The positive solution for singular eigenvalue problem of one-dimensional p-Laplace operator

Lv Yuhua

Abstract—In this paper, by constructing a special cone and using fixed point theorem and fixed point index theorem of cone, we get the existence of positive solution for a class of singular eigenvalue value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords-Cone, fixed point index, eigenvalue problem, p-Laplace operator, positive solutions.

I. Introduction

THE eigenvalue problems with p-Laplace operator arises in a variety of applied mathematics and physics, and they are widely applied in studying for non-newtonian fluid mechanics, cosmological physics, plasma physics, and theory of elasticity, etc. In recent years, some important results have been obtained by a variety of method(see[1-9]). In paper [10], Wang and Ge study for the following problem

$$\left\{ \begin{array}{l} \left(\phi_p(u') \right)' + a(t)(t) f(t, u(t)) = 0, t \in (0, 1) \\ u(0) = u(1) = 0, \end{array} \right.$$

by using fixed point theorem of cone, they get the existence of multiple positive solution. Motivated by paper [4,6,10], we consider the following problems:

$$\begin{cases} -(\varphi_p(x'(t)))' = \lambda h(t) f(x(t)), & t \in (0,1) \\ \alpha \varphi_p(x(0)) - \beta \varphi_p(x'(0)) = 0, \\ \gamma \varphi_p(x(1)) + \delta \varphi_p(x'(1)) = 0, \end{cases}$$
 (1)

where $\varphi_p(s) = |s|^{p-2}s, p > 1$, and λ is a positive parameter, h(t) is nonnegative measurable function in (0,1), h(t) may be singular at $t=0,1, \, \alpha>0, \beta\geq 0, \gamma>0, \delta\geq 0$ f(x) is nonnegative continuous function in $[0, +\infty)$, f is sup-linear and sub-linear at 0 and ∞ .

We first list the following conditions:

 $(\mathbf{H_1})$ h(t) is nonnegative function in (0,1), for any closed subinterval of (0,1), $h(t) \neq 0$ and $0 < \int_0^1 h(t)dt < +\infty$;

 $(\mathbf{H_2})$ $f \in C([0,+\infty),[0,+\infty))$ and f(0) = 0; for u > 0

$$(\mathbf{H_3}) \lim_{x \to 0} \frac{f(x)}{x^{p-1}} = a$$
, where $a \in [0, +\infty]$;

$$(\mathbf{H_4}) \lim_{x \to +\infty} \frac{f(x)}{x^{p-1}} = +\infty; (f \text{ is sup-linear at } x = +\infty.)$$

$$(\mathbf{H_5}) \lim_{x \to 0} \frac{f(x)}{x^{p-1}} = 0; (f \text{ is sub-linear at } x = 0.)$$

$$(\mathbf{H_6}) \lim_{x \to +\infty} \frac{f(x)}{x^{p-1}} = 0. (f \text{ is sub-linear at } x = +\infty.)$$
For the sake of convenience, we list the following

$$(\mathbf{H_5}) \lim_{x \to 0} \frac{f(x)}{x^{p-1}} = 0; (f \text{ is sub-linear at } x = 0.)$$

$$(\mathbf{H_6}) \lim_{x \to +\infty} \frac{f(x)}{x^{p-1}} = 0.$$
 (f is sub-linear at $x = +\infty$.)

definitions and lemmas:

Lv Yuhua is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao,266061,China. e-mail: lyh@qust.edu.cn

Definition 1.1 If $x \in C[0,1] \cap C^1(0,1)$ and satisfy (1), $\varphi_p(x'(t))$ is absolutely continuous in (0,1), $-(\varphi_p(x'(t)))' = \lambda h(t) f(x(t))$ hold almost everywhere in (0,1), we call x is positive solution for problem (1).

Definition 1.2 Let E be a real Banach space, if K is a nonempty convex closed set in E, and satisfy the following

 $(1)x \in K, \lambda \geq 0 \Rightarrow \lambda x \in K; (2)x \in K, -x \in K \Rightarrow x =$ θ , θ is zero element in E; we call K is a cone in E.

Let $E = C[0,1] \cap C^1[0,1]$, we induce the order x < y: for all $t \in [0,1]$, we have x(t) < y(t). If we denote the $\text{norm } \|x\| = \max\{\max_{0 \leq t \leq 1} |x(t)|, \max_{0 \leq t \leq 1} |x'(t)|\}, \text{ then } (E, \|.\|)$ is a Banach space.

Let $K = \{x \in E : x(t) \ge 0, \alpha \varphi_p(x(0)) - \beta \varphi_p(x'(0)) = 0\}$ $0, \gamma \varphi_p(x(1)) + \delta \varphi_p(x'(1)) = 0, x$ is concave function in [0,1]}, then K is a cone in E.

