
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

801

Abstract— Fault tolerance is critical in many of today’s large
computer systems. This paper focuses on improving fault tolerance
through testing. Moreover, it concentrates on the memory faults: how
to access the editable part of a process memory space and how this
part is affected. A special Software Fault Injection Technique (SFIT)
is proposed for this purpose. This is done by sequentially scanning
the memory of the target process, and trying to edit maximum
number of bytes inside that memory. The technique was
implemented and tested on a group of programs in software packages
such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and
Microsoft Outlook. The results from the test sample process indicate
that the size of the scanned area depends on several factors. These
factors are: process size, process type, and virtual memory size of the
machine under test. The results show that increasing the process size
will increase the scanned memory space. They also show that input-
output processes have more scanned area size than other processes.
Increasing the virtual memory size will also affect the size of the
scanned area but to a certain limit.

Keywords— Complex software systems, Error detection, Fault
tolerance, Injection and testing methodology, Memory faults, Process
and virtual memory.

I. INTRODUCTION

There are three lines of defense against software faults:
Fault avoidance, fault elimination and fault tolerance [9, 10].

The main objective of the Software Fault Injection
Technique (SFIT) is to test the fault tolerance capability
through injecting faults into the system and analyze if the
system can detect and recover from faults as expected [5]. The
SFIT is an important technique for at least two reasons:
Failure acceleration, and systematic testing. There are several
challenges in the pursuit of a methodology for testing fault
tolerance [7]: Complexity of software, Dormancy of faults,
and Constraint of resource availability.

In section 2, we present related work to fault injection.
Section 3 presents the proposed technique. Section 4 explains
the results. Section 5 concludes the advantages and drawbacks
of the research.

S. Manseer is a research assistant at theuniversity of Jordan.
Email:saher@dcs.gla.ac.uk

F. A. Massoud is with The University of Jordan, Amman-Jordan, Vice
Dean of KASIT (e-mail:) fawaz@ju.edu.jo.

A. A. Sharieh is with the University of Jordan, Dean of King Abdullah II
School for Information Technology. (e-mail: sharieh@ju.edu.jo)

II. LITERATURE REVIEW

A huge amount of time and money is often spent to verify that
a system is fault free. But some faults can not be found due to
either lack of time or simply overlooked faults, [1, 2]. In a big
system that is used by thousands or maybe even millions of
users' everyday, some faults may occur that the designers
never even thought were possible, [3]. Faults in a software
program are often called bugs. Every programmer sees his/her
program bug-free until the next bug is discovered. Many bugs
can often be hard to locate, these are called Heisenbugs
(whereas the Bohrbugs causes predictable failures) [3].
 In order to make sure that a fault will not crash the system
or even stay hidden in the system without being discovered
Fault Injection is used, [8]. The principle is to inject a fault
into the system, a fault as close to a “real” fault that can occur
in the field, and check how the system reacts. A simple fault-
tolerance device could be a watchdog that “watches” over
applications and restarts the application if it should hang or
crash. The fault can result in an error when executed. Errors
should not go undetected, so some sort of error detection
mechanism is necessary. This could be as simple as parity
checking. Once the error is detected, it should be localized
(fault-diagnostic) [7].
 The Fault Injection can be achieved on different levels.
Low-level fault injection in which one tries to simulate
hardware faults to check how the software reacts. This can
include changing memory and register contents etc. High-
level fault injection that means changing code, corrupt data or
change program states.
The Fault injection can be done by injecting faults manually,
using commercial tools or make a program for automatic
injection of faults according to statistical models and
algorithms. The commercial tools developed for fault injection
are often called Software Implemented Fault Injector (SWFI).
These are often relatively inexpensive compared to other tools
such as hardware injectors. Software Fault Injection is a
flexible approach of injecting faults compared to hardware
injection, but it has shortcomings, [5]:
1. It cannot inject faults into locations that are inaccessible to
software.
2. The software instrumentation may disturb the workload
running on the target system and even change the structure
of original software. Careful design of the injection
environment can minimize perturbation to the workload.
The poor time-resolution of the approach may cause fidelity
problems. For long latency faults, such as memory faults, the

 Testing Loaded Programs Using Fault Injection
Technique

S. Manaseer, F. A. Masooud, A. A. Sharieh

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

802

low time-resolution may not be a problem. For short latency
faults, such as bus and CPU faults, the approach may fail to
capture certain error behavior, like propagation [7]. Engineers
can solve this problem by taking a hybrid approach, which
combines the versatility of software fault injection and the
accuracy of hardware monitor. The hybrid approach is well
suited for measuring extremely short latencies. However, the
hardware monitoring involved can cost more and decrease
flexibility by limiting observation points and data storage size,
[5].

III. THE PROPOSED TECHNIQUE

 When a process is running on a machine, and while it
resides in memory, there are two parts of the memory space of
the process; a read-only part and an editable part. The first
part is locked by the system and cannot be altered. The second
part is the part of concern for the injector [4]. The method
used here is aimed to find out the size of the second part of the
process and to study the factors that affect this part. The
technical details of the method proposed in this paper are as
follows:

The injector will go through the following stages.
Get commandline.
Create new process and handle commandline to it.

