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Abstract—It has proved that nonlinear diffusion and bilateral 

filtering (BF) have a closed connection. Early effort and contribution 
are to find a generalized representation to link them by using adaptive 
filtering. In this paper a new further relationship between nonlinear 
diffusion and bilateral filtering is explored which pays more attention 
to numerical calculus. We give a fresh idea that bilateral filtering can 
be accelerated by multigrid (MG) scheme which likes the nonlinear 
diffusion, and show that a bilateral filtering process with large kernel 
size can be approximated by a nonlinear diffusion process based on 
full multigrid (FMG) scheme. 
 

Keywords—Bilateral filter, multigrid 

I. INTRODUCTION 
ILTERING is perhaps the most fundamental operation of 
computer vision. Simple smoothing operations such as 

low-pass filtering, which does not take into account intensity 
variations within an image, tend to blur edges. The more 
advanced methods for noise removal aim at preserving the 
signal details while removing the noise. This is achieved by a 
locally adaptive recovery paradigm, such as: anisotropic 
diffusion (AD) XX[1]XX[2]XX[3]XX[4]XX[5]XX, weighted least squares 
(WLS) XX[6]XX, robust estimation (RE) XX[7]XX. All these methods share 
the fact that local relations between the samples dictate the final 
result, and therefore, all these methods resort to an iterative 
algorithm. There is a solid theoretical bridge between these 
methods as well as to the line-process approach XX[8]XX. Recently, 
Tomasi and Manduchi proposed an alternative noniterative 
bilateral filter for removing noise from imagesXX[10]XX. This filter 
is merely a weighted average of the local neighborhood 
samples, where the weights are computed based on temporal 
(or spatial in case on images) and radiometric distances 
between the center sample and the neighboring samples. This 
filter is also locally adaptive, and it was shown to give similar 
and possibly better results to those obtained by the previously 
mentioned iterative approaches.   

The nature of bilateral filtering resembles that of nonlinear 
diffusion. It is therefore suggested the two are related and a 
unified viewpoint can reveal the similarities and differences 
between the two approaches. Adaptive smoothing serves as a 
link between the two approaches XX[19]XX. In nonlinear diffusion, 
several iterations are performed. In bilateral filtering, the 
window of the filter becomes much bigger in size than the one 
used in adaptive smoothing and there is no need to perform 
several iterations. In some research, it is shown that the bilateral 
filter is identical to the first iteration of the Jacobi algorithm 
(diagonal normalized steepest descent) with a specific cost 
functionXX[21]XX. 
 

Z. Q. Lu. Author is with Shenzhen Institutes of Advanced Technology, 
Chinese Academy of Sciences, Shenzhen, China (e-mail: zq.lu@ siat.ac.cn) 

Unlike AD, bilateral filtering is a non-iterative process, so 
we do not associate bilateral filtering with multigrid (MG) 
scheme for acceleration customarily which often was applied to 
nonlinear diffusion. A new relationship between bilateral 
filtering and nonlinear diffusion is explored in this paper. Our 
work is motivated by a fresh idea that a bilateral filtering 
process with large kernel size can be approximated by a 
nonlinear diffusion process based on full multigrid (FMG) 
scheme. It is the first time to apply MG to accelerate bilateral 
filtering. 

II. BILATERAL FILTER 
The bilateral filter is technique to smooth images while 

preserving edges. It can be traced back to 1995 with the work of 
Aurich and WeuleXX[11]XX on nonlinear Gaussian filters. It has 
been later rediscovered by Smith and BradyXX[12]XX as part of their 
SUSAN framework, and Tomasi and ManduchiXX[10]XX who gave 
it its current name. Since then, the use of bilateral filtering (BF) 
has grown rapidly and is now ubiquitous in image-processing 
applications. BF is a nonlinear filter which combines domain 
and range filtering (Fig. 1). Given an input image 

2
1 2i( ), [ , ]x x ∈ Rx x = , using a continuous representation 

notation, the output image i ( )′ x is obtained by 
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Where 1 2[ , ] ( )τ τ ∈ Ω= xτ . The convolution mask is the 
product of the functions c and s , which represent ‘closeness’ 
(in the domain) and ‘similarity’ (in the range), respectively. In 
the bilateral filter, the domain weight c is given by 

( ) ( )2

22
, exp

c
c

σ

−= − xx ττ  

Where cσ is the standard deviation in the domain and − xτ  
is the Euclidean distance between the pixels τ  and x . For the 
range weights between pixels τ  and x , we use 
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Where sσ is the standard deviation in the range and 
i( ) i( )− xτ  is a measure of the distance between the intensities 

at pixels τ  and x . If the two pixels vary widely in their 
intensities, as is the case at an edge, then the corresponding 
weight in the range filter is small, thus reducing the smoothing. 

