
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1666

Abstract—This document show a software that show different 

chaotic generator, as continuous as discrete time. The software give 

the option for obtain the different signals, using different parameters 

and initial condition value. The program show then critical parameter 

for each model.  All theses models are capable of encrypter 

information, this software show it too.  

Keywords—cryptography, chaotic attractors, software. 

I. INTRODUCTION

HE chaos theory describes the behavior of certain 

dynamical systems that may exhibit dynamics that 

are highly sensitive to initial conditions, popularly 

referred to as the butterfly effect. As a result of this 

sensitivity, the behavior of chaotic systems appears to be 

random. The future dynamics of these systems are 

completely defined by their initial conditions. This 

behavior is known as deterministic chaos, or simply 

chaos.

Chaotic behavior is also observed in natural systems, 

such as the weather. This may be explained by a chaos-

theoretical analysis of a mathematical model of such a 

system, embodying the laws of physics that are relevant 

for the natural system.

The chaotic behavior occurs in many areas of practical 

engineering, i.e., in communications, the information 

transmission plays a crucial role, where an ever-growing 
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capacity for communication services is required. Two of 

the major requirements in communication systems are 

privacy and security. 

The chaotic systems [1]-[9] have been greatly 

motivated by the possibility of encoding information by 

using a chaotic carrier.
Hence, we are interesting in software that shows the 

behavior of different chaotic signal.  In this paper we present 

software for different chaotic attractor, for continuous–time 

and discrete-time systems.  

II. CHAOTIC SIGNAL GENERATION

A. Continuous 

Different models exist for chaotic dynamics in continuous 

time. They use differential equations that exhibits chaotic 

dynamics associated with the fractal properties of the attractor. 

1) Lorenz

Lorenz wrote a remarkable article in 1963, he described a 

three parameter of the nonlinear first-order ordinary 

differential equation that, when integrated numerically on a 

computer, appeared to have extremely complicated solutions. 

This set of ordinary differential equations that would 

model some of the unpredictable behavior that we normally 

associate with the weather [10]. They are 
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Where =10, b=8/3, and r=28.
a) 0<r<1. There is only stable equilibrium point at the 

origin.

b) 1<r<1.346. Two new stable nodes are born and the origin 

becomes a saddle with a one-dimensional, unstable manifold. 

c) 1.346<r<13.926. At the lower value the stable nodes 

become stable spirals. 

d) 13.926<r<24.74. Unstable limit cycles are born near 

each of the spiral nodes, and the basins of attraction of each 

of the two fixed points become intertwined. The steady-steady 

notion is sensitive to initial conditions. 

e) 24.74<r. All three fixed points becomes unstable. Chaotic 

motions result. 
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2) Chua 

The second model is Chua's circuit is a simple electronic 

circuit that exhibits classic chaos theory behavior. It was 

introduced in 1983 by Leon O. Chua, who was a visitor at 

Waseda University in Japan at that time [11]. The ease of 

construction of the circuit has made it a ubiquitous real-world 

example of a chaotic system, leading some to declare it "a 

paradigm for chaos [12].
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Where G=2/R and a three-segment piecewise linear vC1-i

characteristics of nonlinear elements is defined by 
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For =10, =14.87, a=-1.27, and b=-0.Chua’s circuit 
operates on the chaotic double scroll attractors. Chua’s 
circuits exhibits a chaotic attractor.

3) Rossler

The Rössler system is a system of three equations. These 

equations are a nonlinear ordinary differential equation. Some 

properties of the Rössler system can be deduced via linear 

methods such as eingen-vector. The original Rössler paper 

says the Rössler attractor was intended to behave similarly to 

the Lorenz attractor, but also be easier to analyze qualitatively. 

This attractor has some similarities to the Lorenz attractor, but 

is simpler and has only one mainfold. Otto Rössler designed 

the Rössler attractor in 1976, but the originally theoretical 

equations were later found to be useful in modeling 

equilibrium in chemical reactions. The defining equations are 

[13]: 
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Rössler studied the chaotic attractor with a = 0.2, b = 0.2, 

and c = 5.7. 

B. Discrete

1) Hénon map 

The Hénon map is a discrete-time dynamical system. It is 

one of the most studied examples of dynamical systems that 

exhibit chaotic behavior. The Hénon map takes a point (x1, x2)

in the plane and maps it to a new point [14] 
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The map depends on two parameters, a, b, and c, which 

for the canonical Hénon map have values of a = 1.4, b = 0.3, 

and c=1. For the canonical values the Hénon map is chaotic. 

