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Method of moments applied to a cuboidal cavity
resonator: Effect of gravitational field produced by

a black hole
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Abstract—This paper deals with the formulation of Maxwell’s
equations in a cavity resonator in the presence of the gravitational
field produced by a blackhole. The metric of space-time due to
the blackhole is the Schwarzchild metric. Conventionally, this is
expressed in spherical polar coordinates. In order to adapt this metric
to our problem, we have considered this metric in a small region
close to the blackhole and expressed this metric in a cartesian system
locally.
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I. INTRODUCTION

THE law of electromagnetic wave propagation inside a
cavity resonator is governed by the Helmholtz equation.

This equation is derived from the standard wave equation
by assuming sinusoidal time dependence [1], [2]. Such an
equation is valid if the space-time manifold is flat, i.e.,
Minkowskian. In the presence of a gravitational field, ac-
cording to Einstein’s general theory of relativity, the space-
time manifold becomes curved and the geometry of such a
curved manifold is described by a Riemannian metric [3],
[4]. Consequently, the wave equation in such a curved space-
time needs to be modified to account for the curvature [5]. In
addition, the assumption of sinusoidal time dependence gives
a modified Helmholtz equation [6], [7].

A. Black hole: Background

The simplest possible black hole is one that has mass but
neither charge nor angular momentum. These black holes
are often referred to as Schwarzschild black holes after the
physicist Karl Schwarzschild who discovered this solution in
1915 [8]. The Reissner-Nordstrom solution describes a black
hole with electric charge, while the Kerr solution yields a
rotating black hole. The most general known stationary black
hole solution is the Kerr-Newman metric having both charge
and angular momentum [9]. All these general solutions share
the property that they converge to the Schwarzschild solution
at distances that are large compared to the ratio of charge
and angular momentum to mass. While the mass of a black
hole can take any positive value, the other two properties
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charge and angular momentum are constrained by the mass
[10]. In natural units, the total charge Q and the total angular
momentum J are expected to satisfy for a black hole of mass
M. Black holes saturating this inequality are called extremal
[11]. In 1974, Stephen Hawking showed that black holes are
not entirely black but emit small amounts of thermal radiation
[12]. He got this result by applying quantum field theory in
a static black hole background. The result of his calculations
is that a black hole should emit particles in a perfect black
body spectrum. This effect has become known as Hawking
radiation. Since Hawking’s result many others have verified
the effect through various methods .

The temperature of the emitted black body spectrum is
proportional to the surface gravity of the black hole [13]-[16].
For a Schwarzschild black hole this is inversely proportional
to the mass. Consequently, large black holes are very cold and
emit very little radiation.

B. Black hole: Introduction

The Schwarzschild metric is valid for the objects like black
holes. Black holes form in the early phases of the evolution
of the universe as a consequences of the strong fluctuations
in the dense primordial medium. These are expected to have
small masses and are called mini black holes. More massive
black holes form later on during phase transitions. They
also form when massive bodies that are no longer pressure
supported by radiation, collapse under the gravitational force
[17]. Black holes are described by the general theory of
relativity. According to this theory when a large amount of
mass is present in a sufficiently small region of space, all
paths through space are warped inwards towards the center
of the volume, preventing all matter and radiation within it
from escaping. General relativity describes a black hole as
a region of empty space with a point like singularity at the
center and an event horizon at the outer edge. Research on this
subject shows that when the effects of quantum mechanics
are taken into account, rather than holding captured matter
forever, black holes may slowly leak a form of thermal energy
called Hawking radiation and have a finite life [18], [19], [20].
According to Einsteins general theory of relativity, as mass is
added to a degenerate star a sudden collapse will take place
and the intense gravitational field of the star will close in on
itself. Such a star then forms a black hole in the universe.
According to the theory of special relativity two concepts
introduced by Albert Einstein are needed to explain here [3].
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The first is that time and space are not two independent
concepts, but are interrelated forming a single continuum,
spacetime. This continuum has some special properties, as
an object is not free to move around spacetime , instead
it must always move forwards in time, and not only must
an object move forwards in time, it also cannot change its
position faster than the speed of light. The second concept
is the base of general relativity; mass deforms the structure
of this spacetime. The effect of a mass on spacetime can
informally be described as tilting the direction of time towards
the mass. As a result, objects tend to move towards masses.
This is experienced as gravity. This tilting effect becomes more
pronounced as the distance to the mass becomes smaller. At
some point close to the mass the tilting becomes so strong
that all the possible paths an object can take lead towards
the mass [21]. According to the ”No Hair” theorem a black
hole has only three independent physical properties: mass,
charge and angular momentum [22]. Any two black holes
that share the same values for these properties are completely
indistinguishable.