( )k x  is a normalization factor:  
                        

( )

( ) ( , ) (i( ), i( ))k c s d
Ω

= ∫
x

x x xτ τ τ             (2) 

The bilateral filter has several qualities that explain its 
attraction: 
♣ It’s formulation is simple: each pixel is replaced by an 
average of its neighbors.  
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♣ It depends only on two parameters that indicate the size and 
contrast of the features to preserve. 
♣ It can be used in a non-iterative manner. This makes the 
parameters easy to set since their effect is not cumulative over 
several iterations. 
 

  
Fig. 1 Left: original image; Right: filtered by BF [10] 

III. MULTIGRID: THE NEW LINK BETWEEN BILATERAL 
FILTERING AND NONLINEAR DIFFUSION 

A. Downsampling and bilateral filtering 
One research interest of bilateral filter is the acceleration of 

computation speed. Multiresultion or downsampling scheme is 
often used efficient wayX[20]XX[21] XX[22]X. Paris and Durand XX[20]XX 
Xanalyzed accuracy in terms of bandwidth and sampling, and 
derive criteria for downsampling in space and intensity to 
accelerate the bilateral filter by extending an earlier work on 
high dynamic range images. Their method approximates the 
bilateral by filtering subsampled copies of the image with 
discrete intensity kernels, and recombining the results using 
linear interpolation. 

Zhang and Gunturk XX[21]XX Xused multiresolution scheme and 
wavelet to eliminate noise. It avoids over-smoothing texture 
regions and to effectively eliminate blocking and ringing 
artifacts, and accelerate filtering process at the same time.  

Downsampling based bilateral filtering techniques need two 
indispensable steps: downsampling and interpolation. The 
former insures the low computation time, and the latter 
eliminates the artifact noise produced by downsampling. 

B. Multiscale based bilateral filtering  
Borrow the idea of downsampling scheme, we try to extend 

bilateral filtering to multiscale based version. Downsample the 
original input image (0)i ( )x  to (1) (0)i ( ) i ( )↓=x x . In order to 

reduce computational cost, for (1)i ( )x  it is not necessary to use 
the original kernel ke c s= ⋅ , but a smaller size version ke′ . Let 

(0)i ( )% x  be the wanted result of (0)i ( )x , (1)i ( )% x  is the filtered 

result of (1)i ( )x and (1) (1) (1)e ( ) i ( ) i ( )= − %x x x  is the noise of 
(1)i ( )x . Let (1)e ( )↑x  be the interpolated version of 
(1)e ( )x which is the low-frequency noise of (0)i ( )x . Here we 

have the following formula (Fig. 2): 
(0) (1) (0) (0)i ( ) e ( ) i ( ) e ( )↑− = +%x x x x  

Where , ,↑ ↓ ⊗ denote downsampling, interpolation and 
convolution operators respectively. (0)e  is the residue noise or 
high-frequency noise of (0)i . In order to eliminate (0)e from 

(0)i ( )x , it needs a further filtering step. High frequency noise 
(0)e  can be approximately described as (0, )N σ , therefore the 

final result (0)i ( )% x  is insensitive to the choice of ( , )c xτ , in 
other words we can still choose the smaller kernel and simply 
suggest the filtering application several times. The nature of 
multiscale idea is to replace large kernel convolution by several 
times filtering with small kernel over more scale levels. Let 

(0)i ( )x  be original input image, then (1) (0)i ( ) i ( )↓=x x  is the 
downsampled one, so we have ( 1) ( )i ( ) i ( ) ,0n+ n n N↓= ≤ <x x . 
We can make the kernel smaller when N  increases. The 
smallest kernel size (the size of Ω ) is 3 3× , the same choice in 
this article. We give the pseudo-code of the multiscale frame 
for bilateral filtering. 
 
