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Abstract—The article is concerned with analysis of failure rate 

(shape parameter) under the Topp Leone distribution using a 
Bayesian framework. Different loss functions and a couple of non-
informative priors have been assumed for posterior estimation.  The 
posterior predictive distributions have also been derived. A 
simulation study has been carried to compare the performance of 
different estimators. A real life example has been used to illustrate 
the applicability of the results obtained. The findings of the study 
suggest that the precautionary loss function based on Jeffreys prior 
and singly type II censored samples can effectively be employed to 
obtain the Bayes estimate of the failure rate under Topp Leone 
distribution.  

 
Keywords—loss functions, type II censoring, posterior 

distribution, Bayes estimators. 

I. INTRODUCTION 
OPP and Leone [1] introduced the Topp Leone 
distribution and derived its first four moments; they 

considered the distribution suitable to model failure data. After 
a long silence Nadarajah and Kotz [2] gave a hazard rate 
function motivation to the distribution and derived general 
formulae for its moments and central moments. Furthermore, 
the maximum likelihood estimation of the parameters of 
distribution was discussed. The hazard rate functions of life 
time distributions are either; constants, monotone increasing, 
monotone decreasing, or U-shaped. Each case is useful for real 
life applications. The last case is applicable to human 
populations where at the infant age the death rate is high due 
to birth defects or infant diseases, then the death rate remains 
constant up to the age of thirties, then it increases again. Some 
manufactured items also follow this pattern. Further, Vicari et 
al. [3] discussed some properties of the Two-Sided 
Generalized Topp and Leone (TS-GTL) family and described 
maximum likelihood estimation (MLE) procedure. A 
numerical example of the MLE procedure has also been 
provided. A comparison with a Gaussian mixture fit has been 
presented. Gen and Ali [4] derived explicit algebraic 
expressions for both of the single and product moments of 
order statistics from Topp Leone distribution. An identity 
about single moments of order statistics has also been given. 
These expressions are useful for computational purposes. 
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The Topp Leone distribution has been generated from the 
left triangular distribution by elevating the cumulative 
distribution function to a power β > 0 that becomes the 
parameter of the new distribution. To deal with characteristics 
of the newly defined distribution is always of great interest for 
the researchers. The insight we can get about them can be 
beneficial to the professionals looking to use those 
distributions as models. 

The probability density function (pdf) of the Topp Leone 
distribution is: 

( ) ( )( ) 122 2 2f x x x x
β

β
−

= − −  0x >   , 0β >   (1)
 

 
The cumulative distribution function (CDF) of the 

distribution is:
 

( ) ( )22F x x x
β

= −          (2) 

 
If the variable x represents the failure times, the Topp 

Leone distribution gives a distribution for which the failure 
rate is proportional to a power of time. The shape parameter
β is that power, which can be interpreted as:  
1) If the value of shape parameter is less than one, the failure 

rate decreases over time. 
2) If the value of shape parameter is equal to one, the failure 

rate is constant over time. 
3) If the value of shape parameter is less than one, the failure 

rate increases over time. 
The shape parameter β is named the shape parameter as it 

determines which member of the Topp Leone family of 
distributions is most appropriate. Different values of the shape 
parameter can have marked effects on the behavior of the 
distribution. An important aspect of the distribution is how the 
values of the shape parameter β affect the distribution 
characteristics such as the shape of the probability density 
function curve, the reliability and the hazard rate.  

The recent article explores the Bayesian estimation of the 
failure rate (shape parameter) under the Topp Leone 
distribution. The applications of the distribution to model the 
failure data gave further motivation to include different 
censoring schemes in the study. The results from the censored 
samples have been compared with those of complete data. The 
purpose of the study is to propose a suitable combination of 
prior distribution and loss function to estimate the failure rate 
under complete and censored samples.  
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II.  BAYES ESTIMATION UNDER COMPLETE SAMPLES 
The likelihood function for a sample of size n from the 

Topp Leone distribution is: 

( )
( ) 12

1

ln 2
n

i i
i

x x
nL x e

β

β β
−

=

− −∑
∝          (3)

  
 

The use of prior information is of immense importance and 
one of the main differences between classical and Bayesian 
inference. The attempts have been made to use the Bayesian 
approach even when no (or minimal) prior information is 
available. In this regard, the use of non-informative priors has 
received great attention of the statisticians. Among the most 
widely used non-informative priors are the uniform prior 
proposed by Laplace [5] and Jeffreys prior suggested by 
Jeffreys [6]. These priors have been assumed for posterior 
analysis. 