1) Problem formulation: Suppose (X,Y, Z) are the
cartesian coordinates of the centre of our system relative to
the centre of the blackhole. Then the metric is expressed in
terms of differentials dx, dy, dz where (X + x, Y + y, Z + z)
are the cartesian coordinates of out point relative to the centre
of the blackhole. The metric is then linearized in the mass
of the blackhole yielding a local metric having the form of
the conventional Minkowski metric of flat space-time plus
a small perturbation about the Minkowski metric due to
the presence of the gravitational field of the blackhole. The
Maxwell equations are then written down for this metric.
The model assumed is a box (cavity resonator) with centre at
(X,Y, Z) and the point (X + x, Y + y, Z + z) varies inside
the box. The Maxwell equations are expressed in terms of
the electromagnetic four potential yielding after applying the
Lorentz gauge condition, a perturbed wave equation.

The Schwarzschild metric in spherical coordinate system is
given by,

ds2 = −C2dτ2

= −
(
1− 2GM

rC2

)
C2dt2 +

(
1− 2GM

rC2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (1)

C. Transformation of Schwarzschild metric in to cartesian
coordinates

Relation between spherical and rectangular coordinate Eq.
(1) is given by:

r =
√
x2 + y2 + z2 (2)

tan θ =
x2 + y2

z
(3)

tanφ =
y

x
(4)

x = r sin θ cosφ (5)

y = r sin θ sinφ (6)

z = r cos θ (7)

The differential displacement is given by

dl = drâr + rdθâθ + r sin θdφâφ (8)

Where
r =

√
x2 + y2 + z2 (9)

dr =
xdx + ydy + zdz

r
(10)

dr2 =
(xdx + ydy + zdz)

2

r2
(11)

Now adding and subtracting dr2 in Eq. (1)

ds2 = −
(
1− 2GM

rC2

)
C2dt2 +

(
1− 2GM

rC2

)−1

dr2

+dr2 − dr2 + r2dθ2 + r2 sin2 θdφ2 (12)

Or

ds2 = −
(
1− 2GM

rC2

)
C2dt2 +

((
1− 2GM

rC2

)−1

− 1

)
dr2

+dr2 + r2dθ2 + r2 sin2 θdφ2 (13)

Here substituting GM
C2 = 1, C2 = 1 in Eq. (13)and the term

dr2 + r2dθ2 + r2 sin2 θdφ2 = dx2 + dy2 + dz2 (14)

and from Binomial expansion((
1− 2GM

rC2

)−1

− 1

)
dr2 =

(
1 +

2√
x2 + y2 + z2

− 1

)

(xdx + ydy + zdz)
2

r2
(15)

Now ds2 in rectangular coordinate system will be given by
(substituting GM

C2 = 1, and simplify)

ds2 = −
(
1− 2√

x2 + y2 + z2

)
dt2 +

(1 + 2x2)dx2

(x2 + y2 + z2)3/2

+
(1 + 2y2)dy2

(x2 + y2 + z2)3/2
dy2 +

(1 + 2z2)dz2

(x2 + y2 + z2)3/2

+
2xydxdy

(x2 + y2 + z2)3/2
+

2yzdydz

(x2 + y2 + z2)3/2

+
2zxdzdx

(x2 + y2 + z2)3/2
(16)

Now we’ll write the components of Schwarzchild metric from
Eq.(16). We have

g00 = −
(
1− 2√

x2 + y2 + z2

)
(17)

g11 =
(1 + 2x2)dx2

(x2 + y2 + z2)3/2
(18)

g22 =
(1 + 2y2)dx2

(x2 + y2 + z2)3/2
(19)
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g33 =
(1 + 2z2)dx2

(x2 + y2 + z2)3/2
(20)

g12 = g21 =
xy

(x2 + y2 + z2)3/2
(21)

g23 = g32 =
yz

(x2 + y2 + z2)3/2
(22)

g31 = g13 =
zx

(x2 + y2 + z2)3/2
(23)

other g′ijs being zero. The metric is first expressed in the
cartesian system. It has the form

ds2 = gttdt
2 + gxxdx

2 + gyydy
2 + gzzdz

2

+2gxydxdy + 2gyzdydz + 2gxzdxdz (24)

where gtt, gxx, gyy, gzz, gxy, gyz, gxz are all functions of
x, y, z and are independent of t. The Maxwell equations in
such a metric have the form

(Fμν√−g),ν = 0 (25)

and the gauge condition reads

(Aμ√−g),μ = 0 (26)

This gauge condition can be expressed as

Aμ
,μ

√−g +Aμ(
√−g),μ = 0 (27)

We have

Fμν = Aν,μ −Aμ,ν (28)

so that

Fμν = gμαgνβFαβ = gμαgνβ(Aβ,α −Aα,β) (29)

And

Fμν√−g = gμαgνβ
√−g(Aβ,α −Aα,β) (30)

Now

(Fμν√−g),ν = (gμαgνβ
√−g),ν(Aβ,α −Aα,β)