Lemma 1.1 For any $0 < \varepsilon < \frac{1}{2}, x \in K$ has the following properties:

- (1) $x(t) \ge ||x||t(1-t), \forall t \in [0,1];$
- (2) $x(t) \ge \varepsilon^2 ||x||, \forall t \in [\varepsilon, 1 \varepsilon].$ (the proof is elementary.)

 $\begin{array}{lll} \textbf{lemma} & \textbf{1.2} & \text{Suppose} & H_3, H_4 & \text{hold, and} & a & = & \infty, \\ \text{then there exists} & R & > & 0, & \text{such that} \frac{f(R)}{R^{p-1}} & = & \min_{t>0} \frac{f(t)}{t^{p-1}}, \\ \text{suppose} & H_5, H_6 & \text{hold, then there exists} & L & > & 0, & \text{such that} \\ \frac{f(L)}{L^{p-1}} & = & \max_{t>0} \frac{f(t)}{t^{p-1}} & = & C'. \end{array}$

Lemma 1.3 (see[11]) Let E be Banach space, K is a cone in E, for r > 0, we define $K_r = \{x \in K : ||x|| \le r\}$. Suppose $T:K_r\to K$ is completely continuous, such that $\forall u \in \partial K_r = \{x \in K : ||x|| = r\}, \text{ we have } Tx \neq x,$ If $||x|| \le ||Tx||, x \in \partial K_r$, then $i(T, K_r, K) = 0$; if $||x|| \ge ||Tx||, x \in \partial K_r$, then $i(T, K_r, K) = 1$.

Lemma 1.4 (see [12]) Let Ω_1, Ω_2 is a bounded open set in $E, \ \theta \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2, A : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \rightarrow$ K is completely continuous. If $||Ax|| \le ||x||, \forall x \in$ $K \cap \partial \Omega_1$; $||Ax|| \ge ||x||, \forall x \in K \cap \partial \Omega_2$. or $||Ax|| \le$ $||x||, \forall x \in K \cap \partial \Omega_2; ||Ax|| \geq ||x||, \forall x \in K \cap \partial \Omega_1$, then A has fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

II. CONCLUSION

Theorem 2.1 If conditions $(H_1), (H_2), (H_3), (H_4)$ hold, and $a = +\infty$.

(a) If there exists $\lambda^* > 0$ such that $(\lambda^*)^{\frac{1}{p-1}} + \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})(\frac{f(\bar{R})}{\bar{R}^{p-1}})^{\frac{1}{p-1}}\psi_p(\int_0^1 h(t)dt) \le 1$

where $\psi_p(t) = |t|^{\frac{1}{p-1}} sgn(t)$ is converse function of φ_p , $\bar{R} \in (0,R]$ is the maximum point of f in (0,R], then for $0 < \lambda < \lambda^*$, Problem (1) has two positive solutions $x_1(t), x_2(t)$, and satisfy $0 < \|x_1\| < R < \|x_2\|$.

- (**b**) There exists λ^{**} , when $\lambda > \lambda^{**}$, the problem (1) has no positive solution.
- (a) **Proof** For any $x \in K$, we have $x'(0) \ge 0, x'(1) \le 0$, so there exists a constant $\sigma(=\sigma_x)$ such that $x'(\sigma)=0$, we define $T_\lambda:K\to E$ as follow

$$(T_{\lambda}x)(t) = \begin{cases} \psi_p(\frac{\beta}{\alpha} \int_0^{\sigma} \lambda h(r) f(u(r)) dr) + \\ \int_0^t \psi_p(\int_s^{\sigma} \lambda h(r) f(u(r)) dr) ds, 0 \le t \le \sigma, \\ \psi_p(\frac{\delta}{\gamma} \int_{\sigma}^1 \lambda h(r) f(u(r)) dr) + \\ \int_t^1 \psi_p(\int_s^s \lambda h(r) f(u(r)) dr) ds, \sigma \le t \le 1, \end{cases}$$

By the definition of T_{λ} , we know $\forall x \in K$, $T_{\lambda}x \in C^{1}[0,1]$ is nonnegative and satisfy the boundary condition, furthermore,

$$(T_{\lambda}x)'(t) = \begin{cases} \psi_p \int_t^{\sigma} \lambda h(r) f(u(r)) dr > 0, & 0 \le t \le \sigma, \\ -\psi_p(\int_{\sigma}^t \lambda h(r) f(u(r)) dr) < 0, & \sigma \le t \le 1, \end{cases}$$

is continuous and non-increasing in [0,1], and $(T_\lambda x)'(\sigma)=0$, so $(T_\lambda x)(\sigma)$ is the maximum value of $T_\lambda x$ in [0,1]. Since $(T_\lambda x)'$ is continuous and non-increasing in [0,1], we have $T_\lambda x\in K$, this imply $T_\lambda K\subset K$, furthermore, $-(\varphi_p(T_\lambda x'(t)))'=\lambda h(t)f(x(t))$, so the fixed point of T_λ in K is solution for problem (1).

