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Abstract—Equivalent fields are frequently used for central axis 

depth-dose calculations of rectangular and irregular shaped photon 

beam. Since most of the proposed models to calculate the equivalent 

square field, are dosimetry-based, a simple physical-based method to 

calculate the equivalent square field size was used as the basis of this 

study. The table of the sides of the equivalent square for rectangular 

fields was constructed and then compared with the well-known tables 

of BJR and Venselaar with the average relative error percentage of 

2.5±2.5 % and 1.5±1.5 % respectively. To evaluate the accuracy of 

this method, the PDDs were measured for some special irregular 

symmetric and asymmetric treatment fields and their equivalent 

squares for Siemens Primus Plus linear accelerator for both energies 

6 and 18MV. The mean relative differences of PDDs measurement 

for these fields and their equivalent square was approximately 1% or 

less. As a result, this method can be employed to calculate equivalent 

field not only for rectangular fields but also for any irregular 

symmetric or asymmetric field. 

 

Keywords—Equivalent field, asymmetric field, irregular field, 

multi leaf collimators. 

I. INTRODUCTION 

OWADAYS, equivalent fields are frequently used, 

mostly as equivalent squares both in regular and in 

irregular field photon-beam dose calculations for radiotherapy 

[2]. Although the convolution/superposition algorithms have 

reduced the need for using this technique in some aspects of 

treatment planning, it is widely used in monitor unit (MU) 

checks with manual or automated dose calculation programs 

for the purpose of having a double check system on the 

outcome of the complex TPS calculation and to speed up 

calculation in irregular fields of photon beams as well as to 

reduce measurement time [3], [4]. The equivalent fields are 

defined as the fields of standard shape (circular or square) 

which have the same central-axis depth-dose characteristics as 

the given field [5], but was later applied to other field size 

dependent parameters, such as scatter factors and output 

factors [6]. 

The square to circular field equivalence can be done by 

using the conversion method, which was previously described 

by Day and Aird and discussed, in more detail, by Bjärngard 
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and Siddon [7]: 

 

 2 / 1.123 0.00067eqR S S= −  (1) 

 

where Req is the radius of the equivalent circular, and S the 

side of the square field, both defined at the surface (i.e. at 

SSD=100cm). The equivalent field to the rectangular fields 

tabulated in the British Journal of Radiology supplement 25 

[6] is based on Clarkson's method [8] which used a model for 

scatter-radius function by data fitting. The usage of the 

equivalent square from BJR-table can just be recommended 

for prediction of output factor, with the shorter side of the 

field set by upper jaws and longer side by lower jaws [9]. A 

simple approximate method to calculate the collimator scatter 

factor proposed by sterling [10] is based on the assumption 

that the dose for rectangular field can be equated to that of the 

square field if their area to perimeter (A/P) are the same which 

has been improved by the elongation correction factor [7]-[11] 

and for a blocked field [12]. 

The new energy-specific table was constructed by 

averaging 4 energy-specific tables for 
60

Co, 6, 10, and 25 MV 

photon beams and using a three-Gaussian model which could 

eventually lead to a difference of 0.5 - 1.0% in the value of 

phantom scatter (SP), compared to the use of the BJR-table [1]. 

Sanz et al., [13] also presented an analytical calculation of 

dose errors arising when field equivalencies calculated at 

certain reference depth, are transferred to the other depths.  

In the most studies mentioned above, the models are based 

on data fitting using measurements; therefore, electron 

disequilibrium leads to an underestimate for small fields [14]. 

Furthermore, for irregular asymmetric fields used in Intensity-

modulated radiation therapy, one has to employ complicated 

Clarkson's method or the method proposed by Day [15], [16]. 

In this research, we put forth an analytical method for field 

equivalency and show it is capable to calculate equivalent 

field for any irregular asymmetric field. Then calculation 

results will be compared for some routine treatment fields with 

dosimetry measurements. 

