
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

593

Abstract—The residue number system (RNS) is popular in high

performance computation applications because of its carry-free
nature. The challenges of RNS systems design lie in the moduli set
selection and in the reverse conversion from residue representation to
weighted representation. In this paper, we proposed a fully parallel
reverse conversion algorithm for the moduli set {rn – 2, rn – 1, rn},
based on simple mathematical relationships. Also an efficient
hardware realization of this algorithm is presented. Our proposed
converter is very faster and results to hardware savings, compared to
the other reverse converters.

Keywords—Reverse converter, residue to weighted converter,
residue number system, multiple-valued logic, computer arithmetic.

I. INTRODUCTION
 HE conventional arithmetic carries propagation based on
a weighted number system is the reason for performance
degradation in hardware computing systems. The residue

number system is a non-weighted number system which
speeds up arithmetic operations by dividing them into smaller
parallel operations [1],[2]. Since the arithmetic operations in
each moduli are independent of the others, there is no carry
propagation among them and so RNS leads to carry-free
addition, multiplication and borrow-free subtraction [3]. RNS
is one of the most popular techniques for reducing the power
dissipation and the computation load in VLSI systems design
[4]. Some applications of the RNS are real-time processing,
digital filters [5],[7], digital signal processing (DSP) [8],[9],
the RSA encoding algorithm [12] and digital communication
[13]. The architecture of the RNS is naturally fault tolerant
and consequently, it is used to error detection, error correction
and fault tolerance [15].

Despite binary logic in which logical levels are restricted to
two possible states, there exists an alternative named multiple-
valued logic. In MVL, the number of discrete signal values or
logic states extends beyond two. Arithmetic units
implemented with MVL achieve more efficient use of silicon
resource and circuit interconnections [20]. There is a clear
mathematical attraction of using multiple-valued number
representation in RNS. The modular arithmetic that is inherent
in MVL can be match with modular arithmetic needed in
RNS.

The concept of MVL-RNS was introduced by Soderstrand
et al. [17] to design a high speed FIR digital filter. The reverse

Manuscript received September 9, 2007.
M. Hosseinzadeh and A. Sabbagh are with the Department of Computer

Engineering, Islamic Azad University Science and Research Branch, Tehran,
Iran, (emails: hosseinzadeh@sr.iau.ac.ir ; amir.sabbagh@sr.iau.ac.ir).

K. Navi is with the Faculty of Electrical and Computer Engineering,
Shahid Beheshti University, Tehran, Iran, (email: navi@sbu.ac.ir).

converter proposed in [17] is based on chinese remainder
theorem (CRT) and implemented with read-only memories
(ROM's). This converter is practical to implement small and
medium RNS dynamic ranges and it is not appropriate for
large dynamic ranges. In [18], new RNS systems based on the
moduli of forms ra, rb–1 and rc+1 are presented. Abdallah et
al. in [18] developed a systematic framework utilizing high-
radix arithmetic for efficient MVL-RNS implementations and
proposed many radix-r moduli sets. This moduli sets are not
pairwise relatively prime that resulting in reduced dynamic
ranges and unbalanced moduli. The reverse converter
presented in [18] is based on CRT and because of the scale-
down factors that used to makes moduli pairwise relatively
prime, conversion delay and cost are increased. In [19], a new
moduli set {rn – 2, rn – 1, rn} where r=2k+1, k=1,2,… for
MVL-RNS was proposed. This moduli set includes pairwise
relatively prime and balanced moduli that offers large
dynamic range and simple realization of related circuits. The
reverse converter presented in [19] is based on CRT and
requires many multiplications and reductions, so its area and
delay complexities have been increased.

In this paper, a fully parallel reverse conversion algorithm
dedicated to the moduli set {rn – 2, rn – 1, rn} where r=2k+1,
k=1,2,… and an efficient hardware realization are presented.
Our proposed converter is faster and has lower hardware cost
than the other MVL-based reverse converters for three-
modulus sets.

The rest of paper is organized as follows. In section II we
introduce the necessary background. The conversion
algorithm and its hardware realization are presented in section
III. Section IV makes comparison and section V is conclusion.

II. BACKGROUND
Residue Number System: A residue number system is

defined in terms of a relatively-prime moduli set {P1,P2,
…,Pn} that is gcd(Pi,Pj)=1 for ,...,n,jiji 21and , =≠ . A
weighted number X can be represented as X=(x1,x2, … ,xn),
where

ii
i

ii PxPXPXx <≤== 0, mod (1)

Such a representation is unique for any integer X in the range
[0,M-1], where M=P1P2…Pn is the dynamic range of the
moduli set {P1,P2, …,Pn}.