Similar to the method of [4,5], we know $T_{\lambda}: K \to K$ is completely continuous.

By (H_1) , $\forall \varepsilon > 0$, we have $0 < \int_{\varepsilon}^{1-\varepsilon} h(t) dt < +\infty$, and when $\varepsilon \leq x \leq 1-\varepsilon$, $y(x) = \int_{\varepsilon}^{x} \psi_p(\int_{s}^{x} h(r) dr) ds + \int_{x}^{1-\varepsilon} \psi_p(\int_{s}^{s} h(r) dr) ds$ is nonnegative continuous. Let $P = \min_{\varepsilon \leq x \leq 1-\varepsilon} y(x) > 0$, by (H_3) and $a = \infty$, i.e. $\lim_{x \to 0} \frac{f(x)}{x^{p-1}} = \infty$, we know there exists 0 < r' < R, such that when $0 \leq x \leq r'$, $f(x) \geq (Mx)^{p-1}$, where $M > 2(\lambda^{\frac{1}{p-1}} \varepsilon^2 P)$, for $x \in \partial K_{r'} = \{x \in K : \|x\| = r'\}$, we have

$$2\|T_{\lambda}x\| \geq \int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} \lambda h(r)f(u(r))dr)ds + \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{s}^{s} \lambda h(r)f(u(r))dr)ds + \int_{\sigma}^{1-\varepsilon} M\varepsilon^{2}r'(\int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} h(r)dr)ds + \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{s}^{\sigma} h(r)dr)ds) = \lambda^{\frac{1}{p-1}}M\varepsilon^{2}r'y(\sigma) \geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}r'P \geq 2r' = 2\|x\|, \quad \sigma \in [\varepsilon, 1-\varepsilon]$$

$$||T_{\lambda}x|| \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{s}^{1-\varepsilon} \lambda h(r)f(u(r))dr)ds$$

$$\geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}r'(\int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{s}^{1-\varepsilon} h(r)dr)ds)$$

$$= \lambda^{\frac{1}{p-1}}M\varepsilon^{2}r'y(1-\varepsilon)$$

$$\geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}r'P$$

$$> 2r' > r' = ||x||, \quad \sigma > 1 - \varepsilon,$$

$$||T_{\lambda}x|| \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{\varepsilon}^{s} \lambda h(r)f(u(r))dr)ds$$

$$\geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r' y(\varepsilon)$$

$$\geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} r' P$$

$$> 2r' > r' = ||x||, \quad \sigma < \varepsilon,$$

so for $x \in \partial K_{r'}$, we have $||T_{\lambda}x|| \ge ||x||$, by lemma 1.3,

$$i(T_{\lambda}, K_{r'}, K) = 0. \tag{2}$$

By $(H_4)\lim_{x\to +\infty}\frac{f(x)}{x^{p-1}}=+\infty$, there exists $R_1>0, \forall x\geq R_1$, we have $f(x)\geq (Mx)^{p-1}$, take $\tilde{R}>\max\{R,R_1\}$, for $x\in\partial \tilde{R},\|x\|=\tilde{R}$, by lemma 1.1, we have

$$2\|T_{\lambda}x\| \geq \int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} \lambda h(r)f(u(r))dr)ds + \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{s}^{s} \lambda h(r)f(u(r))dr)ds$$

$$\geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}\tilde{R}(\int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} h(r)dr)ds + \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{s}^{s} h(r)dr)ds)$$

$$\geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}\tilde{R}y(\sigma)$$

$$\geq \lambda^{\frac{1}{p-1}}M\varepsilon^{2}\tilde{R}P$$

$$\geq 2r = 2\|x\|, \quad \sigma \in [\varepsilon, 1-\varepsilon],$$

$$||T_{\lambda}x|| \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{s}^{1-\varepsilon} \lambda h(r)f(u(r))dr)ds$$

$$\geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R}(\int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{s}^{1-\varepsilon} h(r)dr)ds)$$

