
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2285

Abstract—Code mobility technologies attract more and more

developers and consumers. Numerous domains are concerned, many
platforms are developed and interest applications are realized.
However, developing good software products requires modeling,
analyzing and proving steps. The choice of models and modeling
languages is so critical on these steps. Formal tools are powerful in
analyzing and proving steps. However, poorness of classical
modeling language to model mobility requires proposition of new
models. The objective of this paper is to provide a specific formalism
“Coloured Reconfigurable Nets” and to show how this one seems to
be adequate to model different kinds of code mobility.

Keywords—Code mobility, modeling mobility, labeled
reconfigurable nets, Coloured reconfigurable nets, mobile code
design paradigms.

I. INTRODUCTION
OWADAYS, code mobility is one of the attracting fields
for computer science researchers. Code mobility

technology seems an interest solution for distributed
applications facing bandwidth problems, users' mobility, and
fault tolerance requirement. Numerous platforms were been
developed [18]. Such platforms allow the broadcasting of this
technology in many domains (information retrieving [10], e-
commerce [12], network management [23], …). Software
engineering researches have provided some interest design
paradigms influencing the development of the field. The most
recognized paradigms [7] are: code on demand, remote
evaluation, and mobile agent. To avoid ad-hoc development
for code mobility software, many works attempt to propose
methodologies and approaches ([17], [22], [15], …). Indeed,
these approaches are mostly informal. They lack in analyzing
and proving system proprieties. Enhancing development
process with formal tools was an attractive field in code
mobility researches.

Traditional formal tools witch were massively used to
model and analyze classical systems seem to be poor to deal
with inherent proprieties in code mobility systems. Works on
formal tools attempt to extended classical tools to deal with
code mobility proprieties. The most important proposition can

Manuscript received September 14, 2007.
Kahloul Laid is with Computer Science Department, Biskra University,

Algeria (phone: 213 75 17 90 20; fax: +213 33 74 31 61; e-mail:
kahloul2006@ yahoo.fr).

Chaoui Allaoua is with LIRE laboratory, Constantine University, Algeria
(phone: +213 5 82 87 64; e-mail: a_chaoui2001@yahoo.com).

be found in process algebra based model and state transition
model. For the first one, π-calculus [14] is the famous one,
and for the second, high-level Petri net (with many kinds) can
be considered the good representative. π-calculus is an
extension for CCS (communicating concurrent systems) [13].
CCS allows modeling a system composed of a set of
communicating process. This communication uses names
(gates) to insure synchronization between processes. In π-
calculus information can been exchanged through gates. The
key idea is that this information can be also a gate. With this
idea, process can exchange gates. Once these gates received,
they can be used by the receiver to communicate. In an
extension of π-calculus, HOπ-calculus [16], processes can
exchange other processes through gates (the exchanged
processes called agents).

To model mobility with Petri nets, high level PNets were
proposed. The most famous are Mobile Nets (variant of
coloured Petri nets) [1] and Dynamic Petri nets. In mobile
Petri nets, names of places can appear as tokens inside other
places. Dynamic Petri nets extend mobile Petri nets. In this
last one, firing a transition can cause the creation of a new
subnet. With high-level Petri nets, mobility in a system is
modeled through the dynamic structure of the net. A process
appearing in a new environment is modeled through a new
subnet created in the former net by firing a transition. Many
extensions have been proposed to adapt mobile Petri net to
specific mobile systems: Elementary Object Nets [19],
reconfigurable nets [3], Nested Petri Nets [11],
HyperPetriNets [2], … With respect to [21], all these
formalisms lack in security aspect specification. To handle
this aspect in code mobility, recently Mobile Synchronous
Petri Net (based on labeled coloured Petri net) are proposed
[20].

