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Periodic orbits in a delayed Nicholson,s blowflies
model

Changjin Xu, Peiluan Li

Abstract—In this paper, a delayed Nicholson,s blowflies model
with a linear harvesting term is investigated. Regarding the delay as a
bifurcation parameter, we show that Hopf bifurcation will occur when
the delay crosses a critical value. Numerical simulations supporting
the theoretical findings are carried out.
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I. INTRODUCTION

IT is well known that the population dynamics has been a
subject of interest in mathematical biology. Recently, the

theory of the population dynamics has made a remarkable
progress and a great deal of results have been reported[1-3].

In 1980, to describe the population of the Australian sheep-
blowfly and to agree with the experimental data obtained
in [4], Gurney et al. [5] proposed the following nonlinear
autonomous delay equation

dx(t)
dt

= −δx(t) + Px(t− τ)e−ax(t−τ) (1)

where x(t) is the size of the population at time t, P denotes
the maximum per capita daily egg production, 1

a
is the size

at which the population reproduces at its maximum rate, δ is
the per capita adult death rate, and τ is the generation time.
The main dynamical behaviors of system (1) such as existence
of positive solutions, persistence, permanence, oscillation and
stability have been discussed by [6-11]. Assuming that a
harvesting function is a function of the delayed estimate of the
true population, Berezansky et al. [12] proposed Nicholson,s
blowflies model

dx(t)
dt

= −δx(t) + Px(t− τ)e−ax(t−τ) −Hx(t− σ), (2)

where δ, p, τ, a,H, σ ∈ (0,+∞).
Based on former work [4-12], we further devote to explore

the dynamical behaviors of system (2), i.e., we will investigate
the natures of Hopf bifurcation of system (2). For simplifica-
tion, we assume that σ = τ , then system (2) takes the form

dx(t)
dt

= −δx(t) + Px(t− τ)e−ax(t−τ) −Hx(t− τ). (3)

The purpose of this paper is to investigate the existence of
local Hopf bifurcation of model (3). This paper is organized
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as follows. In Section 2, the stability of the equilibrium and the
existence of Hopf bifurcation at the equilibrium are studied.
In Section 3, numerical simulations are carried out to illustrate
the validity of the main results. Some main conclusions are
drawn in Section 4.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF

BIFURCATIONS

It is easy to see that system (3) has a zero equilibrium point.
If the condition P > δ + H holds, then system (3) has still
another equilibrium

x∗ =
1
a

ln
P

δ +H
.

In this paper, we only investigate the dynamical behavior of
the zero equilibrium point. Clearly, the linearization of system
(3) at zero equilibrium point takes the form

dx(t)
dt

= −δx(t) + (P −H)x(t− τ). (4)

The associated characteristic equation of (4) is given by

λ+ δ − (P −H)e−λτ = 0. (5)

Let λ = iω0 and substituting this into (5). Separating the real
and imaginary parts, we have

(P −H) cosω0τ = δ, (P −H) sinω0τ = −ω0. (6)

Then we can obtain

(P −H)2 = δ2 + ω2
0 . (7)

Obviously, if the condition

(H1) |P −H | > |δ|

holds, then Eq.(7) has a pair of imaginary roots ±iω0 at a
sequence of critical values τk, where

ω0 =
√

(P −H)2 − δ2, (8)

τk =
1
ω0

[
arccos

δ

P −H
+ 2kπ

]
. (9)

When τ = 0, (5) becomes

λ = (P −H) − δ. (10)

We assume that the condition

(H2) P −H < δ

holds, then λ = (P −H)− δ < 0. In view of above analysis,
we have
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Lemma 2.1. If conditions (H1) and (H2) hold, then system
(3) admits a pair of purely imaginary roots ±iω0 when τ =
τk, k = 0, 1, 2, · · · .