The uniform prior is assumed to be: ( ) 1p β ∝  ; 0β >
(4) 

The posterior distribution under the assumption of uniform 
prior is: 
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Jeffreys prior is defined to be: ( )jp I β∝    

where ( )
2
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Therefore ( ) 1
jp β
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The posterior distribution under Jeffreys prior is: 
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n TT
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The derivation of Bayes estimators and corresponding risks 
has been discussed using squared error loss function (SELF), 
LINEX loss function (LLF) and precautionary loss function 
(PLF) under the assumption of uniform and Jeffreys priors.  

The Bayes estimator and risk under squared error loss 
function (SELF) using uniform prior are: 
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n
T

β +
=   and ( ) 2

1
SELF

n
T

ρ β +
=

 

The Bayes estimator and risk under precautionary loss 
function (PLF) using uniform prior are: 
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The Bayes estimator and risk under LINEX loss function 

(LLF) using uniform prior are: 
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The Bayes estimator and risk under squared error loss 

function (SELF) using Jeffreys prior are: 
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The Bayes estimator and risk under precautionary loss 

function (PLF) using Jeffreys prior are: 
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The Bayes estimator and risk under LINEX loss function 

(LLF) using uniform prior are: 
 

( ) ln
1LLF

Tn
T

β ⎛ ⎞= − ⎜ ⎟+⎝ ⎠
 

and ( ) ( ) ln
1LLF

n Tn
T T

ρ β ⎛ ⎞= + ⎜ ⎟+⎝ ⎠  
 

III. . BAYES ESTIMATION UNDER SINGLY TYPE II CENSORED 
SAMPLES 

Censoring is very key feature of lifetime data. Among many 
types of censoring Type I and Type II censoring have received 
considerable attention. Under Type II censored samples the 
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experiment is terminated after observing some fixed 
percentage of observation, while in Type I censored samples, 
the censoring takes place at certain fixed points. So it can be 
said that in the former case the number of observations is a 
random variable; while in the latter case it is fixed in advance. 
Censoring can be single or double. When the sample is 
censored at single known termination time, it is called single 
censored. On the other hand when it is censored at two known 
termination points, it is considered as doubly censored. The 
authors dealing with Bayesian and classical analysis of 
statistical distribution under singly and doubly censored 
samples include: Wu and Lin [7], Fermindez et al. [8], Raqab 
and Madi [9]. Fauzy [10], Saleem and Aslam [11], 
Asgharzadeh and Valiollahi  [12], Akhter and Hirai [13], 
Yarmohammadi and Pazira [14], AL-Hussaini and Hussein 
[15],   and Feroze and Aslam [16]-[18]. We have considered 
singly and doubly type II censored samples for the Bayesian 
analysis. The likelihood function for the singly type II 
censored samples can be derived as:  

Let we observe ‘n’ items for possible failure and  only first 
‘m’ failure times have been observed, that is, 1 2... mx x x< <  
and remaining ‘n – m’ items are still working. Under the 
assumptions that the lifetimes of the items are independently 
and identically distributed random variables following Topp 
Leone distribution, the likelihood function for ‘m’ 
observations is: 
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The posterior distribution under uniform prior is: 
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The posterior distribution under Jeffreys prior is: 
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The Bayes estimator and risk under squared error loss 
function (SELF) using uniform prior are: 
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The Bayes estimator and risk under precautionary loss 

function (PLF) using uniform prior are: 
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The Bayes estimator and risk under LINEX loss function 

(LLF) using uniform prior are: 
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The expressions for Bayes estimators and corresponding 

posterior risks under the assumption of Jeffreys prior can be 
obtained in a similar manner 

IV. BAYES ESTIMATION UNDER DOUBLY TYPE II CENSORED 
SAMPLES 

The doubly type II censoring is used when the observations 
below and above a particular point cannot either be observed 
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or not feasible to be observed. The likelihood function under 
the doubly type II censored samples can be derived as:  

Consider a random sample of size ‘n’ from Topp Leone 
distribution, and let xr,..., xj be the ordered observations that 
can only be observed. The remaining ‘r – 1’ smallest 
observations and the ‘n – j’ largest observations have been 
censored. Then the likelihood function for the Type II doubly 
censored sample x = (xr,..., xj) can be written as: 
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The posterior distribution under uniform prior is: 
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The posterior distribution under Jeffreys prior is: 
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The Bayes estimator and risk under squared error loss 
function (SELF) using uniform prior are: 
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The Bayes estimator and risk under precautionary loss 
function (PLF) using uniform prior are: 
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The Bayes estimator and risk under LINEX loss function 

(LLF) using uniform prior are: 
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The expressions for Bayes estimators and corresponding 

posterior risks under the assumption of Jeffreys prior can be 
obtained in a similar manner.

