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The positive solution for singular eigenvalue
problem of one-dimensional p-Laplace operator

Lv Yuhua

Abstract—In this paper, by constructing a special cone and using
fixed point theorem and fixed point index theorem of cone, we get the
existence of positive solution for a class of singular eigenvalue value
problems with p-Laplace operator, which improved and generalized
the result of related paper.

Keywords—Cone, fixed point index, eigenvalue problem, p-
Laplace operator, positive solutions.

I. INTRODUCTION

THE eigenvalue problems with p-Laplace operator arises
in a variety of applied mathematics and physics, and

they are widely applied in studying for non-newtonian fluid
mechanics, cosmological physics, plasma physics, and theory
of elasticity, etc. In recent years, some important results have
been obtained by a variety of method(see[1-9]). In paper [10],
Wang and Ge study for the following problem{

(φp(u
′))

′

+ a(t)(t)f(t, u(t)) = 0, t ∈ (0, 1)
u(0) = u(1) = 0,

by using fixed point theorem of cone, they get the existence
of multiple positive solution. Motivated by paper [4,6,10], we
consider the following problems:⎧⎨

⎩
−(ϕp(x

′(t)))′ = λh(t)f(x(t)), t ∈ (0, 1)
αϕp(x(0)) − βϕp(x

′(0)) = 0,
γϕp(x(1)) + δϕp(x

′(1)) = 0,
(1)

where ϕp(s) = |s|p−2s, p > 1, and λ is a positive parameter,
h(t) is nonnegative measurable function in (0, 1), h(t) may
be singular at t = 0, 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0 f(x) is
nonnegative continuous function in [0,+∞), f is sup-linear
and sub-linear at 0 and ∞.

We first list the following conditions:
(H1) h(t) is nonnegative function in (0, 1), for any closed

subinterval of (0, 1), h(t) �= 0 and 0 <
∫ 1

0 h(t)dt < +∞;
(H2) f ∈ C([0,+∞), [0,+∞)) and f(0) = 0; for u >

0, f(u) > 0;

(H3) lim
x→0

f(x)

xp−1
= a, where a ∈ [0,+∞];

(H4) lim
x→+∞

f(x)

xp−1
= +∞;( f is sup-linear at x = +∞.)

(H5) lim
x→0

f(x)

xp−1
= 0;( f is sub-linear at x = 0.)

(H6) lim
x→+∞

f(x)

xp−1
= 0.(f is sub-linear at x = +∞.)

For the sake of convenience, we list the following
definitions and lemmas:
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Definition 1.1 If x ∈ C[0, 1]
⋂
C1(0, 1) and

satisfy (1), ϕp(x
′(t)) is absolutely continuous in (0, 1),

−(ϕp(x
′(t)))′ = λh(t)f(x(t)) hold almost everywhere in

(0, 1), we call x is positive solution for problem (1).

Definition 1.2 Let E be a real Banach space, if K is a
nonempty convex closed set in E, and satisfy the following
conditions:

(1)x ∈ K,λ ≥ 0 ⇒ λx ∈ K; (2)x ∈ K,−x ∈ K ⇒ x =
θ, θ is zero element in E; we call K is a cone in E.

Let E = C[0, 1]
⋂
C1[0, 1], we induce the order x < y:

for all t ∈ [0, 1], we have x(t) < y(t). If we denote the
norm ‖x‖ = max{ max

0≤t≤1
|x(t)|, max

0≤t≤1
|x′(t)|}, then (E, ‖.‖)

is a Banach space.
Let K = {x ∈ E : x(t) ≥ 0, αϕp(x(0)) − βϕp(x

′(0)) =
0, γϕp(x(1)) + δϕp(x

′(1)) = 0, x is concave function in
[0, 1]}, then K is a cone in E.

Lemma 1.1 For any 0 < ε < 1
2 , x ∈ K has the following

properties:
(1) x(t) ≥ ‖x‖t(1 − t), ∀t ∈ [0, 1];
(2) x(t) ≥ ε2‖x‖,∀t ∈ [ε, 1 − ε]. (the proof is elementary.)

lemma 1.2 Suppose H3, H4 hold, and a = ∞,

then there exists R > 0, such that
f(R)

Rp−1
= min

t>0

f(t)

tp−1
,

suppose H5, H6 hold, then there exists L > 0, such that
f(L)

Lp−1
= max

t>0

f(t)

tp−1
= C′.