The objective of this work is to present a new formalism
based on Petri nets. Our formalism “Coloured reconfigurable
nets” as an extension for our work “Labeled Reconfigurable
Nets” [8]. We attempt to propose to model mobility in an
intuitive and an explicit way. Mobility of code (a process or
an agent) will be directly modeled through reconfiguration of
the net. We allow adding and deleting of places, arcs, and
transitions at run time. In this formalism, we introduce two
kinds of specific transitions: calculi transitions and
reconfigure transitions. A calculi transition takes as input a set
of tokens (of type nets), it computes a set of places and arcs,
and it outputs a set of tokens (of types: nets, places and arcs).
The objective of this kind of transition is to prepare the
reconfiguration of the net (migration of a net). A reconfigure

Coloured Reconfigurable Nets for Code
Mobility Modeling

Kahloul Laid, and Chaoui Allaoua

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2286

transition takes as input tokens (of types: nets, places and
arcs), it reconfigure the net by moving some subnets, places
and arcs from one net towards another net. We propose that
these two kinds of transition allow modeling mobility in an
explicit and more sophisticate manner. In this model we
consider that nets, places or arcs can play as tokens. These
tokens move from one place to another when some transitions
are fired.

II. DEFINITION OF COLOURED RECONFIGURABLE NETS (CRN)
Coloured reconfigurable nets are an extension of labeled

reconfigurable nets. Informally, a coloured reconfigurable net
is a set of environments (blocs of units). Connections between
these environments and their contents can be modified during
runtime. A unit is a specific Petri net. A unit can contain three
kinds of transitions (a unique start transition: , a set of
ordinary transitions: , a set of calculi
transition: and a set of reconfigure transitions:).

Preconditions and post-conditions to fire a start or an
ordinary transition are the same that in Petri nets. When a
reconfigure transition is fired, a net N will be (re)moved from
an environment E towards another environment E’. The net N,
the environment E and E’ are defined by a calculi transition
witch must always precedes this one. After firing a
reconfigure transition, the structure of the coloured
reconfigurable net will be updated (i.e some places, arcs, and
transitions will be deleted or added). Here after we give our
formal definitions of the concepts: unit, environment and
coloured reconfigurable net. After the definition, we present
the dynamic aspect of this model.

To define coloured reconfigurable nets, we introduce firstly

the definition of units and environment.
Definition 1 (Unit) :
A unit is a net U=(Σ, P, T, A, C, E).
Σ : a finite set of types (colors); we denote by expr the set

of expression that can be written using variables in sets of Σ.
P: a finite set of places;
T: a finite set of transitions. We have T=T∪C∪R. Where

T: a set of ordinary transitions, T={t1, …,
tn}. This set must contain a unique transition
that we call a start transition. We denote this
transition as strt,

C: a set of calculi transitions, C={c1, …, cm},
R: a set of reconfigure transitions, R ={r1, …, rp}.
A: a set of arcs
C: a color mapping from P to Σ. C joins to each place p a

color c that we note C(p).
E: an expression mapping from A to expr.

Definition 2 (Environment):
An environment E is a quadruplet E=(GP, RP, U, A).

• GP = {gp1, gp2, …, gps} a finite set of specific places
: “guest places ”;

• RP = {rp1, rp2, …, rps} a finite set of specific places :
“resource places”;
• U = { N1, N2, … Nk} a set of nets. where T1, T2, …,

Tk are the sets of their transitions and StrT={strt1, strt2, …,
strtk} is the set of their start transitions.
• A : a set of arcs, A⊆ GP x StrT∪RPxT. Such that:

T=T1∪T2 ∪…∪Tk

Remark: we say that a unit U is in an environment E iff the
net U is a subnet of the net E.

Definition 3 (Coloured reconfigurable nets):
A coloured reconfigurable nets (CRN) is couple N=(E, A),

such that:
E: a finite set of environments;
A: a finite set (probably empty) of arcs; these arcs connect

places (resp. transitions) from one environment to other
transitions (resp. places) in another environment.

Dynamic of coloured reconfigurable nets:
To introduce the dynamic of CRN we consider three types

(colors): P(set of places), N(set of nets), and B(set of arcs). We
denote respectively by P*, N*, B* the three multisets of types P,
N, B. We focus on the semantic of calculi and reconfigure
transition.

