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Abstract—The residue number system (RNS) is popular in high 

performance computation applications because of its carry-free 
nature. The challenges of RNS systems design lie in the moduli set 
selection and in the reverse conversion from residue representation to 
weighted representation. In this paper, we proposed a fully parallel 
reverse conversion algorithm for the moduli set {rn – 2, rn – 1, rn}, 
based on simple mathematical relationships. Also an efficient 
hardware realization of this algorithm is presented. Our proposed 
converter is very faster and results to hardware savings, compared to 
the other reverse converters. 
 

Keywords—Reverse  converter, residue to weighted converter, 
residue number system, multiple-valued logic, computer arithmetic. 

I. INTRODUCTION 
 HE conventional arithmetic carries propagation based on 
a weighted number system is the reason for performance 
degradation in hardware computing systems. The residue 

number system is a non-weighted number system which 
speeds up arithmetic operations by dividing them into smaller 
parallel operations [1],[2]. Since the arithmetic operations in 
each moduli are independent of the others, there is no carry 
propagation among them and so RNS leads to carry-free 
addition, multiplication and borrow-free subtraction [3]. RNS 
is one of the most popular techniques for reducing the power 
dissipation and the computation load in VLSI systems design 
[4]. Some applications of the RNS are real-time processing, 
digital filters [5],[7], digital signal processing (DSP) [8],[9], 
the RSA encoding algorithm [12] and digital communication 
[13]. The architecture of the RNS is naturally fault tolerant 
and consequently, it is used to error detection, error correction 
and fault tolerance [15]. 

Despite binary logic in which logical levels are restricted to 
two possible states, there exists an alternative named multiple-
valued logic. In MVL, the number of discrete signal values or 
logic states extends beyond two. Arithmetic units 
implemented with MVL achieve more efficient use of silicon 
resource and circuit interconnections [20]. There is a clear 
mathematical attraction of using multiple-valued number 
representation in RNS. The modular arithmetic that is inherent 
in MVL can be match with modular arithmetic needed in 
RNS. 

The concept of MVL-RNS was introduced by Soderstrand 
et al. [17] to design a high speed FIR digital filter. The reverse 
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converter proposed in [17] is based on chinese remainder 
theorem (CRT) and implemented with read-only memories 
(ROM's). This converter is practical to implement small and 
medium RNS dynamic ranges and it is not appropriate for 
large dynamic ranges. In [18], new RNS systems based on the 
moduli of forms ra, rb–1 and rc+1 are presented. Abdallah et 
al. in [18] developed a systematic framework utilizing high-
radix arithmetic for efficient MVL-RNS implementations and 
proposed many radix-r moduli sets. This moduli sets are not 
pairwise relatively prime that resulting in reduced dynamic 
ranges and unbalanced moduli. The reverse converter 
presented in [18] is based on CRT and because of the scale-
down factors that used to makes moduli pairwise relatively 
prime, conversion delay and cost are increased. In [19], a new 
moduli set {rn – 2, rn – 1, rn} where r=2k+1, k=1,2,… for 
MVL-RNS was proposed. This moduli set includes pairwise 
relatively prime and balanced moduli that offers large 
dynamic range and simple realization of related circuits. The 
reverse converter presented in [19] is based on CRT and 
requires many multiplications and reductions, so its area and 
delay complexities have been increased. 

In this paper, a fully parallel reverse conversion algorithm 
dedicated to the moduli set {rn – 2, rn – 1, rn} where r=2k+1, 
k=1,2,… and an efficient hardware realization are presented. 
Our proposed converter is faster and has lower hardware cost 
than the other MVL-based reverse converters for three-
modulus sets. 

The rest of paper is organized as follows. In section II we 
introduce the necessary background. The conversion 
algorithm and its hardware realization are presented in section 
III. Section IV makes comparison and section V is conclusion. 

II. BACKGROUND 
Residue Number System: A residue number system is 

defined in terms of a relatively-prime moduli set {P1,P2, 
…,Pn} that is gcd(Pi,Pj)=1 for ,...,n,jiji 21and ,   =≠ . A 
weighted number X can be represented as X=(x1,x2, … ,xn), 
where 

ii
i

ii PxPXPXx <≤== 0, mod                                     (1) 

Such a representation is unique for any integer X in the range 
[0,M-1], where M=P1P2…Pn is the dynamic range of the 
moduli set {P1,P2, …,Pn}. 