II. THEORETICAL BACKGROUND 

A. Calculation of Equivalent Field 

For any fixed point at fixed depth on the central axis in the 

medium, the primary component of the dose will be the same 

for all fields. It therefore follows which equivalency between 

standard and nonstandard fields is determined by the 

requirement that the contribution to the dose along the central 
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axis from scattered photons for the two fields be equal [6]. 

Consider a reference plane normal to the central axis, placed at 

the fixed source-to-surface distance (e.g. 100cm). The field 

bound generated by the collimators can be projected over this 

plane as X1, X2, Y1 and Y2. The origin is on the central axis. 

Suppose that there is a parallel beam striking the surface of the 

phantom. Hence, each element (dx.dy) on the surface acts as a 

source of scattered radiation. The amount of scatter radiation 

reaching to the central axis is inversely proportional to the 

square of the distance between surface elements and the 

origin; therefore, an asymmetric irregular field (e.g., an 

asymmetric field with some shielded parts by Cerrobend 

blocks or multi-leaf collimators (MLC)) to circular field 

equivalence at the central axis is calculated using the 

following equation (Fig. 1 (a)): 

 

 1 1

2 2 2 2 2 22 2
(1 )

X Y
t

X Y
shielded parts equivalent circle

dxdy dxdy dxdy
e

x y x y x y

µ−− − =
+ + +∫ ∫ ∫∫ ∫∫

 (2) 

 

whereµ (cm
-1

) and t (cm) are the attenuation coefficient and 

thickness of the blocks or the leaves of MLC respectively. The 

second part of the left side of (1) shows the share of the total 

scatter from all shielded parts. 

1. Symmetric Fields 

Suppose that the contribution of scattered radiation reaching 

the central axis of a rectangular field with dimensions 

W×Lcm
2
 (Fig. 1 (a)) and a circular field of radius Req (cm) on 

a plane at SSD=100cm (Fig. 1 (c)) is considered to be equal. 

Equation (2) can be simplified as follows: 

 

 
/2 /2

2 2 2 2/2 /2

W L

W L equivalent circle

dxdy dxdy

x y x y− −
=

+ +∫ ∫ ∫∫  (3) 

 

Let us eliminate the small area at the origin of coordinate 

with radius ε (refers to ion chamber radius) to overcome of 

singularity and use polar system (Fig. 1 (b)). Equation (3) will 

be modified as (4). 

 

 

Fig. 1 The rectangular field with dimension W×L cm2 (in Cartesian 

coordinates (a) and in polar coordinates (b)) is equivalent to a circular 

field with radius Req cm (c) on a plane at SSD=100cm 

 

 

1

1

tan ( )
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eq

L WW
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W

L
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r r r

π
πθ θ

ε ε ε

θ θ θ
−

−→ → →

+ =∫ ∫ ∫ ∫ ∫ ∫  (4) 

where ε is expected to be eliminated because it is presented on 

both sides of (4). After integrating from both sides of (4) with 

some mathematic operations, it can be rewritten as: 

 

1
1

1

2 tan ( )
tan ( )

tan ( )
2

2
2 exp ln(cos )

W
W

L
L

eq

W

L

L
R W d

W

π

π

θ θ
π

−
−

− −

 
   = −      

 

∫  (5) 

As a special case, the circular field equivalent to a square 

field is obtained by substituting S (side of square) rather than 

W and L in (5). 

 /4

/4

2
2 exp ln(cos( ))eqR S d

π

π
θ θ

π −

 = − 
 ∫  (6) 

By applying the numerical calculation software 

(MATLAB), (6) would simplify to: 

 

 2 / 1.116eqR S =  (7) 

As a result, the square field equivalent to a rectangular field 

can be obtained by replacing 1.116 Seq instead of 2Req in (6). 