Windows does this task with full transparency to the child
process.

Wait until the process is fully initialized. This is
necessary, because the memory of the child process isn’t
committed yet, which means that the contents of the
memory space of the new process is garbage at this point.
WaitForInputIdle is used to make sure the memory is
committed before the injector starts to work on the
memory space.

Faults are injected in the memory space of the child
process. After the process memory is committed and the
byte check is done, the injection process can be started.

Finally, terminate and leave the new process alone. This is a
simple out put process. The results are committed to a text
file.
Close the process and thread handles.

As shown above, the process flow starts at the process of
loading the target process into memory and then waits for the
target to be idle and ready to start after the loading operation.
This part of the job is controlled by the activator subsystem.

After the target process is loaded into memory and ready to
start, the injector starts scanning the memory space of the
target process from location 0x00000000 and tries editing
each single byte of that process. At this stage, we have one of
two options. First, the byte is a locked byte, which will be
counted as BAD byte. The second option is that the editing
operation succeeds and the byte is a GOOD byte.

The injector will keep memory editing task going on until
the target process crashes at some certain point. At that point,
the numbers of good, bad, and total bytes scanned are
recorded. The percentages for good and bad bytes are
calculated, and finally the results are stored into a text file for

analysis.
The main contribution of this work is to presenting the

technique explained for measuring the size of attackable
memory space, and to study the factors that affect this
memory space. The technique is not concerned in simulating
the running environment in order to catch faults. It is only
interested in knowing the ability of a program to be edited
inside memory. It is an important point to know that the
program needs to have the ability to be edited even if the
number of faults that occur in memory is in millions.

IV. RESULTS AND ANALYSIS

The proposed methodology has shown that the number of
edited memory locations varies from one target process to
another as shown in Tables I and II. The tables demonstrate
the results of running the fault injector on 9 different
processes. The number represents the average number of bytes
over 20 different runs of the program on these software
samples.

Table I shows the total size of the area scanned before the
process crashes. This is an indication of the size of interfere
that the process can take before the injection process become
harmful.

The fact that Table III shows is the size and percentage of
the edited area of the total area scanned, that is:

 Percentage of Edited Bytes = (number of successfully
edited bytes) / (Edit bytes + blocked bytes)

TABLE 1: the size of maximum scanned and edited areas for 9 samples.

GOOD BYTES

SAMPLE ID NUMBER OF

SCANNED

BYTES

NUMBER OF

EDITED BYTES

PERCENTAGE

OF EDITED

BYTES

0 551546 82182 15%

1 1380251 77115 6%

2 1359806 113002 8%

3 1312855 40645 3%

4 474341 73223 18%

5 894649 95192 13%

6 582838 79367 17%

7 899303 107514 19%

8 472738 36226 10%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

803

Fig 1 : Sample size vs. Percentage of bytes edited

The number of injected memory locations is affected by
more than one factor, such as process type and process size.

Process size: The number of injected memory locations is
proportional to the size of the loaded process. The larger the
target process is, the higher the number of memory locations
that are edited. Figure 1 shows the relation between the
sample size in megabytes and the percentage of the injected
bytes for five processes out of the nine samples mentioned in
Table II. These five processes are non interactive processes.

The process type : as a general method for classifying
programs, in this paper the software samples are of two types,
[6]: Input / Output processes and Executable processes.

The injection process itself is affected by some factors such
as operating system security policy and virtual memory size.

Tables II, III, IV, and V demonstrate the results of the
injection process under various virtual memory sizes. The
sizes used for this part are four categories, 300, 500, 700, and
1000 Megabytes.

Table II : Injection results for 300 MB virtual memory.

Process
ID

Total Bytes
Scanned

Number of
Edited Bytes

Percentage of
Edited Bytes

P0 413438 73582.4 18%

P1 544041 77824 14%

P2 1375089 119236.6 9%

P3 1407933 108368.6 8%

P4 532545 38503.4 9%

P5 552612 70583.8 17%

P6 1073726 109633 11%

P7 1297792 39696.8 3%

P8 306105 53342.4 17%

Analyzing the results in Tables 2, 3, 4 and 5 can lead to the
fact shown in Figure 2. The fact indicated by this figure is that
increasing the virtual memory size will lead to a decrement in
the average number of memory locations scanned. One fact to
notice is that the factor of page size will stop affecting the
result of the injection process at some point. The virtual
memory size will not affect the scanned area size when the
process is not using the added virtual memory space.

Table III : Injection results for 500 MB virtual memory.