Input image: (0)i( ) i ( )=x x . 
Output image: i( )% x . 
1. Obtain ( )i ( ),0n n N≤ <x  by downsampling steps. 
2. For ( 0n > ) 

Obtain error: ( +1) ( +1) ( +1)e ( ) i ( ) i ( )n n n= − %x x x ; 
Interpolation: ( ) ( 1)ê ( ) e ( )n n+

↑=x x ; 
Compensation: ( ) ( ) ( )ˆi ( ) i ( ) e ( )n n n← −x x x ; 
Filtering: ( ) ( )i ( ) i ( )n n ke′← ⊗% x x ; 

1n n= − ; 
End 

(0)i
(1)i

(1)i%(1)e

(0) (1)( )↑−i e

(0)i%

(0)e

 
Fig. 2 Illustration of multiscale BF, it visualizes that image 

noise including high-frequency and low-frequency components 
which can be removed at different scales. 

C. Multigrid based bilateral filtering 
For a small ke′ , it is easy and not computational expensive 

to apply several iterations. Here we introduce a 
notation τ denoting the iterative times, so we have 

( )i ( ),0 ,1n n Nτ ≤ < ≤ τ < ∞x , one iteration of the filter (1) (the 
case of discrete and kernel size 3 3× ) can be rewritten as: 

            ( ) ( ) ( )
( , )

1 , 1
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Equation (3) is a typical adaptive smoothing filter with 
3 3× window, and also a nonlinear diffusion equation 
evidentlyXX[19] XX. Reconsider (3), we have 

   

( ) ( ) ( ) ( )
( , )

1 , 1

( )

i ( , ) i ( , ) ( , )i ( , ) i ( , )

i ( , )

n n n n
x y

u v

n

x y x y w u v x u y v x y

d x y
d

τ+1 τ τ τ
− ≤ ≤

τ

− = + + −

=
τ

∑
        

(4) 
Equation (4) can be expressed by a generalized form (5). 

                                     
( )

( ) ( )( )
n

n nd
d

=
τ

I
A I                               (5) 

Where ( )nI is the vector expression of ( )i ( , )n x yτ , ( ) ( )nA � is a 
nonlinear function of ( )nI  derived from w . Now we find the 
original bilateral filtering (with large kernel) can be 
approximated by a multiscale nonlinear diffusion. The nature 
of equation (5) is to solve a nonlinear equation (6), which can 
be finished by relaxation iteration. 

( ) ( )( ) 0n n =A u                              (6) 
Equation (6) can be accelerated, it is easy to suggest the 

application of MG schemeXX[13]XXX, then the equation (6) at 
different scales can be viewed as (6) at different grids. Next we 
will demonstrate that a fast version of multiscale BF is 
equivalent to a full multigrid (FMG) based nonlinear diffusion 
filter. First we simply introduce the multigrid scheme. 

Multigrid 
Within the mathematical community, there has been 

widespread recent interest in multigrid methodsXX[13]XX. Multigrid 
techniques have already been used to expedite relaxation 
problems in image processing XX[17]XX. The multigrid methods can 
be used to provide numerical solutions to the linear and 
nonlinear iterative problems of image processing. For linear 
problems of the form ( )A u = f , we denote by v  an 
approximation to the exact solution u  and by e  the 
error, −e = u v . Defining the residual to be 

( ) = ( ) = ( )− −r = f A v A u v A e . In brief, multigrid is the 
recursive application of a two-grid process. An iterative 
method, such as Gauss-Seidel or Jacobi relaxation is applied to 
the fine-grid problem. These iterations have the property that 
after relaxation the error will be smooth.         At the fine grid, 
only high frequency error is eliminated quickly. The low 
frequency error can be accurately represented on a coarse grid. 
Since the coarse grid is much smaller than the fine grid, it is 
much less expensive to work on the coarse grid. The fine grid 
residual r  is computed and restricted to the coarse grid 

P ( )↓ ↓r = r , P↓ is downsampling or restriction operator, where it 
is used as the right-hand side of the coarse grid residual 
equation ( )↓ ↓ ↓A e = r . This equation is solved, and the error 
thus determined is then interpolated back to the fine grid where 
it is used to correct the fine grid approximation, 

P ( )↑ ↓←v v + e , P↑ is interpolation operator. By recursively 
solving the coarse grid equation with this two-grid process, a 
multigrid algorithm is defined. This is called the multigrid 
V-cycle, as the algorithm starts with an initial estimate, 
telescopes down to the coarsest grid, and then returns in order 
to the finest gridXX[14]XX. 