Addition, subtraction and multiplication on residues can be
performed in parallel without any carry propagation among
the residue digits. Hence, by converting the arithmetic of large
numbers to a set of the parallel arithmetic of smaller numbers,
the RNS representation yields significant speed up.

The challenges of the RNS system design lie in the moduli
set selection and in the conversion of the residues to the

A Fully Parallel Reverse Converter
Mehdi Hosseinzadeh, Amir Sabbagh Molahosseini, Keivan Navi

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

594

equivalent weighted number. The importance of the moduli
selection is due to the fact that the dynamic range, the speed as
well as the hardware complexity of RNS systems depend on
the forms as well as the number of the moduli chosen.
Transforming a weighted integer number to the residue
representation is called forward conversion and getting back
to the weighted representation is referred to as reverse
conversion. Forward conversion is conceivably simple and
consists of several modulo adders but the reverse conversion
involves considerable degree of complexity and includes a lot
of modulo operations. The algorithms of reverse conversion
are based primarily on chinese remainder theorem and mixed-
radix conversion (MRC).

Chinese Remainder Theorem: by CRT, the number X is
calculated from residues by

M

n

i
i

i
ii MPNxX ∑=

=1
 (2)

where ii PMM = and
i

ii PMN || 1−= is the multiplicative

inverse of Mi modulo Pi.
Mixed-Radix Conversion: the number X can be computed

by the formula

∏ ++++=
=

n

i
in aPaPPaPaX

1
112123... (3)

where ais are called the mixed-radix coefficients and they can
be obtained from the residues by

nPnPnPna
nP

Pa
nP

Panxna
1
1)1

1
2)2

1
1)1(((

−
−−−⋅⋅⋅−

−
−

−
−= (4)

where n>1 and a1=x1.
The CRT requires modular additions and multiplications

and it is not efficient for the implementation. The MRC is a
sequential algorithm and requires modular multiplications and
subtractions that is not suitable for efficient hardware
realization. In the next section we proposed a novel
conversion algorithm which is depends on simple
mathematical relationships without using CRT or MRC.

The RNS with Moduli Set {rn – 2, rn – 1, rn}: In [19], a new
moduli set {rn – 2, rn – 1, rn} where r=2k+1, k=1,2,… was
introduced for RNS. This moduli set contains pairwise
relatively prime moduli for all different values of n, so the
dynamic range is greater than the dynamic range of similar
moduli sets in [19]. Because of using of high radix (r >2),
this RNS can be simply realized in MVL and can provides
very large dynamic range for different radix-r values.

Forward conversion in this RNS is performed as follows.
Suppose a 3n-digit radix-r number Y

)...(012313 yyyyY nn −−= (5)
We must compute the residues (x3, x2, x1) corresponding to
moduli set {rn – 2, rn – 1, rn}. First we calculate the residue in
moduli rn. So we have

)...(
 mod))...()...((

 mod)...(mod

011

011113

01131

yyy
ryyyryyy

ryyyrYx

n

n
n

n
nnn

n
n

n

−

−+−

−

=
+=

==

 (6)

Therefore, it is enough to consider the right most n digits and

the rest of digits will be ignored as they are multiplies of rn.
Now we investigate the moduli rn – 1. The residue of Y in
moduli rn – 1 can be calculated as follow

10112213

011

112
2

21213

01132

)...()...()...(
1 mod))...(

)...()...((

1 mod)...(1 mod

−−−−

−

+−+−

−

++=

−+

+=

−=−=

nrnnnnn

n
n

n
nnn

n
nnn

n
n

n

yyyyyy
ryyy

ryyyryyy

ryyyrYx

 (7)

So, the number Y is partitioned into consecutive n-digit blocks
and then we must sum these blocks by a modular adder. The
residue of Y in moduli rn – 2 is obtained as follow

20112213

011

112
2

21213

01133

)...()...(2)...(4
2 mod))...(

)...()...((

2 mod)...(2 mod

−−−−

−

+−+−

−

++=

−+

+=

−=−=

nrnnnnn

n
n

n
nnn

n
nnn

n
n

n

yyyyyy
ryyy

ryyyryyy

ryyyrYx

 (8)

Thus, after partitioning Y into consecutive n-digit blocks, we
should add the least significant block with two times of the
next block and with four times of the most significant block.
Then, the result must be reduced in moduli rn – 2. The details
of the hardware realization of forward converter are presented
in [19].

