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A new muscle architecture model with non-uniform
distribution of muscle fiber types.

Javier Navallas, Armando Malanda, Luis Gila, Javier Rodrı́guez, and Ignacio Rodrı́guez

Abstract— According to previous studies, some muscles present
a non-homogeneous spatial distribution of its muscle fiber types
and motor unit types. However, available muscle models only
deal with muscles with homogeneous distributions. In this paper,
a new architecture muscle model is proposed to permit the
construction of non-uniform distributions of muscle fibers within
the muscle cross section. The idea behind is the use of a motor
unit placement algorithm that controls the spatial overlapping
of the motor unit territories of each motor unit type. Results
show the capabilities of the new algorithm to reproduce arbitrary
muscle fiber type distributions.

Index Terms— muscle model, muscle architecture, motor unit,
EMG simulation.

I. INTRODUCTION

ELECTROMYIOGRAPHIC (EMG) modeling is an impor-
tant tool widely used in research, as it helps to better

understand the relationships between the neuromuscular orga-
nization and the electromyographic signals used for diagnosis
in clinical neurophysiology routine. A typical EMG model
comprises several parts, including muscle architecture, action
potential, tissue effects, and electrode behavior.

There are only few available muscle architecture models
in current literature. The existing models [1]–[3] deal with
homogeneous muscles, intending to obtain simulated muscles
where the motor units (MUs) are uniformly distributed over
the muscle cross section (MCS), and the muscle fibers (MFs)
belonging to the MUs, namely, the motor unit fibers (MUFs),
are distributed with a constant density. However, those models
have important limitations, including severe “edge effects” that
cause MUs on the external parts of the MCS to have higher
motor unit fiber densities (MUFDs), causing a mismatch
between target MUFD and the actual MUFD of the algorithm
outcomes [4]. By adapting an algorithm proposed by Schnetzer
et al. [2], we showed in a previous paper that it is possible
to eliminate the edge effect, obtaining a muscle architecture
model that has homogeneous properties all over its MCS [5].
This way, undesirable non-uniformities are eliminated.

However, there are physiological evidences that point that
the distribution of the MUs and MF types may not be uniform
in certain muscles. Furthermore, there are evidences of steep
changes in the distribution of the MF types across the MCS of
certain muscles. A physiologically acceptable muscle model
should be able to reproduce the different observed muscle
architectures.
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The aim of this paper is to introduce a modification of
our previously presented model [5], in order to allow the
simulation of muscles with non-uniform distribution of MF
types. The degree of non-uniformity is controlled by a target
function that must be predefined all over the MCS. This target
function represents the probability of finding either a type I
or a type II MF at a given point of the MCS.

The paper begins with a presentation of the physiological
basis and findings that support the rationale of the proposed
model. Afterwards, the algorithm defining the model is pre-
sented. Special attention is payed to the mechanism to fit
the MU placement distribution so that the predefined spatial
distribution of the MF-type probability is satisfied. Finally, the
model is evaluated with different MF-type distributions and its
capabilities and limitations are discussed.

II. THE MODEL

A. Physiological basis

The distribution of MU forces has been shown to be highly
skewed [6]–[8], comprising much more low-force units than
high-force ones. Fuglevand [9] modeled this distribution by
means of an exponential function that relates the MU index
and its maximum twitch force. Taking for granted that the
number of MFs within a MU is the main factor affecting the
twitch force variation [10]–[13], we can assume an exponential
distribution for the number of fibers of the motor units, namely,
the motor unit fiber number (MUFN). It is also observed a
strong positive correlation between the MUFN and the motor
unit territory (MUT) size [10], [12]–[15], that suggests a
uniform value of the MUFD over the muscle cross-section
(MCS) [12], [16], [17].

Enoka [17] gives the following example relating the MF-
type distribution and MU-type distribution for the first dorsal
interosseous (FDI): Feinstein [18] estimated the number of
motoneurons of the FDI in 120, and the number of muscle
fibers on 40,500, while Dennett and Fry [19] estimated the
MF-type distribution on 50.3% type I, 44.7% type IIa, and 5%
type IIb MFs; assuming the exponential model proposed by
Fuglevand for the MU twitch force distribution, and a linear
relationship between twitch force and MUFN, the MU type
distribution results in 84% type I and 16% type II MUs. The
same approach will be used in our model for the determination
of the distribution of MU types; i.e., the proportion of MUs
of each type, being the smallest ones of type I and the largest
of type II.

