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  Abstract—The aim of this research was to calculate the 
mechanical properties of Pd3Rh and PdRh3 ordered alloys. The 
molecular dynamics (MD) simulation technique was used to obtain 
temperature dependence of the energy, the Yong modulus, the shear 
modulus, the bulk modulus, Poisson’s ratio and the elastic stiffness 
constants at the isobaric-isothermal (NPT) ensemble in the range of 
100-325 K. The interatomic potential energy and force on atoms were 
calculated by Quantum Sutton-Chen (Q-SC) many body potential. 
Our MD simulation results show the effect of temperature on the 
cohesive energy and mechanical properties of Pd3Rh as well as 
PdRh3 alloys. Our computed results show good agreement with the 
experimental results where they have been available. 
 

Keywords—Pd-Rh alloy; Mechanical properties; Molecular 
dynamics simulation  

I. INTRODUCTION 
HE Pd-based alloys have been studied for more than 100 
years in both fundamental and application aspects. 

Especially, in the last three decade thermodynamic and 
mechanical properties of pd-based alloys were studied by 
molecular dynamics simulation technique [1-8]. Among the 
Pd-based alloys, the Pd-Rh alloy is of special interest owing to 
their increased hydrogen absorption capacity. Moreover, Pd-
based alloys can potentially offer improvements to pure Pd 
membranes [9-20]. Very few experimental data are available 
for the mechanical properties of Pd3Rh and PdRh3 ordered 
alloys in the various temperatures. The phase-stability of PdRh 
alloys was studied by Tanusri Saha and Abhijit Mookerjee 
[19]. J. Luyten et al provided theoretical estimates for the 
heats of mixing of the binary systems Pt-Rh, Pt-Pd and Pd-Rh 
and the ternary Pt-Pd-Rh systems. The heats of mixing and the 
phase diagrams were calculated with Monte Carlo simulations 
and with the semi-empirical modified embedded atom method 
[13]. In the other investigation, M. Hara et al were 
investigated absorption and desorption isotherms of protium 
and deuterium were measured for pd-based alloys [20].  

In this investigation, we have performed MD simulation 
under constant pressure, constant temperature conditions [21, 
22] to calculate the mechanical properties including, Yong 
modulus, the shear modulus, the bulk modulus, Poisson’s ratio 
and the elastic stiffness constants of Pd3Rh and PdRh3 ordered 
alloys. The Q-SC potential [5, 24] parameters of the pure Pd 
and Rh metals were used as interatomic potential parameters 
to calculate the cohesive energy as well as the mechanical  
properties of Pd, Rh pure metals and Pd3Rh and PdRh3 
ordered alloys. We have calculated mechanical properties and 
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cohesive energy of Pd, Rh elements under atmospheric 
pressure for evaluating computer codes and the interatomic 
potential.  

II. DETAILS OF MD SIMULATION 

A. Interatomic potential 
The force experienced by individual atom i in an N-atom 

cluster was obtained from Q-SC interatomic potential energy 
function. The potential energy of the pure metals and alloys in 
Sutton-Chen formalism for the systems of N atoms is given as 
follows [5, 24] 
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The first term in equation (1) is a two body interaction 

between the atoms i and j, the second term represents the 
many-body cohesion term associated with atom i, a is the 
length parameter scaling to the lattice spacing of the crystal, c 
is a dimensionless parameter scaling the attractive terms, ε is 
an energy parameter determined from experiment, and n, m 
are integer parameter with n>m which determine the range of 
the two component of the potential (Table I). 

 
TABLE I 

THE Q-SC POTENTIAL PARAMETERS FOR PD-RH MODEL ALLOY SYSTEM 

Interaction ε(eV) a(Ǻ) c n m 

Pd-Pd 0.003286 3.8813 148.20 12 12 

Rh-Rh 0.002461 3.7984 305.49 13 13 

Pd-Rh 0.002843 3.8396 ------ 12.5 12.5 

      

 
 To construct the potential for the binary alloy state, Pd-Rh, 

from the corresponding Q-SC potentials for the elemental 
state, we used the following mixing rule [6, 9] 
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B. Temperature and pressure control 
The temperature control was implemented via the Nose-

Hoover heat bath [25, 26] whose introduction modifies the 
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standard velocity Verlet equation of motion [22] to the 
following forms [27] 
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where ζ is the time-dependent friction of the heat bath. A 

particular parameterization of the Q is given by 
2τTgkQ b=  (5) 

where τ is the relaxation time of the heat bath, normally of 
the same order of magnitude as the simulation time step. This 
parameter controls the speed with which the bath damps down 
the fluctuation in the temperature. The number of degrees of 
freedom is given by g=3(N-1). 

The standard Berendsen barostat [28] was used for pressure 
control of the system. The Berendsen barostat uses a scale 
factor, μ, which is a function of instantaneous pressure, P, to 
scale lengths in the system 
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where μ  is given by 
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Here, τp is the rise time of the barostat, and P0 is the set 

point pressure. The system pressure is set toward a desired 
value by changing the dimensions of the simulation cell size 
during the simulation.  