Addition, subtraction and multiplication on residues can be 
performed in parallel without any carry propagation among 
the residue digits. Hence, by converting the arithmetic of large 
numbers to a set of the parallel arithmetic of smaller numbers, 
the RNS representation yields significant speed up. 

The challenges of the RNS system design lie in the moduli 
set selection and in the conversion of the residues to the 
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equivalent weighted number. The importance of the moduli 
selection is due to the fact that the dynamic range, the speed as 
well as the hardware complexity of RNS systems depend on 
the forms as well as the number of the moduli chosen. 
Transforming a weighted integer number to the residue 
representation is called forward conversion and getting back 
to the weighted representation is referred to as reverse 
conversion. Forward conversion is conceivably simple and 
consists of several modulo adders but the reverse conversion 
involves considerable degree of complexity and includes a lot 
of modulo operations. The algorithms of reverse conversion 
are based primarily on chinese remainder theorem and mixed-
radix conversion (MRC). 

Chinese Remainder Theorem: by CRT, the number X is 
calculated from residues by 

M

n

i
i

i
ii MPNxX ∑=

=1
                                                      (2) 

where ii PMM =  and 
i

ii PMN || 1−=  is the multiplicative 

inverse of Mi modulo Pi. 
Mixed-Radix Conversion: the number X can be computed 

by the formula 

∏ ++++=
=

n

i
in aPaPPaPaX

1
112123...                                  (3) 

where ais are called the mixed-radix coefficients and they can 
be obtained from the residues by 
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where n>1 and a1=x1. 
The CRT requires modular additions and multiplications 

and it is not efficient for the implementation. The MRC is a 
sequential algorithm and requires modular multiplications and 
subtractions that is not suitable for efficient hardware 
realization. In the next section we proposed a novel 
conversion algorithm which is depends on simple 
mathematical relationships without using CRT or MRC. 

The RNS with Moduli Set {rn – 2, rn – 1, rn}: In [19], a new 
moduli set {rn – 2, rn – 1, rn} where r=2k+1, k=1,2,… was 
introduced for RNS. This moduli set contains pairwise 
relatively prime moduli for all different values of n, so the 
dynamic range is greater than the dynamic range of similar 
moduli sets in [19].  Because of using of  high radix (r >2), 
this RNS can be simply realized in MVL and can provides 
very large dynamic range for different radix-r values. 

Forward conversion in this RNS is performed as follows. 
Suppose a 3n-digit radix-r number Y 

)...( 012313 yyyyY nn −−=                                                    (5) 
We must compute the residues (x3, x2, x1) corresponding to 
moduli set {rn – 2, rn – 1, rn}. First we calculate the residue in 
moduli rn. So we have 

)...(    
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Therefore, it is enough to consider the right most n digits and 

the rest of digits will be ignored as they are multiplies of rn. 
Now we investigate the moduli rn – 1. The residue of Y in 
moduli rn – 1 can be calculated as follow 
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So, the number Y is partitioned into consecutive n-digit blocks 
and then we must sum these blocks by a modular adder. The 
residue of Y in moduli rn – 2 is obtained as follow 
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Thus, after partitioning Y into consecutive n-digit blocks, we 
should add the least significant block with two times of the 
next block and with four times of the most significant block. 
Then, the result must be reduced in moduli rn – 2. The details 
of the hardware realization of forward converter are presented 
in [19]. 

III. PARALLEL  REVERSE CONVERTER 
We now propose a novel conversion algorithm which 

converts residue number into its equivalent weighted number. 
The conversion method is based on simple mathematical 
relationships without using CRT or MRC. 