$$= \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R}y(1-\varepsilon)$$

$$\geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} rP$$

$$\geq 2\tilde{R} > \tilde{R} = ||x||, \quad \sigma > 1-\varepsilon.$$

$$\begin{split} \|T_{\lambda}x\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{\varepsilon}^{s} \lambda h(r) f(u(r)) dr) ds \\ & \geq \lambda^{\frac{\varepsilon}{p-1}} M \varepsilon^{2} \tilde{R} y(\varepsilon) \\ & \geq \lambda^{\frac{1}{p-1}} M \varepsilon^{2} \tilde{R} P \\ & > 2\tilde{R} > \tilde{R} = \|x\|, \quad \sigma < \varepsilon, \end{split}$$

so for $x \in \partial K_{\tilde{R}}$, we have $||T_{\lambda}x|| \ge ||x||$, by lemma 1.3,

$$i(T_{\lambda}, K_{\tilde{R}}, K) = 0. \tag{3}$$

On the other hand, for $x \in \partial K_R$, we have

$$\begin{split} \|T_{\lambda}x\| &\leq \psi_{p}(\int_{0}^{1}\lambda h(r)f(u(r))dr)ds + \\ & \max\{\psi_{p}(\frac{\beta}{\alpha}\int_{0}^{1}\lambda h(r)f(u(r))dr), \\ & \psi_{p}(\frac{\delta}{\gamma}\int_{0}^{1}\lambda h(r)f(u(r))dr)\} \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})\times \\ & \psi_{p}(\int_{0}^{1}h(r)f(\bar{R})dr) \\ &= \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})\times \\ & \psi_{p}(\frac{f(\bar{R})}{\varphi_{p}(\bar{R})}\varphi_{p}(\bar{R})\int_{0}^{1}h(r)dr) \\ &= \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})\times \\ & (\frac{f(\bar{R})}{R^{p-1}})^{\frac{1}{p-1}}\psi_{p}(\int_{0}^{1}h(r)dr)\bar{R} \\ &< \bar{R} \leq R = \|x\|, \end{split}$$

by lemma 1.3,

$$i(T_{\lambda}, K_R, K) = 1. \tag{4}$$

by (2),(3),(4) and the additivity of fixed point index $i(T_{\lambda}, K_{\bar{R}} \setminus \dot{K}_R) = -1, i(T_{\lambda}, K_R \setminus \dot{K}_r) = 1.$

So T_{λ} has fixed point x_1 in $K_{\bar{R}} \setminus \dot{K}_R$ and x_2 in $K_R \setminus \dot{K}_r$. Next we show $x_1 \neq x_2$, we only need to show when $x_i \in \partial K_R, i = 1, 2, \, T_{\lambda} x_i \neq x_i$ hold.

If it is not true, when $x_i \in \partial K_R$, i = 1, 2, $T_{\lambda}x_i = x_i$, so $||T_{\lambda}x_i|| = ||x_i||$. Since x_i satisfy (1), we have

$$||T_{\lambda}x_{i}|| \leq \psi_{p}(\int_{0}^{1}\lambda h(r)f(u(r))dr)ds +$$

$$max\{\psi_{p}(\frac{\beta}{\alpha}\int_{0}^{1}\lambda h(r)f(u(r))dr),$$

$$\psi_{p}(\frac{\delta}{\gamma}\int_{0}^{1}\lambda h(r)f(u(r))dr)\}$$

$$\leq \lambda^{\frac{1}{p-1}}(1+max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times$$

$$\psi_{p}(\int_{0}^{1}h(r)f(\bar{R})dr)$$

$$= \lambda^{\frac{1}{p-1}}(1+max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times$$

$$\psi_{p}(\frac{f(\bar{R})}{\varphi_{p}(\bar{R})}\varphi_{p}(\bar{R})\int_{0}^{1}h(r)dr)$$

$$= \lambda^{\frac{1}{p-1}}(1+max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times$$

$$(\frac{f(\bar{R})}{\bar{R}^{p-1}})^{\frac{1}{p-1}}\psi_{p}(\int_{0}^{1}h(r)dr)\bar{R}$$

$$\leq \lambda^{\frac{1}{p-1}}(1+max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times$$

$$(\frac{f(\bar{R})}{\bar{R}^{p-1}})^{\frac{1}{p-1}}\psi_{p}(\int_{0}^{1}h(r)dr)||x_{i}||$$

this imply

$$1 \leq \lambda^{\frac{1}{p-1}} (1 + \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times (\frac{f(\bar{R})}{B^{\frac{1}{p-1}}})^{\frac{1}{p-1}} \psi_p(\int_0^1 h(r) dr).$$
 (5)

this is a contradiction, so $x_1 \neq x_2$.

Last, obviously $0 < ||x_1|| < R < ||x_2||$.