Lemma 1.3 ( see[11]) Let E be Banach space, K is a
cone in E, for r > 0, we define Kr = {x ∈ K : ‖x‖ ≤ r}.
Suppose T : Kr → K is completely continuous, such that
∀u ∈ ∂Kr = {x ∈ K : ‖x‖ = r}, we have Tx �= x,
If ‖x‖ ≤ ‖Tx‖, x ∈ ∂Kr, then i(T,Kr,K) = 0; if
‖x‖ ≥ ‖Tx‖, x ∈ ∂Kr, then i(T,Kr,K) = 1.

Lemma 1.4 (see [12]) Let Ω1,Ω2 is a bounded open
set in E, θ ∈ Ω1,Ω1 ⊂ Ω2, A : K

⋂
(Ω2 \ Ω1) →

K is completely continuous. If ‖Ax‖ ≤ ‖x‖, ∀x ∈
K
⋂
∂Ω1; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K

⋂
∂Ω2. or ‖Ax‖ ≤

‖x‖, ∀x ∈ K
⋂
∂Ω2; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K

⋂
∂Ω1, then A

has fixed point in K
⋂

(Ω2 \ Ω1).

II. CONCLUSION

Theorem 2.1 If conditions (H1), (H2), (H3), (H4) hold,
and a = +∞.

(a) If there exists λ∗ > 0 such that (λ∗
1

p−1 +

max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })(

f(R̄)

R̄p−1
)

1
p−1ψp(

∫ 1

0

h(t)dt) ≤ 1
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where ψp(t) = |t|
1

p−1 sgn(t) is converse function of ϕp,
R̄ ∈ (0, R] is the maximum point of f in (0, R], then
for 0 < λ < λ∗, Problem (1) has two positive solutions
x1(t), x2(t), and satisfy 0 < ‖x1‖ < R < ‖x2‖.

(b) There exists λ∗∗, when λ > λ∗∗, the problem (1) has
no positive solution.

(a) Proof For any x ∈ K , we have x′(0) ≥ 0, x′(1) ≤ 0,
so there exists a constant σ(= σx) such that x′(σ) = 0, we
define Tλ : K → E as follow

(Tλx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψp(
β

α

∫ σ

0

λh(r)f(u(r))dr)+∫ t

0

ψp(

∫ σ

s

λh(r)f(u(r))dr)ds, 0 ≤ t ≤ σ,

ψp(
δ

γ

∫ 1

σ

λh(r)f(u(r))dr)+∫ 1

t

ψp(

∫ s

σ

λh(r)f(u(r))dr)ds, σ ≤ t ≤ 1,

By the definition of Tλ, we know ∀x ∈ K , Tλx ∈ C1[0, 1] is
nonnegative and satisfy the boundary condition, furthermore,

(Tλx)
′(t) =

⎧⎪⎪⎨
⎪⎪⎩

ψp

∫ σ

t

λh(r)f(u(r))dr) > 0, 0 ≤ t ≤ σ,

−ψp(

∫ t

σ

λh(r)f(u(r))dr) < 0, σ ≤ t ≤ 1,

is continuous and non-increasing in [0, 1], and (Tλx)
′(σ) =

0, so (Tλx)(σ) is the maximum value of Tλx in [0, 1].
Since (Tλx)

′ is continuous and non-increasing in [0, 1],
we have Tλx ∈ K , this imply TλK ⊂ K , furthermore,
−(ϕp(Tλx

′(t)))′ = λh(t)f(x(t)), so the fixed point of Tλ
in K is solution for problem (1).

Similar to the method of [4,5], we know Tλ : K → K is
completely continuous.

By (H1), ∀ε > 0, we have 0 <
∫ 1−ε

ε
h(t)dt < +∞,

and when ε ≤ x ≤ 1 − ε, y(x) =

∫ x

ε

ψp(

∫ x

s

h(r)dr)ds +∫ 1−ε

x

ψp(

∫ s

x

h(r)dr)ds is nonnegative continuous.

