
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4111

 

 

  
Abstract—There are many classical algorithms for finding 

routing in FPGA. But Using DNA computing we can solve the routes 
efficiently and fast. The run time complexity of DNA algorithms is 
much less than other classical algorithms which are used for solving 
routing in FPGA. The research in DNA computing is in a primary 
level. High information density of DNA molecules and massive 
parallelism involved in the DNA reactions make DNA computing a 
powerful tool. It has been proved by many research accomplishments 
that any procedure that can be programmed in a silicon computer can 
be realized as a DNA computing procedure. In this paper we have 
proposed two tier approaches for the FPGA routing solution. First, 
geometric FPGA detailed routing task is solved by transforming it 
into a Boolean satisfiability equation with the property that any 
assignment of input variables that satisfies the equation specifies a 
valid routing. Satisfying assignment for particular route will result in 
a valid routing and absence of a satisfying assignment implies that 
the layout is un-routable. In second step, DNA search algorithm is 
applied on this Boolean equation for solving routing alternatives 
utilizing the properties of DNA computation. The simulated results 
are satisfactory and give the indication of applicability of DNA 
computing for solving the FPGA Routing problem. 
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I. INTRODUCTION 
HE Routing affects the performance of FPGA-based 
systems in two major ways. First, a typical design must be 

partitioned and mapped onto several FPGAs. Because FPGA 
size is fixed, the ability to pack larger partitions onto a single 
FPGA can reduce the total number of partitions (and hence 
FPGAs) required to implement the design. The feasibility of 
implementing a piece of the design on a single FPGA is often 
limited by routing-resource availability. 

Second, since FPGA resource utilization typically does not 
exceed 80%, considerable flexibility remains onboard the 
FPGA for optimizing the routing.  
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For example, we could reduce signal propagation delay 
through critical paths by using the most direct interconnections  
 (i.e., shortest paths), where a secondary criterion is to 
minimize wirelength in order to reduce capacitance and 
conserve routing resources. 

There are two models of routing networks: the segmented 
and non-segmented. 

 
a) Non-segmented model: A non segmented model as a 

regular grid of five horizontal and five vertical metal lines 
passing between switch blocks S. The switch blocks are 
rectangular switch boxes they are used to connect the wiring 
segments in one channel segment to those in another. 
Depending on the topology of the S block, each wiring 
segment on one side of S may be switch able to either all or 
some fraction of wiring segment on each side of the S block. 
Fewer the wiring segments the wiring can be switched to, the 
harder the FPGA is to route. 

In addition to the switch blocks, there are connection blocks 
that are used to connect the logic blocks pins to the routing 
channel depending on the topology, each L block pin may be 
switch able to either all or some fraction of wiring segments a 
pin can be switched to, the harder the FPGA is to route. 

 
b) Segmented model: In segmented model, the tracks in the 

channels contain predefined wiring segments of same or 
different lengths. Other wiring segment passes through the 
channels vertically each input and output of a logic block is 
connected to a dedicated vertical segment, as a result there are 
no vertical constraints. There are additional global vertical 
lines, which provide connection between different channels. 
Connection between two horizontal segments is provided 
through an antifuse, where as a connection between horizontal 
and vertical segment is provided through cross fuse 
programming one of these fuses provides a low resistance bi- 
directional connection between two segment . When blown, 
anti-fuses connect the two segment two form a longer one. In 
order two program fuse a high voltage is applied cross. 

  There are additional global vertical lines, which provide 
connection between different channels. Connection between 
two horizontal segments is provided through an antifuse, 
where as a connection between horizontal and vertical 
segment is provided through cross fuse programming one of 
these fuses provides a low resistance bi-directional connection 
between two segment [1]. When blown, anti-fuses connect the 
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two segment two form a longer one. In order two program 
fuse a high voltage is applied cross. 

There are many classical algorithms for finding routing in 
FPGA. But Using DNA computing we can solve the routes 
efficiently and fast. The run time complexity of DNA 
algorithms is much less than other classical algorithms which 
are used for solving routing in FPGA. In this paper we have 
proposed two tier approach for the FPGA routing solution. 

II. PROPOSED SOLUTION 
We have tried to solve geometric FPGA detailed routing 

task by transforming it into a Boolean satisfiability equation 
with the property that any assignment of input variables that 
satisfies the equation specifies a valid routing [2]. Satisfying 
assignment for particular route will result in a valid routing 
and absence of a satisfying assignment implies that the layout 
is unroutable. In second step DNA search algorithm is applied 
on this Boolean equation for solving routing alternatives 
utilizing the properties of DNA computation. The approach 
relies on DNA Satisfiability Detailed Router (DSDR) that uses 
systematic search with quantum search algorithms capable of 
handling very large SAT instances. To make the picture 
clearer let us take a brief look at what is Boolean satisfiability 
(SAT). 

