λ > λ0,

|G(t)| ≤M(λ)

[ tr ]∑
m=0

|c|m
m!

(t−mr)me(
a
2+λ)(t−mr) (26)

= M(λ)wλ(t). (27)

(ii) Let λ0 be chosen such that (i) is satisfied and λ > λ0.
Again by [1], Theorem 5.2, there exists μ0(λ) such that if
μλ > μ0(λ), then wλ(t) ≤ M(μλ)e

μλt for some constant
M(μλ). We can now set M(λ, μλ) := M(λ)M(μλ).

Corollary IV.2. Let ϕ : [−r 0] → R be bounded and
integrable and consider the equation (23) with the initial
condition z(t) = ϕ(t), t ∈ [−r 0]. Let zϕ denote its solution.

(i) There exists a constant λ0 ∈ R for which the following
holds: If λ > λ0, then there exists μ0(λ) such that
lim sup
t→∞

1
t ln |zϕ(t)| ≤ μλ and lim sup

t→∞
1
t ln | ´zϕ(t)| ≤ μλ

for all μλ > μ0(λ).
(ii) Let S be the region of the plane R2 defined by

S := {(u, v) ∈ R2 : u < 1, u + v < 0,−v < γ sin γ +
u cos γ}, where γ = γ(u) is the root of

γ =

{
u tan γ : 0 < γ < π, u �= 0

π
2 : u = 0.

If (ar4 , |br|e−ar
4 ) ∈ S and (ar2 , |c|r) ∈ S, then

lim sup
t→∞

1
t ln |zϕ(t)| < 0 and lim sup

t→∞
1
t ln |źϕ(t)| < 0.

Proof: From Corollary IV.1(ii), there exists a constant
λ0 ∈ R, such that for all λ > λ0, there exists μ0(λ) such
that if μλ > μ0(λ), then |G(t)| ≤ M(λ, μλ)e

μλt, t ≥ 0
for some constant M(λ, μλ) > 0. For x ∈ [−r 0], let

f(t, x, ϕ) :=

0∫
−x
|G(t − s − x)||ϕ(s)|ds, then from (10), it

holds that for t ≥ 0,

|zϕ(t)| ≤ |G(t)||ϕ(0)|+ |b|f(t, r
2
, ϕ) + |c|f(t, r, ϕ)

≤ |G(t)||ϕ(0)|+ |b| ‖ ϕ ‖ f(t, r
2
, 1) + |c| ‖ ϕ ‖ f(t, r, 1).

Let λ > λ0 and μλ > μ0(λ), then

f(t, x, 1) =

0∫
−x
|G(t− s− x)|ds

≤ M(λ, μλ)

0∫
−x

eμλ(t−s−x)ds

≤ M(λ, μλ)e
μλt

0∫
−r

e−μλ(s+x)ds ≤ K(λ, x)eμλt,

where K(λ, x) := M(λ, μλ)
0∫

−r
e−μλ(s+x)ds. Let K(λ) :=

max{K(λ, r2 ),K(λ, r), 1}, then f(t, x, 1) ≤ K(λ)eμλt.
If C(λ, μλ) := K(λ) ‖ ϕ ‖ (M(λ, μλ) + |b| + |c|), then
|zϕ(t)| ≤ C(λ, μλ)e

μλt and hence lim sup
t→∞

1
t |zϕ(t)| ≤ μλ.

The second assertion simply follows from the observation
that |źϕ(t)| ≤ |a||zϕ(t)|+ |b||zϕ(t− r

2 )|+ |c||zϕ(t− r)| and
using what we have just shown.

To complete the proof, we will show that if (ar4 , |br|e−ar
4 ) ∈

S and (ar2 , |c|r) ∈ S, then we can choose μλ such that μλ < 0.
By [2] Proposition 2.7, if (ar4 , |br|

2 e
−ar
4 ) ∈ S, then λ0 < 0

and hence we can choose λ such that λ < 0. By (26), it

follows that for this λ, wλ(t) ≤
[ tr ]∑
m=0

|c|m
m! (t−mr)me

a
2 (t−mr).

If (ar2 , |c|r) ∈ S, then applying [2] Proposition 2.7 again, we
can choose μλ < 0 and M(λ, μλ) ≥ 0 such that wλ(t) ≤∣∣∣∣∣ [ tr ]∑
m=0

|c|m
m! (t−mr)me

a
2 (t−mr)

∣∣∣∣∣ ≤M(λ, μλ)e
μλt.
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