
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:9, 2013

1153

 

 

  
Abstract—In this paper we use low frequency noise analysis to 

understand and map the current conduction path in a multi gate 
junctionless FinFET. The device used in this study behaves as a gated 
resistor and shows excellent short channel effect suppression due to 
its multi gate structure. Generally for a bulk conduction device like 
the junctionless device studied in this work, the low frequency noise 
can be modeled using the mobility fluctuation model; however for 
this device we can also see the effect of carrier fluctuations on the 
LFN characteristic. The noise characteristic at different gate bias and 
also the possible location of the traps is explained. 
 

Keywords—LFN analysis, junctionless, Current conduction path, 
FinFET.  

I. INTRODUCTION 
CALING of traditional planar transistor is limited by the 
short channel effects. The main reason for short channel 

effect is poor gate control. To counter this, the current 
research direction is to have channel in the third dimension in 
the form of vertical Fin or Nano wires, controlled by gate 
around the channel. Hence FinFET [1], tri-gate MOSFET [2], 
and gate-all-around (GAA) Nano wire MOSFET [3], [4] have 
been researched extensively as solutions. Though promising 
from a scalability perspective, all these devices might suffer 
from fabrication or reliability related issues. For example, the 
FinFET requires gate to be patterned across the fin. Three-
dimensional devices also require doping to be conformal, 
increasing the complexity of junction formation, which, in any 
case, becomes more challenging with every new technology 
node [5], [6]. Junctionless devices have started to gain 
research focus to tackle junction related issues [7]-[9]. 

Apart from obvious process related advantages of these 
junctionless devices, these devices have lower Low frequency 
noise amplitude compared to traditional junction based 
devices [10]. Reduced Low frequency noise is an important 
figure of merit for electronic devices in RF applications. The 
bulk conduction of junctionless devices, instead of surface 
conduction in junction based devices, is the reason for lower 
noise amplitude.  

In surface conduction based transistors the noise source is 
the carrier number fluctuation at the oxide channel interface. 
However in bulk conduction based junction less devices the 
noise source is attributed to the mobility fluctuations of the 
carriers. The Low frequency noise in junctionless transistors is 
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generally explained using Hooge mobility fluctuation model 
[10]. 

In this study, we characterize the low frequency behavior of 
an independent gate junctionless device, the cross section of 
which is shown in Fig. 1. It has its channel in the form a 
vertical FIN, with resistance modulated by two independent 
gates formed on the side walls to exhibit transistor action. 
Being a junctionless device, this device is free from doped-
junctions, which generally cause speed degradation, 
unnecessary energy consumption, and increasingly difficult 
fabrication challenges with scaling. In addition, this device is 
less expensive to fabricate due to lesser process steps. 

II. DEVICE FABRICATION  
The devices were fabricated on standard 8” boron-doped 

(1015 cm-3) SOI wafers with 117nm top silicon layer and a 
145nm buried oxide. Wafers were first implanted with 
phosphorus and annealed to yield uniform doping 
concentration of 5x1017cm-3, the optimum concentration 
obtained through TCAD simulations for slit widths of 50nm 
easily achieved using 200nm technology lithography tool. 
Silicon nitride was then deposited using LPCVD process on a 
3nm thermally grown pad oxide. Fins were patterned by DUV 
lithography and etched into silicon nitride, which acted as a 
(1) hard mask for the actual silicon slit etch, (2) stop layer for 
gate CMP process and (3) ion implant blocking mask to stop 
dopants from entering into the channel during poly-gate 
implant. The underlying silicon was then dry-etched using 
nitride as hard mask. To further reduce the Fin width and to 
reduce the sidewall surface roughness of the Fin, a layer of 
sacrificial oxide was thermally grown and subsequently 
removed by diluted HF wet etch. Gate oxide (4.5nm) was 
grown by dry oxidation, followed by deposition of LPCVD 
amorphous silicon as gate material. The deposited amorphous 
silicon on the top surface was removed by selective CMP until 
nitride hard mask was exposed to isolate the two gates. Gate 
was then implanted with BF2 and activated, with the 
source/drain and channel slit protected by the nitride hard 
mask. Source and Drain were isolated by subsequent active 
area patterning and etching. A pre-metal dielectric oxide layer 
was deposited followed by contact hole etching and standard 
metallization processes. 

To ensure ohmic source/drain contacts, the source and drain 
contact holes were patterned separately from the gate contacts 
and heavily implanted with arsenic. The TEM image across 
the FIN is as shown in Fig. 1. 
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explained due to higher leakage in one of the gates hence 
lower gate current, consequently lower noise amplitude. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4 Noise characteristics observed at different gate bias (a) When 
no bias is applied on both gates (b) When one of the gate bias is more 

than Vt (c) When voltage on one of the gates is increased to 1.2V 
 

When the voltage on one of the gates is increased to 1.2V 
the noise characteristic (as seen in Fig. 4 (c)) assumes the form 
of 1/f in nature. This characteristic indicates that there is 
carrier fluctuation due to trapping and de trapping at the slow 
(deeper) oxide traps at the channel – oxide interface. Hence 

we can conclude that the current path for this voltage bias has 
reached either of the two gate/channel interface at the edge of 
the Fin. This observation closely agrees with the simulation 
result. 

IV. CONCLUSION 
In this paper we have studied the noise characteristic of a 

multi gate junctionless FinFET to understand the position of 
the current conduction path at various gate bias. We found for 
a gate voltage slightly greater than the threshold voltage the 
noise source is mainly the carrier fluctuations occurring due to 
trapping, de-trapping of carriers at shallow traps most likely in 
the depletion region, hence the current path is roughly at the 
center of the Fin For higher voltage, the 1/f nature of the noise 
characteristic indicates that the noise source is the carrier 
fluctuations occurring due to trapping, de-trapping at the slow 
traps most likely in the oxide–channel interface, hence the 
current path has reached the edge of the Fin However from 
data obtained we can see the level of noise obtained is 
generally lower than the conventional planar MoSFETs. 
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