The Boolean satisfiability problem (SAT) is a decision 
problem considered in the complexity theory. An instance of 
the problem is defined by a Boolean expression written using 
only AND, OR, NOT, variables, and parentheses. The 
question is: given the expression, is there some assignment of 
TRUE and FALSE values to the variables that will make the 
entire expression true. Detailed FPGA routing problem can be 
solved by transforming the routing problem as large but 
atomic Boolean equation. By representing the routing problem 
as Boolean function one can also prove that particular routing 
alternative does not exist or the netlist is unroutable. Modern 
SAT-solvers are enriched with clause-learning and 
backtracking techniques to help prune the solution space. 
Boolean Satisfiability (SAT) is the problem of finding a 
solution (if one exists) to the equation f=1, where f is a 
Boolean formula to be satisfied. The formula (f) can be 
represented in Conjunctive Normal Form (CNF), or with 
Binary Decision Diagrams (BDDs) [3]. There are two classes 
of high-performance algorithm for solving instances of SAT in 
practice: modern variants of the David-Putnam-Loveland 
algorithm, such as GRASP, Zchaff, and stochastic local search 
algorithms, such as WalkSAT. 

 Particularly in hardware design and verification 
applications, satisfiability and other logical properties of a 
given propositional formula are often decided based on a 
representation of the formula as a binary decision diagram 
(BDD). Classically many search style solutions have been 
proposed for SAT, the most well known being variations of 
the Davis-Putnam procedure. The best-known version is based 
on a backtracking search algorithm that, at each node in the 
search tree, elects an assignment and prunes subsequent search 

by iteratively applying the unit clause and the pure literal 
rules. The other algorithms that are used in the SAT based 
problems are backtracking search [3], resolution based 
checker, integer linear programming based routing, BDD, 
recursive learning. We have taken DNA search algorithms to 
solve this problem Using these concepts we can develop DNA  
search algorithms that can find the required routing solutions 
more quickly and effectively than is possible on a classical 
computer.  

In the proposed method FPGA detailed routing is 
formulated in Boolean Satisfiability problem (SAT). The basic 
idea was that we construct a set of Boolean functions 
representing routing constraints over the entire FPGA, and 
invoke a quantum Boolean SAT solver on the generated 
function to find any satisfying assignments. Finally the found 
SAT solution determines precisely a full FPGA detailed 
routing solution. Our new, DNA satisfiability based detailed 
FPGA router is based on the DNA properties to solve the 
Boolean satisfiability. 

For each two-pin connection, a global router produces a set 
of individually feasible global route alternatives [4]. Due to 
detailed route conflicts, not all the global alternatives can 
survive. DSDR then considers current detailed routing 
solutions as well as the multiple global route alternatives by 
DNA strands. Each two-pin connection generates a Boolean 
routability function R (X) that captures all the possible routing 
constraints over the existing routing solution simultaneously. 
Finally, a DSDR Boolean SAT solver is invoked on the 
routability function to determine if there exists any legal 
detailed routing solution. 

Our Boolean routability function R (X), where X is a 
suitable Boolean vector of binary variables that encode the 
track number for each two-pin connection, can be expressed as 
the conjunction given below: 

 

)()()( XEXLXR ∧=  
(1) 

Liveness constraint function L (X) guarantees that at least one 
global route alternative per two-pin connection should be 
chosen as a final legal routing solution. Exclusivity constraint 
function E (X) ensures that electrically distinct nets with 
overlapping vertical or horizontal spans in the same channel 
are always assigned to different tracks. 

A global router is invoked to assigns a set of n global route 
alternatives for each two-pin connection. The method of 
generating global routes per two-pin connection is an 
independent procedure from the detailed routing formulation. 
Liveness and exclusivity constraint are generated to yield the 
routing constraint Boolean function R (X) in conjunctive 
normal form.  The routing alternatives of a netlist are modeled 
in terms of Boolean variables that represent all of the detailed 
routes admissible by the given global routing solution. Within 
the global routing region specified for net A, for example, 
there are only three possible detailed routes indicated by the 
three Boolean variables AR0, AR1, AR2. A similar set of 
routes and corresponding route variables is created for nets B 
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and C. A particular route is considered as the routing solution 
if its corresponding Boolean variable is assigned the logic 
value 1, and is excluded otherwise. The liveness constraint for 
a given two-pin connection has a simple form, namely an OR 
over the connection’s Fc route variables (see Fig.1-b). For a 
netlist with n two-pin connections, liveness constraints yield a 
set of n CNF clauses, each containing Fc positive literals. This 
type of routing constraint is evaluated as follows, e.g. Excl 
(Resource (4,1,0))= ( ) ( )00 BRAR ∨  indicates that the routing 
resource, track segment 0 of C-block (4,1), can only be used 
by either detailed route of net A or detailed route 0 of net B, 
but not both. In general, if different detailed routes from 
different nets are competing for the same routing resource, a 
set of exclusivity ( ) 21−kk  constraints are created to insure 
that at most one of those detailed routes are assigned to that 
resource. The routability of a netlist for a given placement and 
global routing configuration is expressed by a single Boolean 
function which is the conjunction of all liveness and 
exclusivity constraints: 