 
V. POSTERIOR PREDICTIVE DISTRIBUTIONS  

The posterior predictive distribution based on posterior 
distributions under uniform and Jeffreys priors for complete 
and censored samples are presented in the following. 
The posterior predictive distribution is defined to be:  
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The posterior predictive distribution under uniform prior for 

complete samples is: 
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where T  has been defined in (5). 
The posterior predictive distribution under Jeffreys prior for 

complete samples is: 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

406

 

 

( ) ( )( )( )

( ){ }
2

112

2 2 2

ln 2

n

n

n y y y T
p y x

T y y
+−

− −
=

+ −
  ; 0y >       (15) 

 
The posterior predictive distribution under uniform prior for 

singly type II censored samples is: 
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where 1kϕ and 1C  have been defined in (8) and (9) 
respectively. 

The posterior predictive distribution under Jeffreys prior for 
singly type II censored samples is: 
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where, 2C  has been defined in (10). 

The posterior predictive distribution under uniform prior for 
doubly type II censored samples is: 

 

( ) ( ) ( )
( )( )

( ){ }
2

21203
2

2 2 22
1

ln 2

n j
k

w
k

k

y y yn jw
p y x

kC y yϕ

−

+−=

− −−Γ + ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠ + −
∑

 ; 0y >  
(18) 

 
where 2kϕ and 3C  have been defined in (11) and (12) 
respectively. 

The posterior predictive distribution under uniform prior for 
doubly type II censored samples is: 
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where, 4C  has been defined in (13). 

VI. RESULTS AND DISCUSSIONS 
A simulation study, via inverse transformation method, has 

been carried out to assess and compare the performance of 

different estimators under complete and 20% censored data. 
The results are obtained for n = 50, 100 and 150 using 
parametric space ( )0.75,1.00,1.50β ∈ . This parametric 

space has been considered because it can be used to assess the 
patterns of failure rate that decreases, increases or remains 
constant over time. As single sample may not represent the 
behavior of the estimators completely, the results are 
replicated 1000 times and the average of the results has been 
presented in the following. The magnitudes of risks 
corresponding to each estimator have been presented in 
parenthesis in the tables. 

 
TABLE I 

BAYES ESTIMATORS AND RISKS UNDER COMPLETE DATA USING Β = 0.75 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 0.7870 0.7947 0.7637 0.7716 0.7793 0.7487 
(0.0486) (0.0154) (0.0233) (0.0476) (0.0154) (0.0229) 

100 0.7742 0.7780 0.7626 0.7665 0.7704 0.7550 
(0.0338) (0.0177) (0.0216) (0.0335) (0.0176) (0.0215) 

150 0.7526 0.7550 0.7451 0.7476 0.7501 0.7402 
(0.0150) (0.0050) (0.0074) (0.0149) (0.0050) (0.0074) 

 
TABLE II 

BAYES ESTIMATORS AND RISKS UNDER SINGLY TYPE II CENSORED SAMPLE 
USING Β = 0.75 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 0.8012 0.8090 0.7770 0.7854 0.7933 0.7617 
(0.0504) (0.0157) (0.0242) (0.0494) (0.0157) (0.0237) 

100 0.7881 0.7920 0.7758 0.7803 0.7842 0.7681 
(0.0346) (0.0178) (0.0221) (0.0344) (0.0178) (0.0219) 

150 0.7660 0.7686 0.7581 0.7610 0.7635 0.7531 
(0.0156) (0.0051) (0.0077) (0.0155) (0.0051) (0.0076) 

 
TABLE III 

BAYES ESTIMATORS AND RISKS UNDER DOUBLY TYPE II CENSORED SAMPLE 
USING Β = 0.75 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 0.7932 0.8018 0.7671 0.7916 0.8003 0.7651 

(0.0547) (0.0172) (0.0262) (0.0556) (0.0175) (0.0266) 

100 0.7943 0.7990 0.7792 0.7864 0.7912 0.7715 

(0.0377) (0.0187) (0.0235) (0.0375) (0.0187) (0.0234) 