Semantic of calculi transition:
A calculi transition must take as input three tokens of type

N(two environments and one unit, the unit must be in one and
only one of the two environments). Firing the calculi
transition provides a token in the multi-sets < N*, P*, B*>. We
can say that a calculi transition uses a set of nets to computes
some arcs and places. At the output, it provides a composite
token of the input nets and the computed arcs and places. In
general, this token is used by a reconfigure transition.

If t is a calculi transition, and E1, E2, U are the input nets (U
is in E1), once t is fired it produce a token <U+E1+E2, P, A>
such that P and A are two multi-sets that can be defined like
this: P={p∈PE1/ p∉PU and ∃ t ∈ TU such that (p,t)∈AE1 or
(t,p)∈AE1 }, and

 A={a∈AE1/ a∉AE1 and ∃ (t,p) TE1xTU ∪ TUxTE1}.
Where PN, AN and TN denote respectively places, arcs and

transitions of a net N.

Semantic of reconfigure transition:
The objective of a reconfigure transition is to reconfigure

the structure of the net. To be fired, a reconfigure transition
takes as input a token in the multi-sets : < N*, N, P*, B*>.
Firing a reconfigure transition will update the structure of the
coloured reconfigurable nets that contains this transition in the
following semantic:

If rt is a reconfigure transition and <U+E1, E2, P, A> is an
input token, to fire rt we impose that there exists a free place
pg in GPE2; witch means: for each t∈ strTE2, (pg,t)∉AE2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2287

Once this condition is satisfied, firing rt changes N
structurally such that:

If E1 and E2 denote the same environment then N will be
not changed;
Else:

1) The net U is removed from the net E1:
UE2 UE2∪{U};
2) The net U is added to the environment E2:
UE1 UE1/{U};
3) AE2

 AE2∪(pg,strt); such that strt is the start
transition for U.
4) Some elements of P are transformed from E1 towards
E2, some other are cloned and some other will not be
changed (resp for elements in A). These elements depend
on the modeling case. In section 3, we show how these
elements can be defined depending on the mobile code
design paradigm to model.

III. MODELING CODE MOBILITY WITH CRN
A mobile code system is composed of execution units

(EUs), resources, and computational environments (CEs). EUs
will be modeled as units and computational environments as
environments. Modeling resources requires using a set of
places.

Reconfigure transitions model mobility actions. The key in
modeling mobility is to identify the unit to be moved, the
target computational environment and the types of binding to
resources and their locations. This information is supposed to
be known before mobility. We use calculi transition as
computing actions that compute this information. After
computing these elements, the reconfigure transition updates
the net by moving a unit from one environment to another.
This moving must respect requirement for bindings to
resources to insure the reliability of components on their new
locations. Information concerning units, environments and
bindings will be defined according to the resources types and
to the three design paradigms: remote (REV) evaluation, code
on demand (COD), and mobile agent (MA).

A. Remote Evaluation
In remote evaluation paradigm, an execution unit EU1 sends

another execution unit EU2 from a computational environment
CE1 to another one CE2.

Example 4.1: Let us consider two computational
environments E1 and E2. Firstly, E1 contains two execution
units EU1 and EU2; E2 contains an execution unit EU3. The
three execution units execute infinite loops. EU1 executes
actions {a11, a12}, EU2 executes actions {a21, a22, a23}, and
EU3 executes actions {a31, a32}. a21 requires a transferable
resource TR1 and a non-transferable resource bound by type
PNR1 witch is shared with a11. a22 and a12 share a transferable
resource bound by value VTR1, and a23 requires a non-
transferable resource NR1. In E2, EU1 requires a non-

transferable resource bound by type PNR2 to execute a31.
PNR2 has the same type of PNR1.

The system will be modeled as a coloured reconfigurable
net N. N contains two environments E1, E2 that model the two
computational environments (CE1 and CE2). Units EU1 and
EU2 will model execution units EU1 and EU2, respectively. In
this case, the unit EU1 will contain a reconfigure transition rt
and a calculi transition ct.