Let P = min
ε≤x≤1−ε

y(x) > 0, by (H3) and a = ∞,

i.e. lim
x→0

f(x)

xp−1
= ∞, we know there exists 0 < r′ < R,

such that when 0 ≤ x ≤ r′, f(x) ≥ (Mx)p−1, where
M > 2(λ

1
p−1 ε2P ), for x ∈ ∂Kr′ = {x ∈ K : ‖x‖ = r′}, we

have

2‖Tλx‖ ≥

∫ σ

ε

ψp(

∫ σ

s

λh(r)f(u(r))dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2r′(

∫ σ

ε

ψp(

∫ σ

s

h(r)dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

h(r)dr)ds)

= λ
1

p−1Mε2r′y(σ)

≥ λ
1

p−1Mε2r′P
≥ 2r′ = 2‖x‖, σ ∈ [ε, 1 − ε]

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ 1−ε

s

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2r′(

∫ 1−ε

ε

ψp(

∫ 1−ε

s

h(r)dr)ds)

= λ
1

p−1Mε2r′y(1 − ε)

≥ λ
1

p−1Mε2r′P
> 2r′ > r′ = ‖x‖, σ > 1 − ε,

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ s

ε

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2r′y(ε)

≥ λ
1

p−1Mε2r′P
> 2r′ > r′ = ‖x‖, σ < ε,

so for x ∈ ∂Kr′ , we have ‖Tλx‖ ≥ ‖x‖, by lemma 1.3,

i(Tλ,Kr′,K) = 0. (2)

By (H4) lim
x→+∞

f(x)

xp−1
= +∞, there exists R1 > 0,∀x ≥

R1, we have f(x) ≥ (Mx)p−1, take R̃ > max{R,R1}, for
x ∈ ∂R̃, ‖x‖ = R̃, by lemma 1.1, we have

2‖Tλx‖ ≥

∫ σ

ε

ψp(

∫ σ

s

λh(r)f(u(r))dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2R̃(

∫ σ

ε

ψp(

∫ σ

s

h(r)dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

h(r)dr)ds)

≥ λ
1

p−1Mε2R̃y(σ)

≥ λ
1

p−1Mε2R̃P
≥ 2r = 2‖x‖, σ ∈ [ε, 1 − ε],

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ 1−ε

s

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2R̃(

∫ 1−ε

ε

ψp(

∫ 1−ε

s

h(r)dr)ds)

= λ
1

p−1Mε2R̃y(1 − ε)

≥ λ
1

p−1Mε2rP

> 2R̃ > R̃ = ‖x‖, σ > 1 − ε,

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ s

ε

λh(r)f(u(r))dr)ds

≥ λ
1

p−1Mε2R̃y(ε)

≥ λ
1

p−1Mε2R̃P

> 2R̃ > R̃ = ‖x‖, σ < ε,

so for x ∈ ∂KR̃, we have ‖Tλx‖ ≥ ‖x‖, by lemma 1.3,

i(Tλ,KR̃,K) = 0. (3)

On the other hand, for x ∈ ∂KR, we have
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‖Tλx‖ ≤ ψp(

∫ 1

0

λh(r)f(u(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(u(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(u(r))dr)}

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)f(R̄)dr)

= λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(
f(R̄)

ϕp(R̄)
ϕp(R̄)

∫ 1

0 h(r)dr)

= λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

( f(R̄)

R̄p−1 )
1

p−1ψp(
∫ 1

0
h(r)dr)R̄

< R̄ ≤ R = ‖x‖,

by lemma 1.3,
i(Tλ,KR,K) = 1. (4)

by (2),(3),(4) and the additivity of fixed point index
i(Tλ,KR̄ \ K̇R) = −1, i(Tλ,KR \ K̇r) = 1.
So Tλ has fixed point x1 in KR̄ \ K̇R and x2 in KR \ K̇r.
Next we show x1 �= x2, we only need to show when xi ∈

∂KR, i = 1, 2, Tλxi �= xi hold.
If it is not true, when xi ∈ ∂KR, i = 1, 2, Tλxi = xi, so

‖Tλxi‖ = ‖xi‖. Since xi satisfy (1), we have

‖Tλxi‖ ≤ ψp(

∫ 1

0

λh(r)f(u(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(u(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(u(r))dr)}

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)f(R̄)dr)

= λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(
f(R̄)

ϕp(R̄)
ϕp(R̄)

∫ 1

0
h(r)dr)

= λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

( f(R̄)

R̄p−1 )
1

p−1ψp(
∫ 1

0
h(r)dr)R̄

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

( f(R̄)

R̄p−1 )
1

p−1ψp(
∫ 1

0 h(r)dr)‖xi‖

this imply

1 ≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

( f(R̄)
R̄p−1 )

1
p−1ψp(

∫ 1

0
h(r)dr).