III. PARALLEL REVERSE CONVERTER
We now propose a novel conversion algorithm which

converts residue number into its equivalent weighted number.
The conversion method is based on simple mathematical
relationships without using CRT or MRC.

Theorem: Given the moduli set {rn – 2, rn – 1, rn}, the

residue number (x3, x2, x1) is converted into the radix-r
weighted number by

M
nn xrbrcX 1)()(2 +×′+×′= (9)

where

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−+−+

+
−+−+

=′

) is evenxif (x
rxxx

) is oddx if (x
rxxx

c
n

n

31
231

31
231

2

)4(22

2

1032

 (10)

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

+
++−

+
++−

=′
+

+

) is evenxif (x
rxx

) is oddx if (x
rxx

b
n

n

x

x

31
321

31
321

2

)(243

2

43

2

6

(11)

nnn rrrM)1)(2(−−= (12)

Proof: Suppose the 3n-digit radix-r number X that is
partitioned into consecutive n-digit blocks as

a

yyy

b

yyy

c

y...yyX
n-nnn-nnn- 01111221213

……=
++

 (13)

We know from the previous section that forward conversion is
performed by the following equations

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

595

ax =1 (14)

12 −++= nrcbax (15)

23 −++= nrcbax (16)

Equations (15) and (16) can be rewritten as
))1((2 −×−++= nrcbax α (17)

))2((3 −×−++= nrcbax β (18)
By substituting the value of a from (14), we have

))1((12 −×+−=+ nrxxcb α (19)

))2((42 13 −×+−=+ nrxxcb β (20)
Therefore, we have

2

))1(2()2((2 213 −×−−×+−+
=

nn rrxxx
c

αβ
 (21)

2

))1(4()2((43 213 −×+−×−+−−
=

nn rrxxx
b

αβ
 (22)

Considering the maximum value of residues, the values of α
and β are obtained as below

⎩
⎨
⎧

+==

+==

evenisxxif

oddisxxif

)(6,2

)(7,2

31

31

βα

βα
 (23)

By substituting the values of α and β in (21) and (22), we
obtained the following equations

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−+−+

+
−+−+

=′

) is evenxif (x
rxxx

) is oddx if (x
rxxx

c
n

n

31
231

31
231

2

)4(22

2

1032

 (24)

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

+
++−

+
++−

=′
+

+

) is evenxif (x
rxx

) is oddx if (x
rxx

b
n

n

x

x

31
321

31
321

2

)(243

2

43

2

6

(25)
Thus, the values of b′ and c′ are calculated and then the

result of concatenating x1, b′ and c′ should be reduced in
order to placed in the dynamic range. So

M
nn xrbrcX 1)()(2 +×′+×′= (26)

The following example clarifies the conversion method.
Example: Given the moduli set {rn – 2, rn – 1, rn} where r=3

and n=3, the residue number (x3, x2, x1)=(0,12,14) is converted
to the weighted number X by this way
Moduli Set: {33 – 2, 33 – 1, 33}={25, 26, 27}
M=25×26×27=17550
(x1+x3) is even, so

18
2

4624014
=

+−+
=′c

and

32
2

5804842
=

+−+−
=′b

Therefore,

1400014332318
17550

36 =+×+×=X

It is easy to see that Theorem 1 is very simpler than CRT or
MRC. Also Theorem 1 enables us to implement a fully
parallel reverse converter for the moduli set {rn – 2, rn – 1, rn}.
Hardware realization of the proposed reverse converter is
based on equations (9)-(11). The computation of (10) requires
an n-digit radix-r carry save adder (CSAr) followed by two n-
digit radix-r adder and a multiplexer. we check whether
(x1+x3) is odd or even by using radix-r XOR gates. Instead of
direct division by 2, we used the multiplication by 2–1 and as
noted in [18], this multiplication can be performed by existing
radix-r multiplier belonging to the RNS processing hardware.
Equation (11) has a similar realization and can be
implemented with a CSA tree, two adders, one multiplexer
and one multiplier for performing multiplication by 2–1. Since
x1 is an n-digit radix-r number, no additional hardware is
needed to compute (rnb/+x1). The desired result is the
concatenation of x1 and b/. Finally, a 3n-digit radix-r modular
adder is used to perform the addition of r2nc/ and (rnb/+x1). Fig.
1 shows the hardware architecture of the proposed reverse
converter.