1. E1 =(RP1, GP1, U1, A1); RP1= {TR1, PNR1, VTR1,
NR1}. U1 = {EU1, EU2};
2. E2 = (RP2, GP2, U2, A2); RP2={ PNR2}. GP2 ={PEU1}.
3. ct will take as imput tokens : E1, EU2 and E2. ct will
provide the token : <EU2+E1, E2, P, A>. such that
P=TR1+VTR1
A=(NR1,a23)+(PNR2,a21)
4. rt takes as input <EU2+E1+E2, P, A> and will remove
EU2 and places in P from E1 towards E2. Arcs in A will be
added to the N.

In the Fig.1, the types of places P1, P2, P3 is N(set of nets).
P1 contains EU1, P2 contains E2 and P3 contains E2. The type
of place P11 is <N*,P*, B*>.

Fig. 1 REV-model before firing rt

 P21

 P22

 P23

 a22

a31

E2

PNR2

 P31

PEU2

str3

P32

 a32

PEU1

VTR1

a23

PEU2

TR1rt

NR1

PNR1

str1

a11

 a12

str2

 a21

 P12

 P11

 P13

PEU1 E1
P1

P2

P3

cu

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2288

Fig. 2 REV-model after firing rt

B. Code on Demand
In code-on-demand paradigm, an execution unit EU1

fetches another execution unit EU2. The reconfigure transition
rt is contained in the unit modeling EU1. If we reconsider the
above example, the unit EU1 will contain a reconfigure
transition rt. Fig. 3 shows the model proposed to model this
system. In the Fig. 1, the types of places P1, P2, P3 is N(set of
nets). P1 contains EU1, P2 contains E2 and P3 contains EU2.
The type of place P11 is <N*,P*, B*>. The transition cu will
provide <EU2+E2, E1, P, A>. Where P and A are the same as
in the above example.

Fig. 3 COD-model before firing rt

Fig. 4 COD-model after firing rt

C. Mobile Agent
In mobile agent paradigm, execution units are autonomous

agents. The agent itself triggers mobility. In this case, rt –the
reconfigure transition- is contained in the unit modeling the
agent.

Example 4.2: let E1 and E2 two computational
environments. E1 contains two agents, a mobile agent MA and
a static agent SA1; E2 contains a unique static agent SA2. The
three agents execute infinite loops. MA executes actions {a11,
a12, a13 }, SA1 executes actions {a21, a22, a23}, and SA2
executes actions {a33, a32}. To be executed, a11 require a
transferable resource TR1 and a non-transferable resource
bound by type PNR1 witch is shared with a21. a12 and a22 share
a transferable resource bound by value, and a13 and a23 share a
non-transferable resource NR1. In E1, SA2 requires a non-
transferable resource bound by type PNR2 to execute a32.
PNR2 has the same type of PNR1.

The system will be modeled as a coloured reconfigurable
net N. N contains two environments E1, E2 that model the two
computational environments (CE1 and CE2). Units A1 A2 and
A3 will model MA, SA1 and SA2, respectively. In this case, the
unit A1 will contain a reconfigure transition rt and a calculi
transition cu.

1. E1=(RP1, GP1, U1, A1); RP1={TR1, PNR1, VTR1,
NR1}. U1 ={EU1, EU2};

2. E2 =(RP2, GP2, U2, A2); RP2={ PNR2}. GP2 ={PEU1}.
3. ct will take as imput tokens : E1, A1 and E2. ct will

provide the token : <A1+E1, E2, P, A>. such that
P=TR1+VTR1
A=(NR1,a23)+(PNR2,a21)

4. rt takes as input <A1+E1, E2, P, A> and will remove
A1 and places in P from E1 towards E2. Arcs in A will
be added to the N.