For other values of a and b the map may be chaotic, 

intermittent, or converge to a periodic orbit. An overview of 

the type of behavior of the map at different parameter values 

may be obtained from its orbit diagram.  

2) Logistic map 

The logistic map is a polynomial mapping of degree 2, often 

cited as an archetypal example of how complex, chaotic 

behavior can arise from very simple nonlinear dynamical 

equations. The map was popularized in a seminal 1976 paper 

by the biologist Robert May, in part as a discrete-time 

demographic model analogous to the logistic equation first 

created by Pierre François Verhulst [5], the logistic map is 

written [16] 

),()()1( 2 kxkxkx  (5) 

where:

x(k) represent a growth or birth effect, whereas x2(k)

accounts for the limits to growth such as availability of energy 

or food. If =0, we obtain the equation x(k+1) = x(k) with 

explicit solution 

,)0()( kxkx  (6) 

This nonlinear difference equation is intended to capture two 

effects.

Reproduction where the population will increase at a rate 

proportional to the current population when the 

population size is small. 

starvation (density-dependent mortality) where the 

growth rate will decrease at a rate proportional to the 

value obtained by taking the theoretical "carrying 

capacity" of the environment less the current   

However, as a demographic model the logistic map has the 

pathological problem that some initial conditions and 

parameter values lead to negative population sizes. 

III. SIMULATION

A. Chaotic generator 

Firstly, we develop software for resolve and graphic 

different chaotic generator in the previous section, this 

program is made in Matlab. The principal screen present two 

options, continuous and discrete models (see Fig. 1). In the 

fig.2 show of the three different model for continuous and the 

Fig.3 two discrete model. In this page it is necessary select the 

option selected.  

The Figure 4 show the Lorenz Model, in this screen show 

the initial and final time, initial conditions, parameters, and the 

equation of this model. In this screen is possible to change the 

values, so, is possible to see the behavior of the x1, x2, and x3.

When finish the calculate, we can graph the variable with 

time or the phase between two or three variable. The Figure 5 

shows a example. 
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Fig. 1. Principal page. 

Fig. 2. Continuous chaotic system screen 

Fig. 3.  Discrete chaotic system screen. 

Fig. 4. Screen for model Lorenz. 

Fig. 5. Lorenz Attractors. 

Like the Lorenz model, it is possible call the other five 

models. In all case we can the change the time, initial 

condition, parameters, and for each model show the own 

equations. For illustration only show the Lorenz model. 

B. Chaotic generator Application:  Secret Communication 

software 

The models presented in previous section have applications to 

the secret communication.  The principal page show the 

option for encrypts the information for continuous models 

(Fig. 6). 

Fig. 6. Encryption information. 
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For example, we take the Lorenz model for show the … 

Then, appear the screen show in the Fig. 7. In this screen 

we have the option the parameters, time, and message. This 

message can be sinusoidal or rectangular signal. 

Fig. 7. Encrypt information for Lorenz model. 

The schematic for encryption message is shown in the Fig. 

8. We use one channel for synchronize transmitter and 

receiver. A second channel is used to add the message, for 

illustration we use a sinusoidal message. Finally, we 

subtract )(')()(ˆ
2 tmtstx , that is, the recovery message 

Finally we can select the desired graph. These can be the 

original and retrieved message, transmitted signal, and the 

error between original and retrieved message, Fig. 9. The 

other option is graph the synchrony error (Fig.10). 

Finally, the Figure 11 shows the original message, 

transmitted signal, retrieval message, and error between 

original and retrieval message. 

Fig.9. Screen for select message graph. 

Fig.10. Screen for select synchrony graph. 

Fig. 11. Message encrypted. 

IV. CONCLUSION

This software is a tool very useful for to show different 

chaotic generator. In this software is possible appreciate the 

attractor behavior when are changed the different parameters.  

The critical parameters are a option in the software, this 

parameter show value range for chaotic behavior.  

For encrypted message is possible select binary o digital 
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information. In a future work, we added the option for select 

the from file or write the message  

APPENDIX

Appendixes, if needed, appear before the acknowledgment. 
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