In this article ( )A � is nonlinear and ( ) ( )− ≠ −A u v f A v . 
There are two basic approaches for nonlinear MG. The first is 
to apply a linearization scheme, such as the Newton’s method, 
and to employ multigrid for the solution of the Jacobian system 
in each iteration. The second is to apply multigrid directly to the 
nonlinear problem by employing the so called Full 
Approximation Scheme (FAS)XX[24]XX. In FAS a nonlinear 
iteration is applied to smooth the error. The full equation is 
solved on the coarse grid, after which the coarse-grid error is 
extracted from the solution. This correction is then interpolated 
and applied to the fine grid approximation. We adopt V-cycle 
MG and FAS schemes to accelerate the form of (6) for every 
scale in this article.For multiscale BF the initial input is ( 1)N −I , 
the result is the solution of (0) (0)( ) 0=A I . In this paper, the size 
of test image is 640 480× , we choose 4N = , so the input 
is (3)I . In the following we give detail operations for every 
scale. 
Downsampling operator: P↓  

The full-weighting restriction operator produces at a 
coarse-grid point a value that is just an average of the values at 
the corresponding fine-grid point and its eight nearest 
neighbors: 

[
( ) ]

1
16( , ) (2 1,2 1) (2 1,2 1) (2 1,2 1) (2 1,2 1)

2 (2 ,2 1) (2 ,2 1) (2 1,2 ) (2 1,2 ) 4 (2 ,2 )

v i j v i j v i j v i j v i j

v i j v i j v i j v i j v i j
↓ = − − + − + + + − + + +

+ − + + + − + + +

 

Interpolation operator: P↑  
The easiest and most natural for this problem are to use a 

linear interpolation operator. The linear interpolation operator 
can be defined by P ( )↑ ↓v = v , with components of v given. 

( )
( )
( )

1
2

1
2

1
4

(2 ,2 ) ( , ),

(2 1,2 ) ( , ) ( 1, ) ,

(2 ,2 1) ( , ) ( , 1) ,

(2 1,2 1) ( , ) ( 1, ) ( , 1) ( 1, 1) .

v i j v i j

v i j v i j v i j

v i j v i j v i j

v i j v i j v i j v i j v i j

↓

↓ ↓

↓ ↓

↓ ↓ ↓ ↓

=

+ = + +

+ = + +

+ + = + + + + + + +

 

Scale-3: 
For scale-3, namely the coarsest grid, we only apply a few 

relaxations for solving equation (7).  
(3) (3)( ) 0=A u                             (7) 

Let the result of (7) is (3)I% . For scale-3 it does not need 
compensation. 
Scale-n<3: 

For scale-n<3, it needs to solve equation (8). 
( ) ( )( ) 0n n =A u                              (8) 

The initial input is: 
( ) ( ) ( )

0

n n n

τ=
= −u I e , ( ) ( +1) ( +1)= P ( )n n n

↑ −e I I%  

Use V-cycle multigrid (Fig.3(a)) and FAS to accelerate 
equation (8). Suppose we have found an approximation v for 
problem (9).  

( ) 0A u = f =                                  (9) 
The coarse-grid version of (9) is:  

( + ) ( )↓ ↓ ↓ ↓ ↓ ↓−A v e A v = r                    (10) 
Where P ( ), P ( ( ))↓ ↓ ↓ ↓= −v v r = A v . ↓A  ( P ( )↓≠ A ) is the 
coarser grid version of A , but is not the downsampled result of 
A . ( )↓A � are nonlinear function and determined by its variable 
and ( , )c sσ σ , for all scale-levels of ( , )c sσ σ are same.Making 
these substitutions in the coarse-grid residual equation yields 
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( + ) ( ) +
↓ ↓

↓ ↓ ↓ ↓ ↓ ↓

u f

A v e = A v r
14243 14243

                    (11) 

The right side of this nonlinear system is known, and the 
equation is of the same form as the fine-grid equation (9). 
Assume we can find a solution to this system, which we denote 

↓u . The coarse-grid error can be extracted from the solution by 

↓ ↓ ↓= −e u v , and can then be interpolated up to the fine grid 
and used to correct the fine-grid approximation v : 

P ( )+ ↑ ↓←v v e  
Now it is not difficult to find that combining V-cycle MG 

and FAS with multiscale-BF (section 3.2) is equivalent to a 
nonlinear diffusion (5) accelerated by FMG (Fig.3(b)). 