 
Theorem: Given the moduli set {rn – 2, rn – 1, rn}, the 

residue number (x3, x2, x1) is converted into the radix-r 
weighted number by 

M
nn xrbrcX 1)()( 2 +×′+×′=                                     (9) 
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Proof: Suppose the 3n-digit radix-r number X that is 
partitioned into consecutive n-digit blocks as 

a

yyy

b

yyy

c

y...yyX
n-nnn-nnn- 01111221213

……=
++

      (13) 

We know from the previous section that forward conversion is 
performed by the following equations 
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ax =1                                                                            (14) 

12 −++= nrcbax                                                         (15) 

23 −++= nrcbax                                                        (16) 

Equations (15) and (16) can be rewritten as 
))1((2 −×−++= nrcbax α                                        (17) 

))2((3 −×−++= nrcbax β                                        (18) 
By substituting the value of a from (14), we have 

))1((12 −×+−=+ nrxxcb α                                      (19) 

))2((42 13 −×+−=+ nrxxcb β                                  (20) 
Therefore, we have 

2

))1(2()2((2 213 −×−−×+−+
=

nn rrxxx
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      (21) 

2

))1(4()2((43 213 −×+−×−+−−
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αβ
   (22) 

Considering the maximum value of residues, the values of α 
and β are obtained as below 
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By substituting the values of α and β in (21) and (22), we 
obtained the following equations 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−+−+

+
−+−+

=′

) is evenxif (x 
rxxx

) is oddx if (x
rxxx

c
n

n

31
231

31
231

   
2

)4(22

   
2

1032

    (24) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

+
++−

+
++−

=′
+

+

) is evenxif (x 
rxx

) is oddx if (x
rxx

b
n

n

x

x

31
321

31
321

   
2

)(243

        
2

43

2

6

 

(25) 
Thus, the values of b′ and c′  are calculated and then the 

result of concatenating x1, b′ and c′  should be reduced in 
order to placed in the dynamic range. So 

M
nn xrbrcX 1)()( 2 +×′+×′=                                   (26) 

The following example clarifies the conversion method. 
Example: Given the moduli set {rn – 2, rn – 1, rn} where r=3 

and n=3, the residue number (x3, x2, x1)=(0,12,14) is converted 
to the weighted number X by this way 
Moduli Set: {33 – 2, 33 – 1, 33}={25, 26, 27} 
M=25×26×27=17550 
(x1+x3) is even, so 

18
2

4624014
=

+−+
=′c  

and 

32
2

5804842
=

+−+−
=′b  

Therefore, 

1400014332318
17550

36 =+×+×=X  

It is easy to see that Theorem 1 is very simpler than CRT or 
MRC. Also Theorem 1 enables us to implement a fully 
parallel reverse converter for the moduli set {rn – 2, rn – 1, rn}. 
Hardware realization of the proposed reverse converter is 
based on equations (9)-(11). The computation of (10) requires 
an n-digit radix-r carry save adder (CSAr) followed by two n-
digit radix-r adder and a multiplexer. we check whether 
(x1+x3) is odd or even by using radix-r XOR gates. Instead of 
direct division by 2, we used the multiplication by 2–1 and as 
noted in [18], this multiplication can be performed by existing 
radix-r multiplier belonging to the RNS processing hardware. 
Equation (11) has a similar realization and can be 
implemented with a CSA tree, two adders, one multiplexer 
and one multiplier for performing multiplication by 2–1. Since 
x1 is an n-digit radix-r number, no additional hardware is 
needed to compute (rnb/+x1). The desired result is the 
concatenation of x1 and b/. Finally, a 3n-digit radix-r modular 
adder is used to perform the addition of r2nc/ and (rnb/+x1). Fig. 
1 shows the hardware architecture of the proposed reverse 
converter. 