(5)

this is a contradiction, so x1 �= x2.
Last, obviously 0 < ‖x1‖ < R < ‖x2‖.

(b) Proof Suppose there exists a subsequence {λn}, and
λn > n such that for any n, problem (1) has a positive solution
xn ∈ K , by H3, ∀x > 0, we have f(x) ≥ C̄xp−1, where
C̄ = f(R)

Rp−1 , when σ < ε, by lemma 1.1, we have

‖xn‖ ≥

∫ 1−ε

ε

ψp(

∫ s

ε

λnh(r)f(u(r))dr)ds

≥ λ
1

p−1
n

∫ 1−ε

ε

ψp(

∫ s

ε

h(r)C̄(un)
1

p−1 dr)ds

≥ (λnC̄)
1

p−1 ε2‖xn‖

∫ 1−ε

ε

ψp(

∫ s

ε

h(r)dr)ds

= (λnC̄)
1

p−1 ε2‖xn‖y(ε)

≥ (λnC̄)
1

p−1 ε2‖xn‖P,

so
1 ≥ nC̄ε2(p−1)P p−1. (6)

Since n is sufficient large, so we get a contradiction.
When σ > 1 − ε and σ ∈ [ε, 1 − ε], we can get the similar

result.
So there exists λ∗∗, when λ > λ∗∗, problem (1) has no

positive solution, the proof is finished.

Theorem 2.2 If (H1), (H3), (H4) hold , and
0 < a < +∞, if there exists λ∗∗∗ > 0 and

λ∗∗∗
1

p−1 (1 + max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })ψp(a

∫ 1

0

h(t)dt) ≤ 1,

where ψp(t) = |t|
1

p−1 sgn(t) is converse function of ϕp, so
for 0 < λ < λ∗∗∗, problem (1) has a positive solution.

Proof Take ε > 0, such that (λ
1

p−1 +

max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })(a + ε)

1
p−1ψp(

∫ 1

0

h(t)dt) < 1.

by H3, there exists η > 0 such that when 0 ≤ x ≤ η,
f(x) ≤ xp−1(a+ ε). so for x ∈ ∂Kη, we have

‖Tλx‖ ≤ ψp(

∫ 1

0

λh(r)f(u(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(u(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(u(r))dr)}

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)xp−1(r)(a + ε)dr)

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

(a+ ε)
1

p−1ψp(
∫ 1

0
h(r)dr)‖x‖

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

(a+ ε)
1

p−1ψp(
∫ 1

0
h(r)dr)η

< η = ‖x‖.

By H4, there exists � > 0, such that when
x ≥ �,f(x) ≥ (Mx)p−1, choose μ > max{�, η},
by the similar method with theorem 2.1, we can show
when x ∈ ∂Kμ, ‖Tλx‖ ≥ ‖x‖, so if we define
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Ω1 = {x ∈ K : ‖x‖ < η}, Ω2 = {x ∈ K : ‖x‖ < μ},
by lemma 1.4, Tλ has at least one fixed point x ∈ K , and
μ > ‖x‖ > η, the proof is finished.

Corollary In condition H3, let a = 0 , then ∀λ > 0,
problem (1) has at least one positive solution.

Theorem 2.3 If H1, H2, H5, H6 hold, then

(a)∀ε ∈ (0, 1
2 ), there exists λ∗ = λ∗(ε) > 0, such that

for all λ > λ∗, problem (1) has at least two x1, x2 and
0 < ‖x1‖ < L < ‖x2‖.

(b) If there exist λ∗∗ > 0 such that λ∗∗
1

p−1 (1 +

max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })(C′ 1

p−1 )ψp

∫ 1

0

h(t)dt) ≤ 1, then for

all λ < λ∗∗, problem (1) has no positive solution, where
C′ = f(L)

Lp−1 .