(b) **Proof** Suppose there exists a subsequence $\{\lambda_n\}$, and $\lambda_n > n$ such that for any n, problem (1) has a positive solution $x_n \in K$, by H_3 , $\forall x > 0$, we have $f(x) \geq \bar{C}x^{p-1}$, where $\bar{C} = \frac{f(R)}{R^{p-1}}$, when $\sigma < \varepsilon$, by lemma 1.1, we have

$$\begin{split} \|x_n\| & \geq \int_{\varepsilon}^{1-\varepsilon} \psi_p(\int_{\varepsilon}^s \lambda_n h(r) f(u(r)) dr) ds \\ & \geq \lambda_n^{\frac{1}{p-1}} \int_{\varepsilon}^{1-\varepsilon} \psi_p(\int_{\varepsilon}^s h(r) \bar{C}(u_n)^{\frac{1}{p-1}} dr) ds \\ & \geq (\lambda_n \bar{C})^{\frac{1}{p-1}} \varepsilon^2 \|x_n\| \int_{\varepsilon}^{1-\varepsilon} \psi_p(\int_{\varepsilon}^s h(r) dr) ds \\ & = (\lambda_n \bar{C})^{\frac{1}{p-1}} \varepsilon^2 \|x_n\| y(\varepsilon) \\ & \geq (\lambda_n \bar{C})^{\frac{1}{p-1}} \varepsilon^2 \|x_n\| P, \end{split}$$

so

$$1 > n\bar{C}\varepsilon^{2(p-1)}P^{p-1}. (6)$$

Since n is sufficient large, so we get a contradiction.

When $\sigma > 1 - \varepsilon$ and $\sigma \in [\varepsilon, 1 - \varepsilon]$, we can get the similar result.

So there exists λ^{**} , when $\lambda > \lambda^{**}$, problem (1) has no positive solution, the proof is finished.

 $\begin{array}{lll} \textbf{Theorem} & \textbf{2.2} \ \ \text{If} & (H_1), (H_3), (H_4) \ \ \text{hold} & , \quad \text{and} \\ 0 < a < +\infty, & \text{if there exists} \ \lambda^{***} > 0 \ \ \text{and} \\ \lambda^{****}^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})\psi_p(a\int_0^1 h(t)dt) \leq 1, \\ \text{where} \ \psi_p(t) = |t|^{\frac{1}{p-1}}sgn(t) \ \text{is converse function of} \ \varphi_p, \ \text{so} \\ \text{for} \ 0 < \lambda < \lambda^{***}, \ \text{problem} \ (1) \ \text{has a positive solution}. \end{array}$

 $\begin{array}{lll} \textbf{Proof} & \text{Take } \epsilon > 0, \text{ such that } (\lambda^{\frac{1}{p-1}} + \\ \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})(a + \epsilon)^{\frac{1}{p-1}}\psi_p(\int_0^1 h(t)dt) < 1. \\ \text{by } H_3, \text{ there exists } \eta > 0 \text{ such that when } 0 \leq x \leq \eta, \\ f(x) \leq x^{p-1}(a + \epsilon). \text{ so for } x \in \partial K_\eta, \text{ we have} \end{array}$

$$\begin{split} \|T_{\lambda}x\| &\leq \psi_p(\int_0^1 \lambda h(r)f(u(r))dr)ds + \\ & \max\{\psi_p(\frac{\beta}{\alpha}\int_0^1 \lambda h(r)f(u(r))dr), \\ & \psi_p(\frac{\delta}{\gamma}\int_0^1 \lambda h(r)f(u(r))dr)\} \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \psi_p(\int_0^1 h(r)x^{p-1}(r)(a+\epsilon)dr) \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & (a+\epsilon)^{\frac{1}{p-1}}\psi_p(\int_0^1 h(r)dr)\|x\| \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & (a+\epsilon)^{\frac{1}{p-1}}\psi_p(\int_0^1 h(r)dr)\eta \\ &< \eta = \|x\|. \end{split}$$

By H_4 , there exists $\varrho > 0$, such that when $x \geq \varrho, f(x) \geq (Mx)^{p-1}$, choose $\mu > max\{\varrho, \eta\}$, by the similar method with theorem 2.1, we can show when $x \in \partial K_{\mu}$, $\|T_{\lambda}x\| \geq \|x\|$, so if we define

 $\begin{array}{ll} \Omega_1=\{x\in K:\|x\|<\eta\},\ \Omega_2=\{x\in K:\|x\|<\mu\},\\ \text{by lemma 1.4, } T_\lambda \text{ has at least one fixed point } x\in K, \text{ and }\\ \mu>\|x\|>\eta, \text{ the proof is finished.} \end{array}$

Corollary In condition H_3 , let a=0, then $\forall \lambda>0$, problem (1) has at least one positive solution.