E1

PEU2

PNR2

PEU1

P12

P11

a12

rt

a31

E2

str1

P22

 P23

a23

 P21

a22

a21

PEU1

TR1

VTR1

NR1

PNR1

 P21

PEU2

str3

P23

P22

a33

a32

str2

P1

P2

P3

cu

E1

str2

P23

P24

a23

 a22

a21

PEU2

TR1

PNR2

PEU1

P12

 P11

a12

 a11 rt
VTR1

a31

VTR1

 NR1

PNR1

 P31

PEU2

str3

 P33

P32

a33

 a32

 PEU1 E2

str1

P1

P2

P3

cu

 P12

 P11

 P13
VTR1

E1

rt

a11

 a12
 NR1

PNR1

PEU2

a31

E2

PNR2

 P31

PEU2

str3

P32

 a32

TR1

a23

PEU1

str2

 a21

VTR1 a22

P21

P22

P23

str1

PEU1
P1

P2

P3

cu

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2289

In the Fig. 1, the types of places P1, P2, P3 is N(set of nets).
P1 contains A1, P2 contains E2 and P3 contains E2. The type of
place P11 is <N*, N, P*, B*>. Fig. 5 shows the model of this
system.

Fig. 5 MA-model before firing rt

The Fig. 6 shows the configuration after firing rt.

Fig. 6 MA-model after firing rt

IV. RELATED WORKS
In [4], the authors proposed PrN (Predicate/Transition nets)

to model mobility. They use concepts: agent space witch is
composed of a mobility environment and a set of connector
nets that bind mobile agents to mobility environment. Agents
are modeled through tokens. So these agents are transferred by
transition firing from a mobility environment to another. The
structure of the net is not changed and mobility is modeled
implicitly through the dynamic of the net. In [20], authors
proposed MSPN (Mobile synchronous Petri net) as formalism
to model mobile systems and security aspects. They
introduced notions of nets (an entity) and disjoint locations to
explicit mobility. A system is composed of set of localities
that can contain nets. To explicit mobility, specific transitions
(called autonomous) are introduced. Two kinds of
autonomous transition were proposed: new and go. Firing a go
transition move the net form its locality towards another
locality. The destination locality is given through a token in
an input place of the go transition. Mobile Petri nets (MPN)
[1] extended colored Petri nets to model mobility. MPN is
based on π-calculus and join calculus. Mobility is modeled
implicitly, by considering names of places as tokens. A
transition can consumes some names (places) and produce
other names. The idea is inherited from π-calculus where
names (gates) are exchanged between communicating process.
MPN are extended to Dynamic Petri Net (DPN) [1]. In DPN,
mobility is modeled explicitly, by adding subnets when
transitions are fired. In their presentation [1], no explicit
graphic representation has been exposed.

In nest nets [9], tokens can be Petri nets them selves. This
model allows some transition when they are fired to create
new nets in the output places. Nest nets can be viewed as
hierarchic nets where we have different levels of details.
Places can contain nets that their places can also contain other
nets et cetera. So all nets created when a transition is fired are
contained in a place. So the created nets are not in the same
level with the first net. This formalism is proposed to adaptive
workflow systems.

In [3], authors studied equivalence between the join
calculus [6] (a simple version of π-calculus) and different
kinds of high level nets. They used “reconfigurable net”
concept with a different semantic from the formalism
presented in this work. In reconfigurable nets, the structure of
the net is not explicitly changed. No places or transitions are
added in runtime. The key difference with colored Petri nets is
that firing transition can change names of output places.
Names of places can figure as weight of output arcs. This
formalism is proposed to model nets with fixed components
but where connectivity can be changed over time.