 

 

1
1

1

2 tan ( )
tan ( )

tan ( )
2

2
exp ln(cos )

1.116

W
W

L
L

eq

W

L

W L
S d

W

π

π

θ θ
π

−
−

− −

 
   = −      

 

∫
  (8) 

2. Asymmetric Fields 

Modern linear accelerators are equipped with collimators 

that allow independent setting of each jaw. The application of 

asymmetrically collimated beams has become increasingly 

common in many clinical standard situations. In the case of 

asymmetric jaw positions, the center of the field is off the 

central axis of the collimator. So for a square to asymmetric 

field equivalency, the asymmetric field has to be divided into 

four parts [17]. The following equation is therefore extracted, 

 

 
1 1 1 1

1 1

1 1
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  
  
  +   ∫ ∫

 (9) 

where Y1, Y2, X1, X2 are collimator apertures at the phantom 

surface. 

3. Irregular Fields 

Shaping the beam is an important way of minimizing the 

absorbed dose in healthy tissue and critical structures. 

Conventional collimator jaws are used for shaping a 

rectangular treatment field (Y1, Y2, X1, X2); however, as the 

treatment volume is not usually rectangular, additional 

shaping is required. On a linear accelerator, lead or Cerrobend 

blocks are attached on to the treatment head under standard 

collimating system. MLC as a further alternative has movable 

leaves, which can block some fractions of the radiation beam. 

Therefore, when a portion of the radiation field has to be 

covered to protect healthy tissue, to calculate the equivalent 
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square field, the scattering contribution from the shielded parts 

should be subtracted (Fig. 2). For this purpose, (9) is changed 

by subtracting the share of the total scatter from all shielded 

parts, as (10): 
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∫

∑∫ ∫∫

 (10) 

where n shows the number of blocks or leaves. As can be seen 

in Fig. 2, to calculate scatter contribution under the blocked 

parts, one can write: 

 

Fig. 2 An asymmetric field with shielded parts by Cerrobend blocks 

(a) and MLC (b) 
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  (11) 

where all coordinates (xA, xC,…) are defined at the surface 

(i.e. at SSD) and the leaf width is lcm at the surface of the 

phantom and y(x) is equation of the line AB as follows: 

 

 ( ) A B A B B A

A B A B

y y x y x y
y x x

x x x x

   − −
= +   − −   

 (12) 

III. MATERIAL AND METHOD 

The linear accelerator used in this study was Siemens 

Primus Plus which can deliver x-rays of nominal energies 6 

and 18 MV operated at a dose rate of 300 MU/min. The 

treatment unit was equipped with independent jaws assigned 

to as Y1 and Y2 for the upper and X1 and X2 for the lower 

jaws at SSD=100cm. A Scanditronix blue phantom 

(Wellhofer, Germany) (50 cm ×50 cm ×50 cm) with two 

0.13cm3 ionization chambers (IBA, CC13, Germany) were 

employed for the measurements. Omni-Accept pro6.5 

software (Wellhofer, Germany) was utilized for collecting and 

recording data from two chambers. 

The phantom scatter related quantity to assess the accuracy 

of the equivalent field method in this study was percentage 

depth dose (PDD). To validate this method, PDD for some 

symmetric, asymmetric, irregular, and wedged photon fields 

(as shown in Fig. 3-7) and their calculated equivalent squares 

were measured along the central axis. All field sizes were 

defined at 100 cm from the source according to the fixed 

source surface distance (SSD=100) and formed by the 

secondary collimators system and Cerrobend blocks for 

shielding. 

A general computer program using MATLAB 7.12.0 

software was written to calculate the equivalent square side for 

any open or wedged field (symmetric, asymmetric, and 

asymmetric wedged fields) and shielded field (shielded 

symmetric, shielded asymmetric). 

IV. RESULTS AND DISCUSSION 

The most general method for irregular or asymmetric field 

dose calculation is based on separation of the radiation into 

primary and scatter component [8], [13], [18]. The primary 

component of the radiation for any shaped field is the same, 

and only differences in the scatter component affect dose 

quantity. In this study, to calculate the scatter contribution 

from all parts of the radiation field to the central axis, the 

amount of scatter radiation reaching to the central axis was 

considered inversely proportional to the square of the distance 

between all points of the irradiated field and the central axis. 