+gμαgνβ
√−g(Aβ,α −Aα,β),ν (31)

a

b

c

X

Y

Z

Fig. 1. Cuboidal cavity resonator

II. METHOD OF MOMENTS FORMULATION TO A CAVITY

RESONATOR

The term method of moments was first used in Western
literature by R.F. Harrington. The Method of moments (MOM)
has the advantage of being conceptually simple [23], [24].
Cavity resonator can be used as tuned circuits, UHF tubes,
klystron amplifier and oscillators, cavity magnetron, and in
duplex radars. Cuboidal cavity resonator is shown in figure 1.
Eq. (31) can be brought to the form

(Fμν√−g),ν = c(μ, ν, α, β)Aν,αβ

+d(μ, ν, α)Aν,α + f(μ, α)Aα

= 0 (32)

We write the full expanded form of this system of equations
and replace partial derivative with respect to time by multipli-
cation by jω. In this way, we end up with a system of linear
partial differential equations in the variables x, y, z alone [25].
We then expand the potentials as

Aμ =
N∑

n,m,k=1

c(n,m, k) sin
nπx

a
sin

mπx

b
sin

kπx

c
(33)

where a, b, c are the lengths of the sides of the cuboidal cavity.
Then take the inner product with the same functions to end up
with a generalized eigenvalue equation for the frequencies of
oscillation ω. To be more specific, we write the above equation
as

c(μ, ν, x, x)Aν,xx + c(μ, ν, y, y)Aν,yy + c(μ, ν, z, z)

Aν,zz + 2c(μ, ν, x, y)Aν,xy + 2c(μ, ν, y, z)Aν,yz + 2c

(μ, ν, x, z)Aν,xz − 2ω2c(μ, ν, t, t)Aν,tt + d(μ, ν, x)Aν,x

+d(μ, ν, y)Aν,y + d(μ, ν, z)Aν,z + 2iωc(μ, ν, t, x)Aν,x

+2iωc(μ, ν, t, y)Aν,y + 2iωc(μ, ν, t, z)Aν,z

+iω.d(μ, ν, t)Aν + f(μ, ν)Aν = 0 (34)

We then plug in the expressions

Aμ,x =
∑

c(n,m, k)
(nπ
a

)
cos
(nπx

a

)
sin
(mπy

b

)

sin

(
kπz

c

)
(35)

Aμ,y =
∑

c(n,m, k)
(mπ
b

)
sin
(nπx

a

)
cos
(mπy

b

)

sin

(
kπz

c

)
(36)

Aμ,xx = −
∑

c(n,m, k)
(nπ
a

)2
sin
(nπx

a

)
sin

(mπy
b

)

sin

(
kπz

c

)
(37)

Aμ,yy = −
∑

c(n,m, k)
(mπ
b

)2
sin
(nπx

a

)
sin

(mπy
b

)

sin

(
kπz

c

)
(38)
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Aμ,zz = −
∑

c(n,m, k)

(
kπ

c

)2

sin
(nπx

a

)
sin

(mπy
b

)

sin

(
kπz

c

)
(39)

Aμ,xy = −
∑

c(n,m, k)
(nπ
a

)(mπ
b

)
cos
(nπx

a

)

cos
(mπy

b

)
sin

(
kπz

c

)
(40)

Aμ,yz = −
∑

c(n,m, k)
(mπ
b

)(kπ
c

)
sin

(nπx
a

)

cos
(mπy

b

)
cos

(
kπz

c

)
(41)

Aμ,xz = −
∑

c(n,m, k)
(nπ
a

)(kπ
c

)
cos
(nπx

a

)

sin
(mπy

b

)
cos

(
kπz

c

)
(42)

We assume that the range of the summation in all these
expressions is 1 ≤ n,m, k ≤ N . Plugging these expressions
into the system of partial differential equations gives us an
equation of the form (L0 + mL1)(A

μ) = 0 where L0 is
the standard D’Alembertian wave operator and L1 is the
perturbation to this wave operator caused by the blackhole
. m is the mass of the blackhole [26], [27]. We then assume
sinusoidal dependence on time and reduce this wave equation
to a modified Helmholtz equation which is an eigen equation
for the frequencies [28].

III. CONCLUSION

A method of moments formulation for the computation
of the propagation modes of the electromagnetic waveguide
with gravitational effects has been presented and discussed.
Vanishing boundary conditions for the potential on the faces
of the box are assumed and then by applying the method
of moments which involves expanding the potentials inside
the box as linear combinations of test functions, we obtain a
matrix generalized eigenvalue problem for the frequencies of
oscillation. The solution for the eigen-frequencies can then be
obtained using standard perturbation theory of matrix general-
ized eigenvalue problems. The method of perturbation theory
required here involves the following: Let A0, B0, A1, B1 be
square matrices of the same size and let ε be a small parameter.
Then given the solutions to the generalized eigenvalue problem
(A0 − λ.B0)x = 0, determine as a power series in ε the
solutions to the perturbed generalized eigenvalue problem
(A0+ εA1−λ(B0+ εB1))x = 0. The generalized eigenvalues
λ and eigenvectors x are to be expressed as power series in
the parameter ε.
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