In this work, we attempt to provide a formal and graphical
model for code mobility. We have extended Petri net with
reconfigure transitions that when they are fired reconfigure the
net. Mobility is modeled explicitly by the possibility of adding
or deleting at runtime arcs, transitions and places.
Modification in reconfigure transition’s label allows modeling

PA2
E2

PNR2

PA1

str2

P32

 P31

a32

a31

a21

rt

E1

P11

P13

a13

P12

 a12

a11

TR1

VTR1

 NR1

PNR

 P21

PA2

str3

P22

a23

a22

PA1

str1

P1

P2

P3

cu

rt

E2

P11

P13

P4

a13

P12

a12

a11

TR1

VTR1

PNR2

PA1

str3

P32

 P31

a32

a31

NR1

E1

VTR1

P23

P22

a23

a22

PNR1

PA1 PA2

str2

 P21

a21

PA1

str1

P1

P2

P3

cu

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2290

different kinds of code mobility. Bindings to resources can be
modeled by adding arcs between environments. It is clear that
in this model created nets are in the same level of nets that
create them. Creator and created nets can communicate. This
model is more adequate for modeling mobile code systems.
Instead of using label associated to reconfigure transition in
“Labeled Reconfigurable Nets”[8], witch gives information
about mobility, we have introduce colors (types) and a calculi
transition that must compute this information. Rigidity due to
labels is now avoided in this formalism. This last advantage
will make modeling easier.

V. CONCLUSION
Proposed initially to model concurrency and distributed

systems, Petri nets attract searchers in mobility modeling
domain. The ordinary formalism is so simple with a smart
formal background, but it fails in modeling mobility aspects.
Many extensions were been proposed to treat mobility aspects.
The key idea was to introduce mechanisms that allow
reconfiguration of the model during runtime. The most works
extends coloured Petri nets and borrow π-calculus or join
calculus ideas to model mobility. The exchanging of names
between processes in π-calculus is interpreted as exchanging
of place’s names when some transitions are fired. This can
model dynamic communication channels. In much formalism,
mobility of process is modeled by a net playing as token that
moves when a transition is fired. All these mechanisms allow
modeling mobility in an implicit way. We consider that the
most adequate formalisms must model mobility explicitly. If a
process is modeled as a subnet, mobility of this process must
be modeled as a reconfiguration in the net that represents the
environment of this process.

In this paper, we have presented a new formalism
“Coloured reconfigurable nets”. This formalism allows
explicit modeling of computational environments and
processes mobility between them. We have presented how this
formalism allows, in a simple and an intuitive approach,
modeling mobile code paradigms. We have focused on
bindings to resources and how they will be updated after
mobility. We believe that the present formalism is an adequate
model for all kinds of code mobility systems. In our future
works we plan to focus on modeling and analyzing aspects. In
modeling aspects, we are interested to handle problems such
that modeling mutli-hops mobility, process’s states during
travel, birth places and locations. On the analysis aspect, we
are thinking about an encoding of our model in maude or
mobile maude [5] in order an analysis automation of our
models.

REFERENCES
[1] Andrea Asperti and Nadia Busi. “Mobile Petri Nets”. Technical Report

UBLCS-96-10, Department of Computer Science University of Bologna,
May 1996.

[2] M.A. Bednarczyk, L. Bernardinello, W. Pawlowski, and L. Pomello.
“Modelling Mobility with Petri Hypernets”. 17th Int. Conf. on Recent
Trends in Algebraic Development Techniques, WADT’04. LNCS vol.
3423, Springer-Verlag, 2004.

[3] M. Buscemi and V. Sassone. “High-Level Petri Nets as Type Theories in
the Join Calculus”. In Proc. of Foundations of Software Science and
Computation Structure (FoSSaCS '01), LNCS 2030, Springer-Verlag.

[4] Dianxiang Xu and Yi Deng, “Modeling Mobile Agent Systems with High
Level Petri Nets”. 0-7803-6583-6/00/ © 2000 IEEE.

[5] Francisco Durلn, Steven Eker, Patrick Lincoln and José Meseguer.
“principles of mobile maude”. In D.Kotz and F.Mattern, editors, Agent
systems, mobile agents and applications, second international
symposium on agent systems and applications and fourth international
symposium on mobile agents, ASA/MA 2000 LNCS 1882, Springer
Verlag. Sept 2000.