150 0.7720 0.7754 0.7614 0.7669 0.7703 0.7564 

(0.0175) (0.0057) (0.0086) (0.0174) (0.0057) (0.0086) 
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TABLE IV 
BAYES ESTIMATORS AND RISKS UNDER COMPLETE DATA USING Β = 1.00 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.1071 1.1179 1.0452 1.0976 1.1085 1.0356 
(0.1335) (0.0216) (0.0618) (0.1338) (0.0218) (0.0619) 

100 1.0978 1.1033 1.0660 1.0978 1.1033 1.0660 
(0.0663) (0.0108) (0.0319) (0.0663) (0.0108) (0.0319) 

150 1.0924 1.0961 1.0711 1.0924 1.0961 1.0711 
(0.0439) (0.0072) (0.0214) (0.0439) (0.0072) (0.0214) 

 
TABLE V 

BAYES ESTIMATORS AND RISKS UNDER SINGLY TYPE II CENSORED SAMPLE 
USING Β = 1.00 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.1077 1.1185 1.0458 1.0860 1.0968 1.0252 

(0.1338) (0.0216) (0.0620) (0.1312) (0.0216) (0.0607) 

100 1.0985 1.1039 1.0665 1.0862 1.0916 1.0553 

(0.0664) (0.0109) (0.0319) (0.0650) (0.0107) (0.0312) 

150 1.0931 1.0967 1.0716 1.0809 1.0845 1.0603 

(0.0440) (0.0072) (0.0214) (0.0430) (0.0071) (0.0210) 
 

TABLE VI 
BAYES ESTIMATORS AND RISKS UNDER DOUBLY TYPE II CENSORED SAMPLE 

USING Β = 1.00 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.1051 1.1170 1.0373 1.0810 1.0930 1.0147 
(0.1475) (0.0239) (0.0678) (0.1443) (0.0239) (0.0663) 

100 1.0965 1.1031 1.0584 1.0699 1.0763 1.0340 
(0.0734) (0.0120) (0.0350) (0.0700) (0.0118) (0.0335) 

150 1.0911 1.0959 1.0635 1.0646 1.0693 1.0389 
(0.0486) (0.0080) (0.0235) (0.0464) (0.0078) (0.0224) 

 
TABLE VII 

BAYES ESTIMATORS AND RISKS UNDER COMPLETE DATA USING Β = 1.50 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.6483 1.6644 1.5090 1.6160 1.6321 1.4794 
(0.3134) (0.0322) (0.1393) (0.3072) (0.0322) (0.1366) 

100 1.6105 1.6185 1.5394 1.6105 1.6185 1.5394 
(0.2511) (0.0259) (0.0811) (0.2509) (0.0257) (0.0810) 

150 1.5686 1.5738 1.5226 1.5686 1.5738 1.5226 
(0.0958) (0.0104) (0.0461) (0.0958) (0.0104) (0.0461) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE VII  
BAYES ESTIMATORS AND RISKS UNDER SINGLY TYPE II CENSORED SAMPLE 

USING Β = 1.50 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.6479 1.6640 1.5086 1.6156 1.6317 1.4789 
(0.3136) (0.0322) (0.1394) (0.3074) (0.0322) (0.1366) 

100 1.6101 1.6181 1.5389 1.6101 1.6180 1.5389 
(0.2512) (0.0259) (0.0811) (0.2508) (0.0259) (0.0801) 

150 1.5682 1.5734 1.5221 1.5682 1.5734 1.5220 
(0.0959) (0.0104) (0.0461) (0.0959) (0.0104) (0.0461) 

 
TABLE IX  

BAYES ESTIMATORS AND RISKS UNDER DOUBLY TYPE II CENSORED SAMPLE 
USING Β = 1.50 

n 
Uniform Jeffreys 

SELF PLF LLF SELF PLF LLF 

50 1.6365 1.6542 1.4859 1.6009 1.6186 1.4536 
(0.3425) (0.0354) (0.1506) (0.3351) (0.0354) (0.1473) 

100 1.5986 1.6082 1.5153 1.5950 1.6047 1.5120 
(0.2652) (0.0275) (0.0869) (0.2649) (0.0270) (0.0868) 

150 1.5570 1.5638 1.4988 1.5536 1.5604 1.4955 
(0.1049) (0.0114) (0.0498) (0.1046) (0.0114) (0.0497) 