 
[ ]

sourcesallrwhere
NetsallnallfornExclnLiveXR

Re
)()()(

∈
∈∧=

 
(2) 

Where X is a vector of Boolean variables that represent the 
possible detailed routes for each of the nets. 

 

 
NET A route Boolean variable (AR0, AR1, AR2) 
NET B route Boolean variable (BR0, BR1, BR2) 
NET C route Boolean variable (CR0, CR1, CR2) 

(a)  
 

Liveness (A)= ( )210 ARARAR ∨∨  
Liveness (B) = ( )210 BRBRBR ∨∨  
Liveness (C) = ( )210 CRCRCR ∨∨  

(b) Liveness constraints 
               

  Exclusively (Resource (4,1,0))= 00 BRAR ∨  

Exclusively (Resource (4,1,1)) = 11 BRAR ∨  

Exclusively (Resource (4,1,2)) = 22 BRAR ∨  
Exclusively (Resource (2,1,0)) = 02 CRAR ∨  
Exclusively (Resource (2,1,1)) = 12 CRAR ∨  
Exclusively (Resource (2,1,2)) = 22 CRAR ∨  

(c) Exclusivity constraints 
 

Fig. 1  Global routing configuration for NETS A, B and C and three 
possible detailed routes for NET A. 
We propose and analyze a simple new randomized algorithm 
called ResolveSat for finding satisfying assignments of 
Boolean formulas in conjunctive normal form. The algorithm 
consist of two stages: a preprocessing stage in which 
resolution is applied to enlarge the set of clauses of the 
formula, followed by search stage that uses a simple 
randomized greedy procedure to look for satisfying 
assignment. We show that for each k, the running time of 
ResolveSat on a k-CNF formula is significantly better than 2 n, 
even in the worst case. In particular, we show that the 
algorithm finds a satisfying assignment of a general 
satisfiabilty 3-CNF in time O (2 .448n) with high probability. 
First we need a few definitions. For our purpose A CNF 
Boolean formula F(x1, x2,….., xn) is viewed as both a 
Boolean function and a set of clauses. We say that F is a k-
CNF if all the clauses have size at most k. for a clause C, We 
write vars (C) for the set of variables appearing in C. If vε  
vars(C), the orientation of v is positive if the literal v is in C 
and is negative if vvv  is negative. The following simple 
subroutine takes as input an arbitrary assignment and tries to 
modify it to a satisfying assignment of formula f by 
considering the variables one by one in the order given by 
permutation π   
 
Procedure Modify (CNF formula G(x1, x2,….,xn), 
          Permutation π of {1, 2…n}, assignment y) 
  G0=G 
 For i=1 to n 

   If G i-1 contains the unit clause x )(iπ  
      Then u x(i) =1 

   Else if G i-1 contains the unit clause x )(iπ  

   Then u )(iπ =0 

    Else u )(iπ =y )(iπ  

 Gi= Gi-1 ⎡ ⎤
)()( iuix

ππ =  

   [End of for loop] 
Return u; 
[End of Procedure Modify] 
 
The algorithm Search is obtained by running Modify 
(G, ), yπ  on many pairs ( ), yπ where π is a random 
permutation and y is a random assignment. 
 
Procedure Search (CNF-formula F, integer I) 
 Repeat I times 
    π = uniformly random permutation of 1…n 

    y= uniformly random vector ∈ ( )n1,0  
   u= Modify (F,π , y); 
   If u satisfies F 
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    Then output (u); exit; 
  End of loop 
 Output (’unsatifiable’) 
 
End of Procedure Search 
 
The algorithm Search was analyzed  and summarize the results 
in theorem 1. The algorithm we investigate here is obtained by 
combining Search with a preprocessing step consisting of 
bounded resolution. 
Resolve (CNF Formula F, integer s) 
Fs=F. 
While Fs has an S-bounded resolve pair C1, C2 
With R (C1, C2). 
Return (Fs)   
We analyze the following simple combination of Resolve and 
Search 
ResolveSat (CNF-formula F, integer s, positive integer I) 
Fs=Resolve (F, s) 
Search (Fs, I) 
 
The algorithm Search  was analyzed it is easily seen that 
Search(F,I) runs in time I/F/poly(n).it is also clear that 
Search(F,I) always answer unsatisfiable if F is unsatisfiable 
and tha problem of interest is to upper bound the error 
probability in the case that F is satisfiable. For a formula F and 
assignment z write ),( zFτ  to be the probability over random 
π  and y that Modify (F,π , y) returns the assignment z. 
Define )(Fτ  to be the sum of ),( zFτ  over z that satisfy f 
i.e. τ (F) is the probability that Modify (F,π ,y) finds some 
satisfying assignment. 
 