IV. PERFORMANCE EVALUATION 
The reverse converter proposed in this paper is a novel 

converter dedicated to the moduli set {rn – 2, rn – 1, rn}. 
Therefore, to verify the performance of this converter, it has to 
be compared with other proposed converters which can 
convert residue numbers to their equivalent radix-r (r > 2) 
weighted representation. Such reverse converters are 
presented in [19] and [18]. In [19] a CRT-based reverse 
converter for the moduli set {rn – 2, rn – 1, rn} was presented. 
In [18] four three-moduli sets s1={rn-2 + 1, rn-1 + 1, rn + 1}, 
s2={rn-3 + 1, rn-1 + 1, rn + 1}, s3={rn-4 – 1, rn-2 – 1, rn – 1} and 
s4={rn-5 – 1, rn-3 – 1, rn-1 – 1} are proposed and also a 
conversion algorithm based on CRT with scale-down factors 
is presented. Since the hardware requirements and conversion 
speed for the moduli sets s1 and s3 are the same as the moduli 
sets s2 and s4, respectively, we confine our comparison to to 
the reverse converter for moduli sets s1 and s3. All the 
hardwares listed in Table I, are radix-r hardware. An overview 
of MVL circuits’ implementation can be found in [20], [21]. It 
should be noted the radix-r full adder (FA) cell is a r-input 
adder cell. Therefore, a radix-r CSA tree includes r-to-2 
CSA's. Since the CSA tree used in Fig. 1 has 8 inputs, the 
maximum levels of r-to-2 CSA in CSA tree is two. So, the 
total delay of the CSA tree used in Fig. 1 is the delay of two 
radix-r FA. Also for r=3, this CSA tree consists of three 4-to-
2 radix-3 CSA and for greater values of r (r>3), it consists of 
two r-to-2 CSA. For comparison with other converters, we 
consider the worst case (r=3) for CSA tree. The hardware 
requirements and conversion delays of the reverse converters 
listed in Table I and II, respectively. It should be noted that we 
used some radix-r NOT and XOR gates for calculating 
negative numbers and checking the value of (x1+x3) for odd or 
even, respectively. Since these gates are not on the critical 
delay path and their cost are small, we don't taking into 
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account these gates in Table I and II. 
It has been assumed that TFAr, TMUXr, TMULr and TMOAr refer 

to the delays of the radix-r full adder, multiplexer, multiplier 
and mod M modular adder, respectively. 

It is clear from Table I and II that the area and delay of the 
proposed converter are considerably better than the other 
converters. Our proposed converter is very faster and results 
to hardware savings when compared with the converters of 
[18] and [19]. It must be noted that for a specified dynamic 
range, the value of n for our reverse converter is smaller than 
the n for reverse converters of [18]. 

V. CONCLUSION 
In this paper, we proposed a fully parallel reverse 

conversion algorithm for the moduli set {rn – 2, rn – 1, rn}, 
based on simple mathematical relationships. Our proposed 
conversion algorithm is very simple and resulted to an 
efficient hardware realization of the reverse converter. In 
comparison with other reverse converters for MVL based 
RNS systems, the presented converter has a superior area-time 
complexity. 
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Fig. 1 Block diagram of the proposed reverse converter. 

 
 

TABLE I COMPARISON OF HARDWARE REQUIREMENTS 
 

Regular Adders and Subtractors 
CSA Adder Subtractor converter Moduli Set 

n n 3n n 2n 3n 
Total 
FA's 

Modular 
Adder (3n) Multiplier (n) Multi 

plexer 
[19] {rn –2, rn – 1, rn} -- 1 1 - 1 2 12n 1 3 -- 

[18] {rn-2+1, rn-1+1, 
rn+1} -- 1 4 - -- -- 13n 1 3 -- 

[18] {rn-5-1, rn-3-1, rn-1-1} -- -- 3 3 -- 3 21n 1 3 -- 
Proposed {rn – 2, rn – 1, rn} 4 4 -- - -- -- 8n 1 2 2 

 
TABLE II COMPARISON OF CONVERSION DELAYS 

 
converter Moduli Set Conversion Delay 

[19] {rn – 2, rn – 1, rn} (5n)TFAr+TMULr+TMOAr 
[18] {rn-2+1, rn-1+1, rn+1} (6n)TFAr+TMULr+TMOAr 
[18] {rn-5-1, rn-3-1, rn-1-1} (6n)TFAr+TMULr+TMOAr 

Proposed {rn – 2, rn – 1, rn} (n+2)TFAr+TMULr+TMOAr+TMUXr 
 

n-digit CSAr 

n-digit Adderr1 n-digit Adderr2 

)4(2 −nr 103 −nr

01
MUX

1x 3x
nn

n-digit CSAr Tree 

n-digit Adderr3 n-digit Adderr4 Selection 
Block 

)2(2 +nr 6+nr

01
MUX

1x 3x

n

3n-digit  Modular Adderr 

b′
1x0

n2

cr n ′2
1xbrn +′

n3

n2n3

c′

n-digit Multiplierr1 
(multiply by 2-1)  

n-digit Multiplierr2 
(multiply by 2-1)  

n nn
2x− 1x− 2x

3x−

b′

X

c′