As can be seen, for the square to circular field equivalency, (7) 

shows approximately an agreement with that shown in (1) by 

Day and Aird [6]. 

Tables of equivalent square fields are applied to reduce the 

number of dose measurements required by the increasing 

possibilities of treatment machines (e. g., being equipped with 

asymmetric jaws or MLC); therefore, according to (8), the 

equivalent squares were obtained for a series of rectangular 

fields which demonstrated in Table I. 

 
TABLE I 

 EQUIVALENT SQUARES FOR RECTANGULAR FIELDS WITH DIMENSIONS FROM 

2 CM TO 40 CM CALCULATED BY (8) 
Sideof 

the 
Field 

(cm) 

 
4.0 

 
6.0 

 
8.0 

 
10.0 

 
12.0 

 
14.0 

 
16.0 

 
18.0 

 
20.0 

 
30.0 

 
40.0 

4.0 4.0           

6.0 4.8 6.0          

8.0 5.3 6.8 8.0         

10.0 5.6 7.4 8.9 10.0        

12.0 5.8 7.9 9.5 10.9 12.0       

14.0 6.0 8.2 10.1 11.6 12.9 14.0      

16.0 6.1 8.5 10.5 12.2 13.7 14.9 16.0     

18.0 6.2 8.7 10.9 12.7 14.3 15.7 16.9 18.0    

20.0 6.3 8.9 11.2 13.1 14.9 16.4 17.7 18.9 20.0   

30.0 6.6 9.5 12.1 14.5 16.7 18.8 20.6 22.3 23.9 30.0  

40.0 6.7 9.8 12.6 15.3 17.8 20.1 22.3 24.4 26.3 34.2 40.0 
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Comparing the results in Table I with BJR

tables provided by Venselaar [1] were 

, , .9 ,% 100 ( ) /with x eq x eq Eq eq xDiff S S S= × −
; 

BJR or Venselaar (they were not shown here). The 

comparison for rectangular fields where one dimension is 4cm 

or greater revealed the findings of this study are c

table provided by Venselaar with maximum 0.8 cm and mean 

difference (%Diff) of 1.5±1.5 %. As well as the differences 

between Table I and BJR-table is at maximum 1.8 cm and the 

average percentage of 2.5±2.5%. However, as can be seen 

from Table II, the findings of current study for the rectangular 

fields where one dimension is equal to 2cm do not support the 

previous studies showing the mean %Diff with BJR and 

Venselaar's 13.8±3.7% and 15.2±2.5% respectively. These 

differences can be explained in part by the lack of lateral 

electronic equilibrium for small fields. In other words, the 

standard method for calculating equivalent squares leads to an 

underestimate of SP for fields in which one dimension is too 

small to permit lateral electronic equilibrium; therefore 

Thomas et al., [14] presented a new formula for the equivalent 

square, specifically for use in calculating 

similar form to Vadash's formula [11], except the smaller and 

larger field dimensions (Xmin and Xmax) are used, and in 

place of the empirical constant A an empirical variable B is 

used: 

 (min max min max( 1) /eqS B X X BX X= + +

where B=B(Xmin) is itself a function of the smaller field 

dimension. For a Siemens Oncor, they obtained B=0.52 + 0.45 

ln (Xmin). In this method, the electronic disequilibrium issue 

exists on both sides of (2) for small fields; therefore, this 

effect will be disappeared.  