Process ID Total Bytes
Scanned

Edited Bytes Percentage of
Edited Bytes

P0 494586 72196.4 17%

P1 524519 77824.2 15%

P2 1393035 127435.8 9%

P3 1432674 103365.2 7%

P4 338722 34331.2 11%

P5 769390 92196.4 16%

P6 956496 106364.2 14%

P7 1270044 30431.2 2%

P8 317366 43212.6 13%

Table IV:

Process ID
Total Bytes
Scanned Edited Bytes

Percentage of
Edited Bytes

P0 494586 72196.4 17%

P1 524519 77824.2 15%

P2 1393035 127435.8 9%

P3 1432674 103365.2 7%

P4 338722 34331.2 11%

P5 769390 92196.4 16%

P6 956496 106364.2 14%

P7 1270044 30431.2 2%

P8 317366 43212.6 13%

Table IV : Injection results for 700 MB virtual memory.

process ID Total Bytes
Scanned

Edited Bytes Percentage of
Edited Bytes

P0 421035 62370.8 16%

P1 486671 89293 15%

P2 1254795 105411 8%

P3 1371124 80882.4 6%

P4 394304 38503 10%

P5 501901 67822.4 19%

P6 956758 99357.6 13%

P7 1414483 40141 3%

P8 515391 75905.4 20%

Table V: Injection results for 1000 MB virtual memory.

Process
ID

Total Bytes
Scanned

Edited Bytes Percentage
of Edited
Bytes

P0 369270 63351.4 17%

P1 507973 90931.4 14%

P2 1247716 97672.8 7%

P3 1475545 106831.4 7%

P4 294713 33162.4 11%

P5 355284 73728.4 21%

P6 1032919 106309.4 12%

P7 1290734 35531 3%

P8 346871 73659.6 22%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

804

V. CONCLUSIONS

 The main contribution of this paper is presenting a
technique for measuring the size of attackable memory space,
and to study the factors that affect this memory space. The
technique is not concerned in simulating the running
environment in order to catch faults. It is only interested in
knowing the ability of a program to be edited inside memory
to provide high-quality services to users during abnormal
conditions and failures.

The results of the method proposed in this paper lead to the
following conclusions:

Measuring the maximum scanned area of the memory will
save the time that is needed for a fault injection process that
uses simulation aspects.

All the samples used in the paper did reach a crash state at
some point. This fact means that the factor measured, i.e. the
maximum scanned area, is a valid aspect to use for estimating
the stability of a running process in the memory.

Depending on the size of the process in memory, the size of
the scanned area will differ. The results showed that the larger
the process is, the larger the scanned area.

The size of the virtual memory has a reverse effect on the
scanned area size. Increasing the size of the virtual memory
will decrease the area size directly.

At some point, the virtual memory size becomes a non
deterministic factor. This is the case when the page size in the
virtual memory is larger than the size of the target process
itself.

The security policy of the operating system also has a direct
effect on the size of the scanned area. The access to a memory
location must have the permission of the operating system's
rules before it is ready for update.

 The main achievement of this research is an innovation
of a technique that estimates software stability. This technique
is not concerned in simulating the running environment in
order to catch faults; it is only interested in knowing the
ability of a program to be edited inside memory. However, the
proposed method has two drawbacks:
The termination process of the injection operation
depends on the crash of the target process, i.e. no
results until the target process crashes. This operation
deals with memory content directly. So, if it is not used
carefully, it can corrupt other process in memory. Next
steps might go towards: Developing a mechanism to
investigate all states of the injected process, and not to
wait for a crash in the process.

A better classification of process types will make the
injection process give much better results.

REFERENCES

[1] Broadwell P., Sastry N., and Traupma J., (2001). “FIG: A Prototype
Tool for Online Verification of Recovery Mechanisms “. ICS
SHAMAN Workshop ’02 New York, New York USA Copyright 2001
ACM.

[2] Broadwell, P. and Ong E. (2002).”A Comparison of Static Analysis
and Fault Injection Techniques for Developing Robust System
Services”, a project paper, retrieved (January2004), from
(http://www.cs.berkeley.edu/~pbwell/papers/saswifi.pdf).

[3] Lai M. and Wang S., (1995). “Software Fault Tolerance”, Wiley &
Sons LTd, New York.

[4] Manaseer S. (2004). "Software Testing Using Software Fault
Injection". A Master Thesis in Computer Science , KASIT, University
of Jordan, Jordan.

[5] Sanders W., (2003).” Fault Injection Methods and Mechanisms”.
Department of Electrical and Computer Engineering and Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign.

[6] Silberschatz A. Galvin P., and Gagne G., (2003). Operating System
Concepts. Wiley & Sons, New York.

[7] Thorhuns R., (2000). "Software Fault Injection Testing". A Master
thesis in Electronic System Design. KTH, Stockholm.

[8] Torres-Pomales W., (2000).”Software Fault Tolerance: A Tutorial”.
NASA Center for Aerospace Information (CASI) National Technical
Information Service (NTIS).

[9] Voas J., Charron F., and McGraw G., (1997). “Predicting How Badly
‘Good’ Software Can Behave”, IEEE Software, 14(4):73-83.

[10] Voas M., McGraw G., (1998). Software Fault Injection, Inoculating
Programs against Errors. Wiley & Sons, New York.

Fig 2: Average Area Scanned (MB) vs. Virtual memory size

740

750

760

770

780

790

800

810

820

300 500 700 1000 size (MB)

Average

Area

Scanned

(MB)