IV. PERFORMANCE EVALUATION
The reverse converter proposed in this paper is a novel

converter dedicated to the moduli set {rn – 2, rn – 1, rn}.
Therefore, to verify the performance of this converter, it has to
be compared with other proposed converters which can
convert residue numbers to their equivalent radix-r (r > 2)
weighted representation. Such reverse converters are
presented in [19] and [18]. In [19] a CRT-based reverse
converter for the moduli set {rn – 2, rn – 1, rn} was presented.
In [18] four three-moduli sets s1={rn-2 + 1, rn-1 + 1, rn + 1},
s2={rn-3 + 1, rn-1 + 1, rn + 1}, s3={rn-4 – 1, rn-2 – 1, rn – 1} and
s4={rn-5 – 1, rn-3 – 1, rn-1 – 1} are proposed and also a
conversion algorithm based on CRT with scale-down factors
is presented. Since the hardware requirements and conversion
speed for the moduli sets s1 and s3 are the same as the moduli
sets s2 and s4, respectively, we confine our comparison to to
the reverse converter for moduli sets s1 and s3. All the
hardwares listed in Table I, are radix-r hardware. An overview
of MVL circuits’ implementation can be found in [20], [21]. It
should be noted the radix-r full adder (FA) cell is a r-input
adder cell. Therefore, a radix-r CSA tree includes r-to-2
CSA's. Since the CSA tree used in Fig. 1 has 8 inputs, the
maximum levels of r-to-2 CSA in CSA tree is two. So, the
total delay of the CSA tree used in Fig. 1 is the delay of two
radix-r FA. Also for r=3, this CSA tree consists of three 4-to-
2 radix-3 CSA and for greater values of r (r>3), it consists of
two r-to-2 CSA. For comparison with other converters, we
consider the worst case (r=3) for CSA tree. The hardware
requirements and conversion delays of the reverse converters
listed in Table I and II, respectively. It should be noted that we
used some radix-r NOT and XOR gates for calculating
negative numbers and checking the value of (x1+x3) for odd or
even, respectively. Since these gates are not on the critical
delay path and their cost are small, we don't taking into

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

596

account these gates in Table I and II.
It has been assumed that TFAr, TMUXr, TMULr and TMOAr refer

to the delays of the radix-r full adder, multiplexer, multiplier
and mod M modular adder, respectively.

It is clear from Table I and II that the area and delay of the
proposed converter are considerably better than the other
converters. Our proposed converter is very faster and results
to hardware savings when compared with the converters of
[18] and [19]. It must be noted that for a specified dynamic
range, the value of n for our reverse converter is smaller than
the n for reverse converters of [18].

V. CONCLUSION
In this paper, we proposed a fully parallel reverse

conversion algorithm for the moduli set {rn – 2, rn – 1, rn},
based on simple mathematical relationships. Our proposed
conversion algorithm is very simple and resulted to an
efficient hardware realization of the reverse converter. In
comparison with other reverse converters for MVL based
RNS systems, the presented converter has a superior area-time
complexity.

REFERENCES
[1] M. A. Soderstrand and et al. Eds, Residue number system arithmetic:

modern applications in digital signal processing, New York: IEEE
Press, 1986.

[2] N. Szabo and R. Tanaka, Residue arithmetic and its applications to
computer technology, New York: McGraw-Hill, 1967.

[3] B. Parhami, Computer arithmetic: algorithms and hardware designs,
Oxford, 2001.

[4] T. Stouratitis and V. Paliouras, “Considering the alternatives in
lowpower design,” IEEE Circuits and Devices, pp. 23–29, 2001.

[5] R. Conway and J. Nelson, “Improved RNS FIR Filter Architectures,”
IEEE Transactions On Circuits and Systems II, Vol. 51, No. 1, pp. 26-
28, 2004.

[6] P. G. Fernandez, et al., “A RNS-Based Matrix-Vector-Multiply FCT
Architecture for DCT Computation,” Proc. of 43rd IEEE Midwest
Symposium on Circuits and Systems, pp. 350-353, 2000.