[6] Cédric Fournet Georges Gonthier, “The Join Calculus: a Language for
Distributed Mobile Programming”. In Applied Semantics. International
Summer School, APPSEM 2000, Caminha, Portugal, September 2000,
LNCS 2395, pages 268--332, Springer-Verlag. August 2002.

[7] Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna,
“Understanding Code Mobility”. IEEE transactions on software
engineering, vol. 24, no. 5, may 1998.

[8] Kahloul Laid and Chaoui Allaoua, “Labeled reconfigurable nets for
modeling code mobility”, accepted and to appear in the proceeding of
The International Arab Conference for Information technology (ACIT)
26-28/11/2007 in Syria.

[9] Kees M. van Hee, Irina A. Lomazova, Olivia Oanea, Alexander
Serebrenik, Natalia Sidorova, Marc Voorhoeve: “Nested Nets for
Adaptive Systems”. 14 EE. ICATPN 2006: 241-260.

[10] P. Knudsen, “Comparing Two Distributed Computing Paradigms, A
Performance Case Study”; MS thesis, Univ. of Troms ّ ,1995 .

[11] I.A. Lomazova. “Nested Petri Nets”; Multi-level and Recursive Systems.
Fundamenta Informaticae vol.47, pp.283-293. IOS Press, 2002.

[12] M. Merz and W. Lamersdorf, “Agents, Services, and Electronic
Markets: How Do They Integrate?”; Proc. Int’l Conf. Distributed
Platforms, IFIP/IEEE, 1996.

[13] R. Milner. “A Calculus of Communicating Systems”. Number 92 in
Lecture Notes in Computer Science. Springer Verlag, 1980.

[14] R. Milner, J. Parrow, and D. Walker. “A calculus of mobile processes”.
Information and Computation, 100:1–77, 1992.

[15] Reinhartz-Berger, I., Dori, D. and Katz, S. (2005) ”Modelling code
mobility and migration: an OPM/Web approach”, Int. J. Web
Engineering and Technology, Vol. 2, No. 1, pp.6–28.

[16] D. Sangiorgi and D. Walker. “The π-Calculus: A Theory of Mobile
Processes”. Cambridge University Press, 2001.

[17] Athie L. Self and Scott A. DeLoach. “Designing and Specifying Mobility
within the Multiagent Systems Engineering methodology ” Special
Track on Agents, Interactions, Mobility, and Systems (AIMS) at the 18th
ACM Symposium on Applied Computing (SAC 2003). Melbourne,
Florida, USA, 2003.

[18] Tommy Thorn, “Programming languages for mobile code”. Rapport de
recherche INRIA, N ° 3134, Mars, 1997.

[19] R. Valk. “Petri Nets as Token Objects: An Introduction to Elementary
Object Nets”. Applications and Theory of Petri Nets 1998, LNCS
vol.1420, pp.1-25, Springer-Verlag, 1998.

[20] F. Rosa Velardo, O. Marroqn Alonso and D. Frutos Escrig. “Mobile
Synchronizing Petri Nets: a choreographic approach for coordination in
Ubiquitous Systems”. In 1st Int. Workshop on Methods and Tools for
Coordinating Concurrent, Distributed and Mobile Systems,
MTCoord’05. ENTCS, No 150.

[21] Fernando Rosa-Velardo. “Coding Mobile Synchronizing Petri Nets into
Rewriting Logic”, this paper is electronically published in Electronic
Notes in Theoretical Computer science URL:
www.elsevier.nl/locate/entcs.

[22] Sutandiyo, W., Chhetri, M, B., Loke, S,W., and Krishnaswamy, S.
“mGaia: Extending the Gaia Methodology to Model Mobile Agent
Systems”, Accepted for publication as a poster in the Sixth International
Conference on Enterprise Information Systems (ICEIS 2004), Porto,
Portugal, April 14-17.

[23] D.J. Wetherall, J. Guttag, and D.L. Tennenhouse, “ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols” Technical
Report, MIT, 1997, in Proc. OPENARCH’98.