C. Simulation data 
Our simulations were carried out using molecular dynamics 

beads on Q-SC interatomic potential energy function. The 
simulations involved clusters of Pd and Rh pure metals, and 
Pd3Rh, PdRh3 ordered alloys. The total number of atoms 

present was 2048 for both pure metals and alloys. The 
simulation time step was set to 0.5 fs. The periodic boundary 
conditions were employed in all directions. The clusters were 
first equilibrated for 10000 time steps at T=100 K, and then 
the temperature was raised by 1K at each temperature step. At 
each step that the temperature was increased, the system was 
re-equilibrated for 1000 time steps. Figs. 1 and 2 show the 
variation of energy, volume and pressure in order to obtain the 
equilibrium state. These quantities approached to constants 
values to make sure that the system had reached equilibrium 
as seen in figures. 
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Fig. 1 Time variation of the cohesive energy for Pd, Rh, Pd3Rh and 
PdRh3 during equilibration phase 
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 Fig. 2 Time variation of the volume and pressure for Pd3Rh during 
equilibration phase 

III. RESULTS AND DISCUSSION 
The quantities that were calculated in these MD simulations 

were the mechanical properties including the Yong modulus, 
the shear modulus, the bulk modulus, Poisson’s ratio and the 
elastic stiffness constants of Pd, Rh, Pd3Rh and PdRh3. 
According to the hooke’s law, for small deformation, the 
stress components σij are directly proportional to the strain 
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components εij. This relation can be expressed in mathematical 
terms as [29] 

 

klijklij C εσ =  (8) 

 
where Cijkl are the elastic stiffness constants. The number of 

independent elastic stiffness constants is reduced if the crystal 
possesses symmetry elements. For example, for cubic crystal, 
there are only three independent constants (C11, C12, C44) [29]. 
In terms of the interatomic potential, these constants can be 
expressed as [30] 
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where E(1) and v are the total energy of an atom and the 

volume per atom, respectively. We have used the Reuss 
assumption to estimate the bulk modulus B, shear modulus G, 
young modulus E, and Poisson’s ratio v, according the 
following relations [31] 

 
3/)2( 1211 ccB +=  (10) 
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Figs. 3-10 show the temperature dependence of energy, 

elastic stiffness constants (C11, C12, C44), Bulk modulus, shear 
modulus, Young modulus, and Poisson’s ratio respectively. 
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Fig. 3 Variation of energy of Pd, Rh, Pd3Rh and PdRh3 with 

temperature 
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Fig. 4 Variation of elastic stiffness constant (C11 ) of Pd, Rh, 

Pd3Rh and PdRh3 with temperature 
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Fig. 5 Variation of elastic stiffness constant (C12 ) of Pd, Rh, 

Pd3Rh and PdRh3 with temperature 
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Fig. 6 Variation of elastic stiffness constant (C44 ) of Pd, Rh, 

Pd3Rh and PdRh3 with temperature 
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Fig. 7 Variation of Bulk modulus of Pd, Rh, Pd3Rh and PdRh3 

with temperature 
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Fig. 8 Variation of shear modulus of Pd, Rh, Pd3Rh and PdRh3 

with temperature 
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Fig. 9 Variation of Young modulus of Pd, Rh, Pd3Rh and PdRh3 

with temperature 
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Fig. 10 Variation of Poisson’s ratio of Pd, Rh, Pd3Rh and PdRh3 

with temperature 
 

Our motivation for computing these properties for the 
elemental materials was to obtain an estimate of the accuracy 
of the Q-SC potentials. A comparison of the results for the 
elemental materials shows that our computed values are in 
reasonable agreement with the experimental data that are 
available for these materials. This can give an indication of the 
quality of the alloy potential energy functions that we have 
constructed on the basis of these elemental potentials. The 
percentage errors associated with the computed values, as 
compared to the experimental data are listed in Table II. 

 
TABLE II 

THE PERCENTAGE ERROR OF THE COMPUTED VALUES VIS-A-VIS THE 
EXPERIMENTAL DATA 

Physical properties Pd Rh 

Cohesive energy 0.2 0.8 
C11 2.6 3.2 
C12 
C44 

16.2 
24.3 

5.7 
17.5 

B 
G 
E 
v 

15.7 
13.1 
5.3 
21.3 

9.5 
31.1 
11.5 
7.6 

 
The variation of cohesive energy with temperature for both 

elemental materials Pd, Rh, and the ordered alloy Pd3Rh and 
PdRh3 were plotted in the fig. 3. We see that the energy of Pd, 
Rh , Pd3Rh and PdRh3 increase with temperature. This is 
particularly true for the variation of the energy with 
temperature. 

The temperature dependence of the mechanical properties 
are shown in figures 4-10. From figures 4-9, we see that the 
elastic stiffness constants, the bulk modulus, the shear 
modulus and the Yong modulus decrease concurrent with the 
increased temperature. This decrease is essentially linear with 
temperature, and has agreement with an approximate equation 
describing the modulus-temperature relitionshipe according 
the following relation [32] 
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where M is the modulus at temperature T and M0 the 

modulus at 0K. The proportionality constant a for most crystal 
solids is on the order of 0.5. The results for the Poisson’s ratio 
are shown in fig. 10. This fig. shows that the Poisson’s ratio is 
approximately constant in the range of 100-325 K.  

IV. CONCLUSION 
In this paper, we have performed molecular dynamics 

simulations, based on Q-SC potential, to investigate the 
mechanical properties of pure Pd, Rh metals and Pd3Rh, 
PdRh3 ordered alloys. The temperature dependence of the 
energy, the elastic stiffness constants, the bulk modulus, the 
shear modulus, the Yong modulus and Poisson’s ratio were 
obtained from these simulations. The results from our 
simulations show that our choice of the interatomic potential 
and the mixing rule employed to construct the alloy states lead 
to a good prediction of the properties of these materials. This 
research shows the cohesive energy increase with temperature. 
Moreover, the mechanical properties, except Poisson’s ratio, 
decrease with the increased temperature in a linear manner. 
Also, the Poisson’s ratio remains approximately constant in 
the range of 100-325 K. 
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