[7] A. D. Re, A. Nannareli and M. Re, “A Tools for Arithmetic Generation
of RTL-Level VHDL Description of RNS FIR Filters,” IEEE
Proceeding of the Design, Automation and Test in Europe Conference
and Exhibition, pp. 686-687, 2004.

[8] W. L. Freking and K. K. Parhi, “Low-power FIR digital filters using
residue arithmetic," Proc. Of 31st Asilomar Conference on Signals,
Systems, and Computers, vol. 1, pp. 739–43, 1997.

[9] F. Taylor, “A Single Modulus ALU for Signal Processing,” IEEE
Transactions on Acoustics, Speech, Signal Processing, vol. 33, pp. 1302-
1315, 1985.

[10] S. Yen, S. Kim, S. Lim and S. Moon, “RSA Speedup with Chinese
Remainder Theorem Immune against Hardware Fault Cryptanalysis,”
IEEE Transactions On Computers, Vol. XX, No. Y, pp. 461-472, 2003.

[11] J. Ramirez, et al., “Fast RNS FPL-Based Communications Receiver
Design and Implementation," Proc. 12th Int’l Conf. Field Programmable
Logic, pp. 472-481, 2002.

[12] B. Parhami , “RNS Representation with Redundant Residues,” Proc. of
the 35th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, pp. 1651-1655, 2001.

[13] E. Kinoshita and K. Lee, “A Residue Arithmetic Extension for Reliable
Scientific Computation,” IEEE Transactions . On Computers, Vol. 46,
No. 2, pp. 129-138, 1997.

[14] V. Paliouras and T. Stouraitis, “Novel High-Radix Residue Number
System Architectures,” IEEE Transactions On Circuits and Systems-II:
Analog and Digital Signal Processing, Vol. 47, No. 10, pp. 1059-1073,
2000.

[15] L. L. Yang, and L. Hanzo, “Redundant Residue Number System Based
Error Correction Codes,” Proc. of VTC'2001, Atlantic City, USA.
pp. 1472-1476, 2001.

[16] Y. Wang, X. Song, M. Aboulhamid and H. Shen: “Adder based residue
to binary numbers converters for (2n-1, 2n, 2n+1),” IEEE Trans. Signal
Processing, Vol. 50, No. 7, pp. 1772-1779, 2002.

[17] M. A. Soderstrand and R. A. Escott, “VLSI implementation in multiple-
valued logic of an FIR digital filter using residue number system
arithmetic,” IEEE Trans. Circuits Syst., vol. CAS -33, no. 1, pp. 5–25l ,
1986.

[18] M. Abdallah and A. Skavantzos, “On MultiModuli Residue Number
Systems With Moduli of Forms ra, rb-1, rc+1,” IEEE Transactions
Circuits System I: Regular Paper, Vol. 52, No. 7, pp. 1253-1266, 2005.

[19] M. Hosseinzadeh, K. Navi, S. Gorgin, “A New Moduli Set for Residue
Number System: {rn-2, rn-1, rn},” IEEE International Conference on
Electrical Engineering, 2007.

[20] E. Dubrova, “Multiple-Valued logic in VLSI: Challenges and
opportunities,” 34th IEEE International Symposium on Multiple-Valued
Logic, 2004.

[21] E. Kinvi-Boh, M. Aline, O. Sentieys, and E. D. Olson, “MVL circuit
design and characterization at the transistor level using SUS-LOC,” in
Proc. 33rd Int. Symp. Multiple-Valued Logic, May 16–19, pp. 105–110,
2003.

[22] A. Hiasat and H. S. Abdel-Aty-Zohdy, “Residue-to-binary arithmetic
converter for the moduli set (2k, 2k-1, 2k-1-1),” IEEE Trans. Circuits Syst.,
vol. 45, pp. 204–208, 1998.

[23] W.Wang, M. N. S. Swamy, M. O. Ahmad, and Y.Wang, “A high-speed
residue-to-binary converter and a scheme of its VLSI implementation,”
IEEE Trans. Circuits Syst. II, vol. 47, pp. 1576–1581, 2000.

[24] Y. Wang, X. Song, M. Aboulhamid and H. Shen: “Adder based residue
to binary numbers converters for (2n-1, 2n, 2n+1),” IEEE Trans. Signal
Processing, Vol. 50, No. 7, pp. 1772-1779, 2002.

[25] W.Wang, M. N. S. Swamy, M. O. Ahmad, and Y.Wang, “A high-speed
residue-to-binary converter and a scheme of its VLSI implementation,”
IEEE Trans. Circuits Syst. II, vol. 47, pp. 1576–1581, 2000.