(a) Proof For any 0 < ε < 1
2 , ∀x ∈ K and ‖x‖ = L,

Let v = min
ε≤t≤1−ε

f(u(t))

u(t)p−1
, by (H2) and lemma 1.1, v > 0,

let λ∗ =
2p−1

(ε2Q)p−1v
, where Q = min

ε≤x≤1−ε
y(x) > 0, then for

λ > λ∗ we have

2‖Tλx‖ ≥

∫ σ

ε

ψp(

∫ σ

s

λh(r)f(u(r))dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

λh(r)f(u(r))dr)ds

≥ (λv)
1

p−1 ε2(

∫ σ

ε

ψp(

∫ σ

s

h(r)dr)ds+∫ 1−ε

σ

ψp(

∫ s

σ

h(r)dr)ds)

= (λv)
1

p−1 ε2QL
> 2L = 2‖x‖, σ ∈ [ε, 1 − ε],

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ 1−ε

s

λh(r)f(u(r))dr)ds

≥ (λv)
1

p−1 ε2QL
> ‖x‖, σ > 1 − ε,

‖Tλx‖ ≥

∫ 1−ε

ε

ψp(

∫ s

ε

λh(r)f(u(r))dr)ds

≥ (λv)
1

p−1 ε2QL
≥ ‖x‖, σ < ε,

so for x ∈ ∂KL, we have ‖Tλx‖ > ‖x‖.

For the same λ, choose ε′ > 0 such that ε′(λ
1

p−1 +

max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })ψp(

∫ 1

0

h(r)dr) < 1, by (H5), there

exists 0 < l < L, such that when 0 ≤ x ≤ l, f(x) ≤ (ε′x)p−1,

so for x ∈ ∂Kl, we have

‖Tλx‖ ≤ ψp(

∫ 1

0

λh(r)f(u(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(u(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(u(r))dr)}

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)f(x(r))dr)

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp
∫ 1

0
(ε′x)p−1h(r)dr)

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ε′ψp(
∫ 1

0 h(r)dr)l
< l = ‖x‖.

We define a new function f̄(x) = max
0≤s≤x

f(s), so f̄(x) is

nondecreasing monotonously, by (H6) lim
x→+∞

f(x)

xp−1
= 0, we

can get lim
x→+∞

f̄(x)

xp−1
= 0, for the same ε′ > 0, there exists

S > 0 such that when x ≤ S, f̄(x) ≤ (ε′x)p−1, choose
L′ = max{L, S}, so for x ∈ KL′ , we have

‖Tλx‖ ≤ ψp(

∫ 1

0

λh(r)f(u(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(u(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(u(r))dr)}

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)f̄ (L′)dr)

≤ λ
1

p−1 (1 +max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ε′ψp
∫ 1

0
h(r)dr)L′

< L′ = ‖x‖.

we define Ω1 = {x ∈ K : ‖x‖ < L} ,Ω2 = {x ∈ K :
‖x‖ < L′}, by lemma 1.4, Tλ has at least two fixed points
x1(t), x2(t) in K , and satisfy l ≤ ‖x1‖ ≤ L ≤ ‖x2‖ ≤ L′.

Similarly to the proof of theorem 2.1, Tλ has no fixed
point in ∂KL, so x1(t) �= x2(t), the proof is finished.

(b) Proof Suppose there exists a subsequence λn < λ∗∗
and λn ∈ (0, 1

n
) such that for ∀n problem (1) has a positive

solution xn ∈ K . since x > 0, f(x) ≤ (C′x)p−1, where
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C′ = f(L)
Lp−1 , we have

‖xλn
‖ ≤ ψp(

∫ 1

0

λnh(r)f(xλn
(r))dr)ds+

max{ψp(
β

α

∫ 1

0

λh(r)f(xλn
(r))dr),

ψp(
δ

γ

∫ 1

0

λh(r)f(xλn
(r))dr)}

≤ λ
1

p−1
n (1 +max{(

β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

ψp(

∫ 1

0

h(r)C′xp−1
λn

(r)dr)

≤ λ
1

p−1
n (1 +max{(

β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })×

C′ 1
p−1ψp(

∫ 1

0
h(r)dr)‖xλn

‖,

i.e.