 
TABLE II 

 EQUIVALENT SQUARE FIELD SIDE (SEQ) OF RECTANGULAR 

CALCULATED USING EQ.8 HAVE BEEN COMPARED 

VENSELAAR'S FINDINGS [1] AND THOMAS'S METHOD 

ONE DIMENSION IS EQUAL TO 2CM USING  WHERE 

VENSELAAR AND THOMAS

Fields 

(cm
2
 ) 

Eq. 8 

(cm) 

BJR 

(cm) 

Venselaar 

(cm) 

Thomas 

(cm)
* 

%Diff

with 

BJR

2×4 2.6 2.7 2.8 2.6 2.7

2×6 2.9 3.1 3.3 2.9 6.3

2×8 3.1 3.4 3.6 3.0 10.0

2×10 3.2 3.6 3.7 3.1 12.3

2×12 3.2 3.7 3.8 3.2 12.9

2×16 3.3 3.9 4.0 3.3 15.1

2×20 3.4 4.0 4.0 3.4 15.9

2×22 3.4 4.0 4.0 3.4 15.5

2×26 3.4 4.1 4.1 3.4 16.8

2×30 3.4 4.1 4.1 3.5 16.2

2×32 3.4 4.1 4.1 3.5 16.0

2×36 3.5 4.1 4.1 3.5 15.6

2×40 3.5 4.1 4.1 3.5 15.3

# using Eq.13 where B=0.52+0.45 ln(Xmin).

 

Comparing the results in Table I with BJR-table and the 

provided by Venselaar [1] were made using

; where x indicates 

Venselaar (they were not shown here). The 

comparison for rectangular fields where one dimension is 4cm 

or greater revealed the findings of this study are closer to the 

table provided by Venselaar with maximum 0.8 cm and mean 

difference (%Diff) of 1.5±1.5 %. As well as the differences 

table is at maximum 1.8 cm and the 

average percentage of 2.5±2.5%. However, as can be seen 

II, the findings of current study for the rectangular 

fields where one dimension is equal to 2cm do not support the 

previous studies showing the mean %Diff with BJR and 

Venselaar's 13.8±3.7% and 15.2±2.5% respectively. These 

part by the lack of lateral 

electronic equilibrium for small fields. In other words, the 

standard method for calculating equivalent squares leads to an 

for fields in which one dimension is too 

small to permit lateral electronic equilibrium; therefore 

Thomas et al., [14] presented a new formula for the equivalent 

square, specifically for use in calculating Sp values. It had a 

ula [11], except the smaller and 

larger field dimensions (Xmin and Xmax) are used, and in 

place of the empirical constant A an empirical variable B is 

)min max min maxS B X X BX X= + +  (13) 

 

where B=B(Xmin) is itself a function of the smaller field 

dimension. For a Siemens Oncor, they obtained B=0.52 + 0.45 

ln (Xmin). In this method, the electronic disequilibrium issue 

for small fields; therefore, this 

ECTANGULAR FIELDS 

OMPARED WITH THOSE FROM BJR, 
ETHOD [14]  (13) FIELDS WHICH 

HERE X INDICATES BJR, 

THOMAS 

%Diff 

with 

BJR 

%Diff  

with 

Venselaar 

%Diff  

with 

Thomas 

2.7 6.2 -1.6 

6.3 12.0 -1.3 

10.0 15.0 -0.9 

12.3 14.7 -0.5 

12.9 15.2 -0.2 

15.1 17.3 0.3 

15.9 15.9 0.6 

15.5 15.5 0.7 

16.8 16.8 0.9 

16.2 16.2 1.1 

16.0 16.0 1.1 

15.6 15.6 1.2 

15.3 15.3 1.3 

# using Eq.13 where B=0.52+0.45 ln(Xmin). 

We calculated the equivalent square for 

using (13) as shown in the fifth column of Table II. The results 

indicate the mean %Diff equal to 0.4±0.9 (see Table II the last 

column). However, due to the approximation method proposed 

by Thomas for small fields, further evaluation is 

In order to assess the accuracy of the equivalent field 

method in this research for shielded and asymmetric fields, the 

calculation is done by first finding the 

solving (10) for some special treatment fields (shown in Fig.