Theorem 2.3 If H_1, H_2, H_5, H_6 hold, then

(a) $\forall \varepsilon \in (0, \frac{1}{2})$, there exists $\lambda_* = \lambda_*(\varepsilon) > 0$, such that for all $\lambda > \lambda_*$, problem (1) has at least two x_1, x_2 and $0 < \|x_1\| < L < \|x_2\|$.

- (b) If there exist $\lambda_{**}>0$ such that $\lambda_{**}^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})(C'^{\frac{1}{p-1}})\psi_p\int_0^1h(t)dt)\leq 1$, then for all $\lambda<\lambda_{**}$, problem (1) has no positive solution, where $C'=\frac{f(L)}{L^{p-1}}$.
- (a) Proof For any $0<\varepsilon<\frac{1}{2}, \forall x\in K$ and $\|x\|=L$, Let $v=\min_{\varepsilon\leq t\leq 1-\varepsilon}\frac{f(u(t))}{u(t)^{p-1}},$ by (H_2) and lemma 1.1, v>0, let $\lambda_*=\frac{2^{p-1}}{(\varepsilon^2Q)^{p-1}v},$ where $Q=\min_{\varepsilon\leq x\leq 1-\varepsilon}y(x)>0$, then for $\lambda>\lambda_*$ we have

$$\begin{split} 2\|T_{\lambda}x\| & \geq \int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} \lambda h(r)f(u(r))dr)ds + \\ & \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{\sigma}^{s} \lambda h(r)f(u(r))dr)ds \\ & \geq (\lambda v)^{\frac{1}{p-1}}\varepsilon^{2}(\int_{\varepsilon}^{\sigma} \psi_{p}(\int_{s}^{\sigma} h(r)dr)ds + \\ & \int_{\sigma}^{1-\varepsilon} \psi_{p}(\int_{\sigma}^{s} h(r)dr)ds) \\ & = (\lambda v)^{\frac{1}{p-1}}\varepsilon^{2}QL \\ & > 2L = 2\|x\|, \sigma \in [\varepsilon, 1-\varepsilon], \end{split}$$

$$||T_{\lambda}x|| \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{s}^{1-\varepsilon} \lambda h(r) f(u(r)) dr) ds$$

$$\geq (\lambda v)^{\frac{1}{p-1}} \varepsilon^{2} QL$$

$$> ||x||, \sigma > 1 - \varepsilon,$$

$$||T_{\lambda}x|| \geq \int_{\varepsilon}^{1-\varepsilon} \psi_{p}(\int_{\varepsilon}^{s} \lambda h(r) f(u(r)) dr) ds$$

$$\geq (\lambda v)^{\frac{1}{p-1}} \varepsilon^{2} QL$$

$$\geq ||x||, \sigma < \varepsilon,$$

so for $x \in \partial K_L$, we have $||T_{\lambda}x|| > ||x||$.

For the same λ , choose $\epsilon'>0$ such that $\epsilon'(\lambda^{\frac{1}{p-1}}+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\})\psi_p(\int_0^1h(r)dr)<1$, by (H_5) , there exists 0< l< L, such that when $0\leq x\leq l$, $f(x)\leq (\epsilon'x)^{p-1}$,

so for $x \in \partial K_l$, we have

$$\begin{split} \|T_{\lambda}x\| &\leq \psi_{p}(\int_{0}^{1}\lambda h(r)f(u(r))dr)ds + \\ & \max\{\psi_{p}(\frac{\beta}{\alpha}\int_{0}^{1}\lambda h(r)f(u(r))dr), \\ & \psi_{p}(\frac{\delta}{\gamma}\int_{0}^{1}\lambda h(r)f(u(r))dr)\} \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \psi_{p}(\int_{0}^{1}h(r)f(x(r))dr) \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \psi_{p}\int_{0}^{1}(\epsilon'x)^{p-1}h(r)dr) \\ &\leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \epsilon'\psi_{p}(\int_{0}^{1}h(r)dr)l \\ &< l = \|x\|. \end{split}$$