1 ≤ λ
1

p−1
n (1+max{(

β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })C′ 1

p−1ψp(

∫ 1

0

h(r)dr).

(7)

since λn < λ∗∗, so λ
1

p−1
n (1 +

max{(
β

α
)

1
p−1 , (

δ

γ
)

1
p−1 })C′ 1

p−1ψp(

∫ 1

0

h(r)dr) < 1, this

is contradiction, the proof is finished.

Example 1{
−(ϕp(x

′(t)))′ = λ(1 − t)p1tp2(cxq1 (t) + xq2(t)), t ∈ (0, 1)
x(0) = x(1) = 0,

where λ is a positive parameter, c ∈ R+
⋃
{0},−1 < p1 <

0,−1 < p2 < 0, 0 < q1 ≤ p− 1 < q2.
we cinsider the following two cases:
(1) when 0 < q1 < p − 1 < q2 and c >

0, R = R̄ = (c
p− 1 − q1
q2 − p+ 1

)
1

q2−q1 , and λ∗ =

((q2 − p+ 1)q2−p+1(p− 1 − q1)
p−1−q1 )

1
q2−q1

q2 − q1
× (β(p1 +

1, p2 + 1))−1 × c
q2−p+1
q1−q2 .

By theorem 2.1, if λ ∈ (0, λ∗), then problem (1) has at least
two positive solutions x1, x2 satisfy 0 < ‖x1‖ < R < ‖x2‖,
there exists λ∗∗ sufficient large, when λ > λ∗∗, problem (1)
has no positive solution.

(2) q1 = p − 1, and c ≥ 0, if c > 0, then h(t) = (1 −
t)p1tp2 , and f(x) = cxq1 (t)+xq2(t) satisfy all the conditions
of theorem 2, and β = 0, δ = 0. Let λ∗∗∗ = (cβ(p1 + 1, p2 +
1))−1, where β is β function, for 0 < λ < λ∗∗∗, problem (1)
has at least one positive solution.

If c = 0, by corollary, for each λ > 0, problem (1) has at
least one positive solution.

Example 2{
−(ϕp(x

′(t)))′ = λh(t)(ex(t) − 1), t ∈ (0, 1)
x(0) = x(1) = 0

where λ is positive parameter, h(t) is same as above, we
consider three cases:

case 1 p > 2. let λ∗ = ( f(R̄)

R̄p−1β(p1 + 1, p2 + 1))−1, where
R = R̄ ∈ (p − 2, p − 1) is the only zero point of function

χ(x) = ex(x−p+1)+p−1, by theorem 2.1, when λ ∈ (0, λ∗),
problem (1) has at least two solutions, and 0 < ‖x1‖ < R <
‖x2‖. there exists λ∗∗ sufficient large, when λ > λ∗∗, problem
(1) has no solution.

case 2 p = 2, let λ∗∗∗ = (β(p1 + 1, p2 + 1))−1, where β
is β function. by theorem 2.2, for 0 < λ < λ∗∗∗ problem (1)
has at least one positive solution.

case 3 1 < p < 2, in this case a = 0, by corollary, for
each λ > 0, problem (1) has at least one positive solution.

Example 3{
−(ϕp(x

′(t)))′ = λt−αx(t)qe−x(t), t ∈ (0, 1),
x(0) = x(1) = 0

where 0 < α < 1, p− 1 < q.

By theorem 2.3, for ε ∈ (0, 1
2 ), let λ∗(ε) = (

2

vε2Q
)p−1, for

0 < λ > λ∗, problem (1) has at least two positive solutions,
and 0 < ‖x1‖ < q − p+ 1 < ‖x2‖. there exists λ∗∗ sufficient
small, when λ < λ∗∗ problem (1) has no solution. Specially,

p = 2, let λ∗(ε) = (
2

vε2Q
)p−1, v = ε2(q−1)(q − 1)eε

2(1−q),

and Q =
ε2−α + (1 − ε)2−α − 2α−1

(1 − α)(2 − α)
, we can get for 0 <

λ > λ∗, problem (1) has at least two positive solutions, and
0 < ‖x1‖ < q − 1 < ‖x2‖.
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