[26] S. L. Hurst, “Multiple-Valued Logic – Its status and its future,” IEEE
Transaction on Computers, pp. 1160-1179, 1984.

[27] A.F. Gonzalez, and P. Mazumdar, “Redundant Arithmetic, Algorithms
and Implementations,” Integration: The VLSI Journal, Vol. 30, No. 1,
pp. 13-53, 2000.

[28] A. K. Jain, R. J. Bolton, and M. H. Abd-El-Barr, “CMOS multiplevalued
logic design—Part I: Circuit implementation,” IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl., vol. 40, no. 8, pp. 503–514, 1993.

[29] S. J. Piestrak, “Design of residue generators and multioperand modular
adders using carry-save adders”, IEEE Trans. Comput., vol. 423, no. 1,
pp. 68-77, 1994.

[30] A. A. Hiasat, “VLSI implementation of New Arithmetic Residue to
Binary Decoders,” IEEE Trans. VLSI Systems, Vol.13, pp. 153-158,
2005.

[31] A. Hariri, K. Navi, R. Rastegar, “A Simplified Modulo (2 1)n −
Squaring Scheme for Residue Number System,” Proc. IEEE
International Conference on Computer as a tool , 2005.

[32] S. Timarchi, K. Navi and M. Hosseinzadeh, “New Design of RNS
Subtractor for modulo(2 1)n + ,” Proc. 2th IEEE International
Conference on Information & Communication Technologies: From
Theory To Applications, 2006.

[33] M. Hosseinzadeh, K. Navi and S. Timarchi, “Design of Residue Number
System Circuits in Current mode,” Proc. 14th Iranian Conference of
Electrical Engineering, 2006.

[34] A. Sabbagh, K. Navi, “An Improved Residue to Binary Converter for the
RNS with Pairs of Conjugate Moduli,” Proc. International Conference
on Electrical Engineering and Informatics, Indonesia, 2007.

[35] M. Hosseinzadeh, K. Navi and S. Timarchi, “New Design of 4-3
Compressor,” Proc. 11th International CSI Computer Conference of
Iran, 2006.

[36] A. Hariri, K. Navi, R. Rastegar, “A new high dynamic range moduli set
with efficient reverse converter,” International Elsevier Journal of
Computers and Mathematics with Applications,
doi:10.1016/j.camwa.2007.04.028, 2007.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

597

Fig. 1 Block diagram of the proposed reverse converter.

TABLE I COMPARISON OF HARDWARE REQUIREMENTS

Regular Adders and Subtractors
CSA Adder Subtractor converter Moduli Set

n n 3n n 2n 3n
Total
FA's

Modular
Adder (3n) Multiplier (n) Multi

plexer
[19] {rn –2, rn – 1, rn} -- 1 1 - 1 2 12n 1 3 --

[18] {rn-2+1, rn-1+1,
rn+1} -- 1 4 - -- -- 13n 1 3 --

[18] {rn-5-1, rn-3-1, rn-1-1} -- -- 3 3 -- 3 21n 1 3 --
Proposed {rn – 2, rn – 1, rn} 4 4 -- - -- -- 8n 1 2 2

TABLE II COMPARISON OF CONVERSION DELAYS

converter Moduli Set Conversion Delay

[19] {rn – 2, rn – 1, rn} (5n)TFAr+TMULr+TMOAr
[18] {rn-2+1, rn-1+1, rn+1} (6n)TFAr+TMULr+TMOAr
[18] {rn-5-1, rn-3-1, rn-1-1} (6n)TFAr+TMULr+TMOAr

Proposed {rn – 2, rn – 1, rn} (n+2)TFAr+TMULr+TMOAr+TMUXr

n-digit CSAr

n-digit Adderr1 n-digit Adderr2

)4(2 −nr 103 −nr

01
MUX

1x 3x
nn

n-digit CSAr Tree

n-digit Adderr3 n-digit Adderr4 Selection
Block

)2(2 +nr 6+nr

01
MUX

1x 3x

n

3n-digit Modular Adderr

b′
1x0

n2

cr n ′2
1xbrn +′

n3

n2n3

c′

n-digit Multiplierr1
(multiply by 2-1)

n-digit Multiplierr2
(multiply by 2-1)

n nn
2x− 1x− 2x

3x−

b′

X

c′