Let λ(τ) = α(τ) + iω(τ) be the root of Eq.(5) near
τ = τk satisfying α(τk) = 0, ω(τk) = ω0. Due to functional
differential equation theory, for every τk, k = 0, 1, 2, · · · , there
exists a ε > 0 such that λ(τ) is continuously differentiable in
τ for |τ − τk| < ε. Substituting λ(τ) into the left hand side
of (5) and taking the derivative of λ with respect to τ , we get[

dλ

dτ

]−1

= −
1

(P −H)λe−λτ
−
τ

λ

= −
eλτ

(P −H)λ
−
τ

λ
.

It follows together with (6) that

Re

[
dλ

dτ

] ∣∣∣−1

τ=τk

= −Re

{
eλτ

(P −H)λ

}
τ=τk

= −Re

{
cosω0τk + i sinω0τk

(P −H)ω0i

}

= −
(P −H)ωk sinω0τk

(P −H)2ω2
0

=
ω2

0

(P −H)2ω2
0

.

Thus

sign

{
Re

[
dλ

dτ

] ∣∣∣
τ=τk

}
= sign

{
Re

[
dλ

dτ

] ∣∣∣−1

τ=τk

}
> 0.

According to the results of Kuang [1] and Hale [2], we have

Theorem 2.1. If conditions (H1) and (H2) hold, the zero equi-
librium of system (3) is asymptotically stable for τ ∈ [0, τ0)
and unstable for τ ≥ τ0. System (3) underdoes a Hopf bifur-
cation at the zero equilibrium when τ = τk, k = 0, 1, 2, · · · .

III. NUMERICAL EXAMPLES

In this section, we use the formulae obtained in Section 2 to
verify the existence of local Hopf bifurcation. We consider the
following special case of system (3)

dx(t)
dt

= −1.2x(t)+0.2x(t− τ)e−3x(t−τ) − 2x(t− τ). (11)

It is easy to see that the conditions (H1) and (H2) hold,
then system (11) has a unique zero equilibrium x∗ = 0.
By direct computation by means of Matlab 7.0, we get
ω0 ≈ 1.3416, τ0 ≈ 1.6. Thus the zero equilibrium x∗ = 0
is stable when τ < τ0 which is illustrated by the computer
simulations (see Figs.1-2). When τ passes through the critical
value τ0 ≈ 1.6, the zero equilibrium x∗ = 0 loses its stability
and a Hopf bifurcation occurs, i.e., a family of periodic
solutions bifurcate from the zero equilibrium x∗ = 0 which
are depicted in Figs.3-4. When τ is large, chaotic phenomena
will appear as shown in Figs.5-6.
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Figs.1-2 Dynamic behavior of system (11): times series of
x. A Matlab simulation of the asymptotically stable zero
equilibrium to system (11) with τ = 1.45 < τ0 ≈ 1.6. The
initial value is 0.3.
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Figs.3-4 Dynamic behavior of system (11): times series of
x. A Matlab simulation of a Hopf bifurcation from the zero
equilibrium to system (11) with τ = 1.8 > τ0 ≈ 1.6. The
initial value is 0.3.
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Figs.5-6 Dynamic behavior of system (11): times series of x.
A Matlab simulation of chaotic phenomena appears to system
(11) with τ = 12 and τ = 24. The initial value is 0.3.

IV. CONCLUSIONS

In this paper, we have dealt with the dynamics of a delayed
Nicholson,s blowflies model with a linear harvesting term. We
show that under a certain condition, there exists a critical value

τ0 of the delay τ for the stability of the Nicholson,s blowflies
system. If τ ∈ [0, τ0), the zero equilibrium of theNicholson,s
blowflies system is asymptotically stable which means that
the size of the population will keep in a steady state. When
the delay τ passes through some critical values τ = τk, k =
0, 1, 2, · · ·, the zero equilibrium of the population system loses
its stability and a Hopf bifurcation will occur. Moreover, it is
shown that the chaotic phenomena appears when delay is large
enough.
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