We define a new function $\bar{f}(x) = \max_{0 \le s \le x} f(s)$, so $\bar{f}(x)$ is nondecreasing monotonously, by $(H_6) \lim_{x \to +\infty} \frac{f(x)}{x^{p-1}} = 0$, we can get $\lim_{x \to +\infty} \frac{\bar{f}(x)}{x^{p-1}} = 0$, for the same $\epsilon' > 0$, there exists S > 0 such that when $x \le S$, $\bar{f}(x) \le (\epsilon' x)^{p-1}$, choose $L' = max\{L, S\}$, so for $x \in K_{L'}$, we have

$$\begin{split} \|T_{\lambda}x\| & \leq \psi_{p}(\int_{0}^{1}\lambda h(r)f(u(r))dr)ds + \\ & \max\{\psi_{p}(\frac{\beta}{\alpha}\int_{0}^{1}\lambda h(r)f(u(r))dr), \\ & \psi_{p}(\frac{\delta}{\gamma}\int_{0}^{1}\lambda h(r)f(u(r))dr)\} \\ & \leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \psi_{p}(\int_{0}^{1}h(r)\bar{f}(L')dr) \\ & \leq \lambda^{\frac{1}{p-1}}(1+\max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}},(\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \epsilon'\psi_{p}\int_{0}^{1}h(r)dr)L' \\ & < L' = \|x\|. \end{split}$$

we define $\Omega_1=\{x\in K:\|x\|< L\}$, $\Omega_2=\{x\in K:\|x\|< L'\}$, by lemma 1.4, T_λ has at least two fixed points $x_1(t),x_2(t)$ in K, and satisfy $l\leq \|x_1\|\leq L\leq \|x_2\|\leq L'$.

Similarly to the proof of theorem 2.1, T_{λ} has no fixed point in ∂K_L , so $x_1(t) \neq x_2(t)$, the proof is finished.

(b) **Proof** Suppose there exists a subsequence $\lambda_n < \lambda_{**}$ and $\lambda_n \in (0, \frac{1}{n})$ such that for $\forall n$ problem (1) has a positive solution $x_n \in K$. since x > 0, $f(x) \leq (C'x)^{p-1}$, where

$$C' = \frac{f(L)}{L^{p-1}}$$
, we have

$$\begin{split} \|x_{\lambda_n}\| & \leq \psi_p(\int_0^1 \lambda_n h(r) f(x_{\lambda_n}(r)) dr) ds + \\ & \max\{\psi_p(\frac{\beta}{\alpha} \int_0^1 \lambda h(r) f(x_{\lambda_n}(r)) dr), \\ & \psi_p(\frac{\delta}{\gamma} \int_0^1 \lambda h(r) f(x_{\lambda_n}(r)) dr)\} \\ & \leq \lambda_n^{\frac{1}{p-1}} (1 + \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & \psi_p(\int_0^1 h(r) C' x_{\lambda_n}^{p-1}(r) dr) \\ & \leq \lambda_n^{\frac{1}{p-1}} (1 + \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) \times \\ & C'^{\frac{1}{p-1}} \psi_p(\int_0^1 h(r) dr) \|x_{\lambda_n}\|, \end{split}$$

$$1 \leq \lambda_n^{\frac{1}{p-1}} (1 + \max\{(\frac{\beta}{\alpha})^{\frac{1}{p-1}}, (\frac{\delta}{\gamma})^{\frac{1}{p-1}}\}) C'^{\frac{1}{p-1}} \psi_p(\int_0^1 h(r) dr). \tag{7}$$

Example 1

$$\begin{cases} -(\varphi_p(x'(t)))' = \lambda(1-t)^{p_1}t^{p_2}(cx^{q_1}(t) + x^{q_2}(t)), & t \in (0,1) \\ x(0) = x(1) = 0, \end{cases}$$

where λ is a positive parameter, $c \in \mathbb{R}^+ \bigcup \{0\}, -1 < p_1 < p_1 < p_1 < p_2 <$ $0, -1 < p_2 < 0, 0 < q_1 \le p - 1 < q_2.$ we cinsider the following two cases:

(1) when
$$0 < q_1 < p-1 < q_2$$
 and $c > 0$, $R = \bar{R} = (c\frac{p-1-q_1}{q_2-p+1})^{\frac{1}{q_2-q_1}}$, and $\lambda^* = \frac{((q_2-p+1)^{q_2-p+1}(p-1-q_1)^{p-1-q_1})^{\frac{1}{q_2-q_1}}}{q_2-q_1} \times (\beta(p_1+1,p_2+1))^{-1} \times c^{\frac{q_2-p+1}{q_1-q_2}}$.

By theorem 2.1, if $\lambda \in (0, \lambda^*)$, then problem (1) has at least two positive solutions x_1, x_2 satisfy $0 < ||x_1|| < R < ||x_2||$, there exists λ^{**} sufficient large, when $\lambda > \lambda^{**}$, problem (1) has no positive solution.