 
The simulation study indicates the convergence of 

estimated value of the parameter towards the true value by 
increasing the sample size. However, the convergence is 
negatively affected by the increasing values of the parameter. 
The failure rate (shape parameter) is over estimated for 
estimates under squared error loss function (SELF) and 
precautionary loss function (PLF); while in case of LINEX 
loss function (LLF) the failure rate is under estimated. The 
magnitude of the posterior risks is inversely proportional to 
sample size and is directly proportional to true parametric 
value and censoring rate. In comparison of priors it is found 
that the magnitude of risks associated with estimates under 
Jeffreys prior is lesser than those under uniform prior for each 
case. Similarly the estimates under the assumption of 
precautionary loss function (PLF) are having the minimum 
risks among all other loss functions. This property holds under 
each prior and for complete as well as for the censored 
samples. However, the performance of each loss function is 
decreasing with increase in true parametric value. As expected 
the variances of estimates under complete samples are smaller 
than those under censored samples. This simply happens 
because some of the information is lost under censored 
samples. It also interesting to note that the performance of the 
estimates under singly type II censored samples seems better 
than those under doubly type II censored samples. The 
proposed estimators can work efficiently under the moderate 
sample size.  

A. Real Life Example 
In order to discuss the practical applicability of the results 

obtained under above sections, the following real life data 
presented by Butler [19] have been used for analysis. 
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TABLE X 
REAL LIFE SURVIVAL TIMES DATA 

Survival times for 30 light bulbs in months 

0.0200 0.1860 0.2620 0.6950 0.9140 1.9950 

0.0250 0.1960 0.3140 0.7400 0.9920 2.2550 

0.0590 0.1970 0.5110 0.7600 1.1810 2.5090 

0.0620 0.2050 0.6040 0.8460 1.1940 2.9100 

0.1450 0.2100 0.6780 0.8600 1.3090 5.5430 

 
The Bayes estimates under complete, singly and doubly 

type II censored samples based on uniform and Jeffreys prior 
using SELF, PLF and LLF have been presented in the 
following tables. The magnitudes of posterior risks have been 
given in the parenthesis.  

 
TABLE XI 

 BAYES ESTIMATORS AND ASSOCIATED RISKS UNDER UNIFORM AND 
JEFFREYS PRIORS  

Prior 
Distribution 

Complete 
SELF PLF LLF 

Uniform 
1.1245 1.1425 1.1046 

(0.0408) (0.0360) (0.0199) 

Jeffreys 
1.0883 1.1063 1.0690 

(0.0395) (0.0360) (0.0193) 

 
Singly Type II 

SELF PLF LLF 

Uniform 
1.2612 1.2842 1.2274 

(0.0515) (0.0460) (0.0338) 

Jeffreys 
1.2205 1.2434 1.1878 

(0.0499) (0.0458) (0.0327) 

 
Doubly Type II 

SELF PLF LLF 

Uniform 
1.2783 1.3016 1.2441 

(0.0526) (0.0466) (0.0342) 

Jeffreys 
1.2371 1.2603 1.2039 

(0.0509) (0.0464) (0.0331) 

 
Each of the Bayes estimate indicates that the failure rate 

increases over time as the estimated value is greater than one 
in each case.  This further suggests that the light bulbs are 
more likely to fail as time goes on. The real life data replicated 
the patterns of the estimators observed under simulation study. 
The censored sample leads to the larger estimated values of 
the parameter. In addition, the amounts of posterior risks 
associated with the estimates are bigger in case of censored 
sample. The performance of the estimators under PLF, 
Jeffreys prior and singly type II censored samples seems better 
than their counterparts.  

VII. CONCLUSIONS AND RECOMMENDATIONS 
The above analysis suggests that the exercise of SELF and 

PLF lead to over estimation of the failure rate (shape 
parameter), while it is under estimated in case of LLF. The use 
of PLF based on Jeffreys prior and singly type II censored 

samples can be preferred to obtain the Bayes estimate of the 
failure rate under Top Leone distribution. The real life 
example further strengthened these beliefs. The proposed 
estimators can work efficiently (even) under moderate sample 
sizes. The results are useful for analysts dealing with time to 
failure data in different fields. The study can be extended by 
including informative priors applying more loss functions and 
involving some other censoring techniques. As the failure of 
the items can happen due to more than one reason, the finite 
mixture of the components of the Topp Leone distribution can 
also be considered in future research. 
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