 

interpolation
restriction

 

interpolation
restriction

 
Fig.3 Schedule of grids for V-cycle (a) and FMG  

(b) schemes, all on four levels 

IV. EXPERIMENTS 
Fig.4-6 shows three experiments, the test data are LED, Cat 

and Piece-wise constant test images (the size is 640 480× ), the 
scale level is 4N = . For equation (7) we apply two iterations, 
for scale 0,1, 2N = we use V-cycle multigrid computation, only 
one relaxation is applied. Fig.4-6 shows the comparisons 
between two different ways of bilateral filtering. The result of 
using BF X[10]X and multigrid bilateral filtering (MGBF) is 
basically identical, but the time cost has large difference. 
Table.1 gives the computational performance comparison. 
 

TABLE I 
PERFORMANCE COMPARISON 

Symbol BF (one iteration) MGBF 

LED Time=1.83s Time=0.28s 
Cat Time=1.83s Time=0.25s 

Piece-wise constant test 
image 

Time=1.80s 
SNR=17.3 

Time=0.27s 
SNR=46.8 

 

V. CONCLUSION 
In XX[19]XXX, a conclusion was given that the nature of bilateral 

filtering resembles that of anisotropic diffusion firstly, it use 
adaptive filter to build a novel link between bilateral filtering 
and nonlinear diffusion. But for numerical calculus, they are 
still two distinct computation ways: convolution based and 

iteration based under the relationship by X[19]X. In this paper we 
give a new closer relationship between bilateral filtering and 
nonlinear diffusion: the bilateral filtering (1) can be 
approximated by a nonlinear diffusion based on FMG scheme. 
Additional contribution is that we propose a MG based bilateral 
filter, it is first time to show that bilateral filter can be 
accelerated by MG scheme. Fig.7 gives an visual expression 
and comparison between our works and XXX[19]XXX. In XX[19]XX, the 
crucial link is that both bilateral filtering and nonlinear 
diffusion have same generalized form of adaptive filtering, but 
the new relationship from this paper focuses more on numerical 
calculus. 

 

Nonlinear diffusion Bilateral filtering

New link and 
relationship

Link and relationship 
given by [19]

Adaptive filtering

Multigrid

Nonlinear diffusion
Bilateral filtering

Fast bilateral filtering  
Fig.7 Visual expression and comparison of the new relationship and 

that from [19] 
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LED 

 

 

Cat 

 

 

Piece-wise constant test image 

 

(a)                                                                    (b)                                                                      (c) 
Fig.4 (a) the original LED image; (b) the result of (a) by BF (one iteration), the time cost is 1.83s, the kernel size is 33 33× and 

( , ) (2.5,31.62)c sσ σ = ; (c) the result of (a) by MGBF, the time cost is 0.28s, ( , ) (2.5,16)c sσ σ = . 

(a)                                                                    (b)                                                                      (c) 
Fig.5 (a) the original Cat image; (b) the result of (a) by BF (one iteration), the time cost is 1.83s, the kernel size is 33 33×  and 

( , ) (2.5,31.62)c sσ σ = ; (c) the result of (a) by MGBF, the time cost is 0.25s, ( , ) (2.5,10)c sσ σ = . 

(a)                                                 (b)                                                 (c)                                                   (d) 
Fig.6 (a) the original test image; (b) local details from (a) within the small red frame; (c) the result by BF (one iteration), the time 

cost is 1.80s, SNR=17.3, the kernel size is 33 33×  and ( , ) (2.5,31.62)c sσ σ = ; (d) the result by MGBF, the time cost is 0.27s, 
SNR=46.8, ( , ) (2.5,10)c sσ σ = . 