3-7). Afterward, PDDs were measured on the central axis of 

those fields and their equivalent fields which have been 

plotted. To calculate relative differences between PDD 

measured for every field (F) and its equivalent square (

depth d, ( ), ,
% 100

measured measured eq

measured

PDD d F PDD d S
RE

PDD d F
= ×

 

Fig. 3, 4 represents the PDD measured for shielded 

symmetric field applied in pelvic and gastric cancer treatment. 

The average RE% for 6 and 18 MV were 0.5±0.4% and 

0.4±0.7% respectively for pelvic treatment and 0.5±0.6% and 

0.5±1.1% respectively for gastric treatment.

 

For asymmetric fields, Fig. 5 shows asymmetric field 10×10 

with 3cm offset and its equivalent square field 8×8with the 

average RE% was 0.6±0.9%. PDD for an asymmetric shielded 

field (10×20 with 5cm offset) was measu

RE% was 0.5±0.6% for 6MV.

 

Fig. 3 The PDD measured for a shielded symmetric field 20×20 

applied for pelvic cancer as showed in the graph (gray line) and its 

calculated equivalent square 17×17 (dash

energies with relative error 0.5

 

 

We calculated the equivalent square for some small fields 

using (13) as shown in the fifth column of Table II. The results 

indicate the mean %Diff equal to 0.4±0.9 (see Table II the last 

column). However, due to the approximation method proposed 

by Thomas for small fields, further evaluation is necessary. 

In order to assess the accuracy of the equivalent field 

method in this research for shielded and asymmetric fields, the 

calculation is done by first finding the equivalent square by 

for some special treatment fields (shown in Fig. 

7). Afterward, PDDs were measured on the central axis of 

those fields and their equivalent fields which have been 

plotted. To calculate relative differences between PDD 

) and its equivalent square (Seq) at 

) ( )
( )

, ,
% 100

,

measured measured eq

measured

PDD d F PDD d S

PDD d F

−
= ×

  was used. 

3, 4 represents the PDD measured for shielded 

symmetric field applied in pelvic and gastric cancer treatment. 

The average RE% for 6 and 18 MV were 0.5±0.4% and 

0.4±0.7% respectively for pelvic treatment and 0.5±0.6% and 

.1% respectively for gastric treatment. 

For asymmetric fields, Fig. 5 shows asymmetric field 10×10 

with 3cm offset and its equivalent square field 8×8with the 

average RE% was 0.6±0.9%. PDD for an asymmetric shielded 

field (10×20 with 5cm offset) was measured (Fig. 6). The 

RE% was 0.5±0.6% for 6MV. 

 

3 The PDD measured for a shielded symmetric field 20×20 

applied for pelvic cancer as showed in the graph (gray line) and its 

calculated equivalent square 17×17 (dash-dot) for 6 & 18MV 

relative error 0.5±0.4% and 0.4±0.7%, respectively 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:9, 2013

1434

Fig. 4 The PDD measured for a shielded symmetric field 20×20 

applied for gastric cancer as showed in the graph (gray line) and its 

calculated equivalent square 16×16 (dash-dot) for 6 & 18MV 

energies with relative error 0.5±0.6% and 0.5±1.1%

Fig. 5 The PDD measured for an asymmetric rectangular field (5, 

5×2, 8) (gray line) and its calculated equivalent square 8×8 (dash

for 18MV energies with relative error 0.6±0.9%

 

 

Fig. 6 The PDD measured for a shielded asymmetric field (5, 5 x 5, 

15) as showed in the graph (gray line) and its calculated equivalent 

square 9.6×9.6 (dash-dot) for 6 MV energies

0.09±0.10% 

 

For most photon beam qualities, no change on 

observed if a wedge is inserted in a photon beam [19]. 