Theorem 1: For any satisfiable k-CNF formula F on n 
variables ≥)(Fτ 2 –(1-1/k)n  . Thus the algorithm Search with 
I=2(1-1/k)n has the error probability O (e-n) and runs in time 2(1-

1/k)n poly(n)             
 

III. FORM OF DNA MOLECULES AND OPERATIONS  
Our algorithm requires 2n + 3 well-behaved sequences of 
DNA: 

1.  A header sequence, h. 
2.  A separator sequence, s. 
3.  A primer sequence, p. 
4.  n “true" sequences, each denoted xi

T  representing the 
assignment “ xi=true”. 
5.  n “false" sequences, each denoted xi

F , representing 
the assignment “xi =false". 

The algorithm requires synthesis of 2n assignment sequences 
which are used to append variable assignments to solution 
strands. There is a true and false sequence for each variable xi, 

 

 
Fig. 2 Structure of b2

F assignment sequence for “x2 = false". 

In the Fig. 2 Each box (s, p, s and so on) represents a DNA 

subsequence. s  is the sticky end that anneals to the s sticky 
end on the solution strand during an APPEND. 
 
The allowable operations are now: 

1. APPEND (t, {s1, s2 … sk}): append to the end of each 
strand in tube t one of the subsequences s1, s2… sk. at 
random. This operation is a generalization of the 
standard append introduced by [5].We use this to 
append one variable assignment at a time. 

2. u ← combine(t1,t2…… tk): combine the contents of 
tubes t1 through tk into a single tube u. Tubes t1,……. tn 
are left empty (unless, of course, u = ti for some 1 <= 
i <= k).    

3. DETECT (t): select one strand at random from tube t, 
if any, and sequence it. 

 
4. u ←  extract(t, s): extract from tube t all strands 

containing the subsequence s  
 

      and place them in tube u. 
 
5. {u1, u2… Uk) ← POUR (t): pour out, or aliquot, the 

contents of t into k  
       equal portions in test tubes u1 through uk. Tube t is 
left empty. 
 
6. TO-DOUBLE-STRANDED (t): make each of the 

single-stranded molecules  
             in tube t double-stranded except for a sticky end as 
shown in Fig. 3. 

7. TO-SINGLE-STRANDED (t): denature each double-
stranded molecule in             tube t and remove one 
strand, leaving the other as a single-stranded 
molecule in t. 

   

 
Fig. 3 Implementation of operation TO-DOUBLE-STRANDED. 
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The reason for the increased number of operations used in 
our model is that in our algorithm, the assembly of potential 
solution strands is very involved whereas this step in most 
other algorithms is relatively easy. However, all the 
biotechniques required to implement these operations are 
standard procedures used in other extract-based DNA 
algorithms. Finally, we note that our measure of time 
complexity will be the number of extract steps in the 
computation, and the space complexity will be the number of 
strands in the system. 

IV. RESULTS 
The running time of ResolveSat (F, s, I) can be bounded as 

follows. Resolve(F,s) adds at most O(n s ) clauses to F and can 
be implemented easily in time n2s  /F/poly(n). Search (Fs, I) 
runs in time I( F  + ns )poly(n). Hence the overall running 
time of resolveSat(F,s,I) is crudely bounded form above by 
I( F  + ns )poly(n). The simulated results are satisfactory and 

gives the indication of applicability of DNA computing for 
solving the FPGA Routing problem. 

V. CONCLUSION 
This paper has proposed a faster approach for finding the 

FPGA Routing solution using DNA Computing. Because the 
DNA Computing, due to its high degree of parallelism, can 
overcome the difficulties that may cause the problem 
intractable on silicon computers, however using DNA 
computing principles for solving simple problems may not be 
suggestible. To make the DNA computing applicable in 
practice further research in both fields- Computer science and 
biology – is necessary. Computer science needs to develop 
more elaborate DNA algorithms, while better enzymes and 
protocols are needed to from biology to manipulate DNA 
molecules more selectively with minimal errors. 
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