(2) $q_1 = p - 1$, and $c \ge 0$, if c > 0, then $h(t) = (1 - 1)^{-1}$ $(t)^{p_1}t^{p_2}$, and $f(x)=cx^{q_1}(t)+x^{q_2}(t)$ satisfy all the conditions of theorem 2, and $\beta = 0, \delta = 0$. Let $\lambda^{***} = (c\beta(p_1 + 1, p_2 + 1))$ 1))⁻¹, where β is β function, for $0 < \lambda < \lambda^{***}$, problem (1) has at least one positive solution.

If c = 0, by corollary, for each $\lambda > 0$, problem (1) has at least one positive solution.

$$\begin{cases} -(\varphi_p(x'(t)))' = \lambda h(t)(e^{x(t)} - 1), & t \in (0, 1) \\ x(0) = x(1) = 0 \end{cases}$$

where λ is positive parameter, h(t) is same as above, we consider three cases:

case 1
$$p > 2$$
. let $\lambda^* = (\frac{f(\bar{R})}{\bar{R}^{p-1}}\beta(p_1+1,p_2+1))^{-1}$, where $R = \bar{R} \in (p-2,p-1)$ is the only zero point of function

 $\chi(x) = e^x(x-p+1)+p-1$, by theorem 2.1, when $\lambda \in (0, \lambda^*)$, problem (1) has at least two solutions, and $0 < ||x_1|| < R <$ $||x_2||$. there exists λ^{**} sufficient large, when $\lambda > \lambda^{**}$, problem (1) has no solution.

case 2 p = 2, let $\lambda^{***} = (\beta(p_1 + 1, p_2 + 1))^{-1}$, where β is β function. by theorem 2.2, for $0 < \lambda < \lambda^{***}$ problem (1) has at least one positive solution.

case 3 1 , in this case <math>a = 0, by corollary, for each $\lambda > 0$, problem (1) has at least one positive solution.

Example 3

$$\begin{cases} -(\varphi_p(x'(t)))' = \lambda t^{-\alpha} x(t)^q e^{-x(t)}, & t \in (0,1), \\ x(0) = x(1) = 0 \end{cases}$$

where $0 < \alpha < 1, p - 1 < q$.

 $0 < ||x_1|| < q - 1 < ||x_2||.$

By theorem 2.3, for $\varepsilon \in (0, \frac{1}{2})$, let $\lambda_*(\varepsilon) = (\frac{2}{v\varepsilon^2 Q})^{p-1}$, for $0 < \lambda > \lambda_*$, problem (1) has at least two positive solutions, and $0 < \|x_1\| < q - p + 1 < \|x_2\|$, there exists λ_{**} sufficient small, when $\lambda_* < \lambda_*$ problem (1) has an arbitrary δ $(\alpha) \qquad (\gamma) \qquad (\gamma)$

REFERENCES

- [1] Su H, Wei Z L, Wang B H. The existence of positive solutions four a nonlinear four-point singular boundary value problem with a p-Laplace operator. Nonlinear anal,2007,66:2204-2217.
- [2] Ma D x, Han J X, Chen X G. Positive solution of boundary value problem for one-dimensional p-Laplacian with singularities.J Math Anal Appl,2006,324:118-133.
- Liu Y J, Ge W G.Multiple positive solutions to a three-point boundary value problems with p-Laplacian. J Math Anal Appl,2003,277:293-302
- Jin J X, Yin C H.Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay. J Math Anal Appl, 2007, 330:1238-1248.
- Su H, Wei Z L, Wang B H. The existence of positive solutions four a nonlinear four-point singular boundary value problem with a p-Laplace operator. Nonlinear anal,2007,66:2204-2217.
- Ma D x, Han J X, Chen X G. Positive solution of boundary value problem for one-dimensional p-Laplacian with singularities.J Math Anal Appl,2006,324:118-133.
- Sun Y P. Optimal existence criteria for symmetric positive solutions a three-point boundary differential equations. Nonlinear anal,2007,66:1051-1063
- Tian Yuansheng Liu Chungen. The existence of symmetric positive solutions for a three-point singular boundary value problem with a p-Laplace operator. Acta Mathematica scientia 2010, 30A(3):784-792.
- Xie Shengli. Positive solutions of multiple-point boundary value problems for systems of nonlinear second order differential equations .Acta Mathematica scientia 2010.30(A):258-266.
- [10] Youvu Wang Weigao Ge Triple positive solutions for two-point boundary-value problems with one-dimensional p-Laplacian Applicable analysis 2005 84:821-831
- [11] K.Deimling.Nonlinear Functional Analysis, Spring-Verlag,1985.
- [12] Guo Dajun Nonlinear functional analysis. Jinan. Shandong science and technology publishing house,2001.