However, it can result in a different PDD curve compared to 

the open beam due to beam hardening or softening especially 

for high energy photon beams. Therefore, after equivalent 

field calculation for wedged field, the wedge was inserted to 

 

 

4 The PDD measured for a shielded symmetric field 20×20 

applied for gastric cancer as showed in the graph (gray line) and its 

dot) for 6 & 18MV 

±0.6% and 0.5±1.1%, respectively 

 

5 The PDD measured for an asymmetric rectangular field (5, 

5×2, 8) (gray line) and its calculated equivalent square 8×8 (dash-dot) 

es with relative error 0.6±0.9% 

 

PDD measured for a shielded asymmetric field (5, 5 x 5, 

15) as showed in the graph (gray line) and its calculated equivalent 

dot) for 6 MV energies with relative error 

For most photon beam qualities, no change on SP has been 

observed if a wedge is inserted in a photon beam [19]. 

However, it can result in a different PDD curve compared to 

the open beam due to beam hardening or softening especially 

for high energy photon beams. Therefore, after equivalent 

wedged field, the wedge was inserted to 

measure PDD for both asymmetric wedged field (10×10 with 

3cm offset) and its equivalent field 8×8 (dash

The average RE% for 6 and 18 MV was 0.9±1.51% and 

0.64±1.3% respectively. 

 

Fig. 7 The PDD measured for an asymmetric wedged field (5, 5×2, 8) 

(gray line) for 45º wedge and its calculated equivalent square 8×8 

(dash-dot) for 6 & 18MV energies with relative error 0.9±1

0.64±1.3%, 

V. CONCLUSIONS

Most mathematical models proposed 

concept of the equivalent square in the previous literature, 

involved some constant or variable coefficients were 

determined using a myriad of measurements and fittings. And 

also, these models lead to an underestimate for small fields i

which one dimension is too small to permit lateral electronic 

equilibrium [14]. In this study, we have applied a simple 

physical-based model and showed that it is in agreement with 

previous studies for rectangular fields. As well as, it can be 

applied for any irregular asymmetric field. Moreover, (

be rewritten for any point (x

( ) ( )2 2

0 0x x y y− + −  left in the denominators. Furthermore, this 

method may be useful for the more complex MLC geometries 

treatment fields that are nowadays used more often 

earlier times using (10), (11

implemented in clinic mostly for hand calculation.

APPENDIX

In this appendix, the procedure to transition (

explained. Integration with respect to r leads to natural 

logarithm as follows: 

 1
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In the next step, integration respect to θ, the following 

equation is obtained. 
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Finally by more simplification, it will be rearranged a

 

measure PDD for both asymmetric wedged field (10×10 with 

3cm offset) and its equivalent field 8×8 (dash-dot) (Fig. 7). 

The average RE% for 6 and 18 MV was 0.9±1.51% and 

 

measured for an asymmetric wedged field (5, 5×2, 8) 

(gray line) for 45º wedge and its calculated equivalent square 8×8 

dot) for 6 & 18MV energies with relative error 0.9±1.51% and 

0.64±1.3%, respectively 

ONCLUSIONS 

Most mathematical models proposed with respect to the 

concept of the equivalent square in the previous literature, 

involved some constant or variable coefficients were 

determined using a myriad of measurements and fittings. And 

also, these models lead to an underestimate for small fields in 

which one dimension is too small to permit lateral electronic 

equilibrium [14]. In this study, we have applied a simple 

based model and showed that it is in agreement with 

previous studies for rectangular fields. As well as, it can be 

asymmetric field. Moreover, (2) can 

be rewritten for any point (x0, y0) off-axis by replacing 

left in the denominators. Furthermore, this 

method may be useful for the more complex MLC geometries 

hat are nowadays used more often than in 

11). Finally, this method can be 

implemented in clinic mostly for hand calculation. 

PPENDIX 

the procedure to transition (5) from (4) is 

explained. Integration with respect to r leads to natural 

1
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2 cos 2 sin

eq

W L

RL W
d d d

π π

θ θ θ
ε θ ε θ ε

+ =∫ ∫ ∫
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In the next step, integration respect to θ, the following 
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Finally by more simplification, it will be rearranged as (5). 
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