All these previous studies do not take into account any
consideration about spatial distribution. However, things may
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be very complex even in architecturally simple muscles. In
most species we can find regional variations in the distribution
of fiber types within the muscle cross-section. Fiber types have
been shown to vary, in different ways: from proximal (more
glycolytic) to distal regions (more oxidative) [20]; from the
superficial part of the fascicle (more fast-twitch) to the most
deeper part of the fascicle (more slow-twitch) [21]; and from
the superficial part of the whole muscle cross-section (more
fast-twitch / type II) to the most deeper part of the muscle
(more oxidative / type I) [22].

An extreme case is shown by Richmond et al. [23], in
the obliquus capitis inferior muscle of a primate, where a
step-like gradient of MF types from the superficial (type II)
to the deep part (type I) is detected by means of ATPase
histochemistry. Furthermore, Knight and Kamen [24] studied
MU-type distributions by means of macro-EMG analysis and
reported that superficial motor units are larger (type I MUs)
than deeper motor units (type II) in human vastus lateralis,
indicating a nonrandom localization of human MUs.

The presence of MF-type and MU-type non-uniform distri-
butions has significant implications, both in clinical routine
and in simulation studies. In clinical routine, unless such
gradients are recognized and taken into account, they can
introduce an unexpected bias in the collected data [24]. In
simulation, since the validity of the results depends on the
degree of accuracy of the model, synthetic EMG signals
generated from models that do not account for these gradients
do not faithfully represent of the muscle under study.

B. Model basis

The overlapping at a certain point �r, s(�r), is defined as the
number of MUs covering this point for a given MU placement.
That is, the overlapping is a random variable defined as

s(�r) =
N∑

i=1

si(�r) (1)

where N is the number of MUs in the simulated muscle, and
si(�r) stands for an indicator function, defined as

si(�r) =
{

1 if �r ∈ Γi

0 if �r /∈ Γi
(2)

where Γi is the i-th MUT.
In terms of MU-types, since the MUs are sorted by its size,

the overlapping can be expressed as the sum of the type I and
type II overlapping, being:

s(�r) = sI(�r) + sII(�r) (3)

Calling NI to the number of type I MUs, we have that

sI(�r) =
NI∑
i=1

si(�r) ; sII(�r) =
N∑

i=NI+1

si(�r) (4)

The key for an homogeneous distribution of the MF-types
over the MCS is to place the MUs in such a disposition that
the overlapping is almost constant all over the MCS, since a
uniform overlapping implies that the innervation probability
is also constant and equal for all the MUs [5]. This can be

accomplished by the overlapping spatial variance minimization
(OSVM) algorithm.

The i-th MU innervation probability, PIi(�r), is defined as
the probability that the i-th MU innervates a MF placed at
a point �r, given that the MF is actually covered by the i-
th MU. As we demonstrated elsewhere [5], if the overall
overlapping is almost constant across the MCS, and if the
innervating MU is randomly selected from the set of covering
MUs, the innervation probability is also almost constant and
can be approximated by:

PIi
(�r) ≈ mPI

=
1

ms
(5)

where mPI is the mean innervation probability, and ms is the
mean overlapping. The latter can be calculated as

ms =
1

AMCS

N∑
i=1

Ai (6)

where AMCS is the area of the MCS.
This approximation implies that the probability of a MF at

�r being innervated by a type I MU (hence, becomes a type I
MF) is proportional to the overlapping of type I MUs at this
point, since the total overlapping is constant across the MCS.
That is:

PII
(�r) =

sI(�r)
sI(�r) + sII(�r)

=
sI(�r)
ms

(7)

where the equation

PII
(�r) + PIII

(�r) =
sI(�r)
ms

+
sII(�r)
ms

= 1 (8)

is clearly satisfied.
This is the key of our model: if the global overlapping is

kept constant within the MCS, the overlapping proportion of
each type of MUs determines the MF-type proportions, hence
its probability. This allows us to transform the target MF-type
distribution functions, P target

II
(�r) and P target

III
(�r), into target

MU-type overlapping functions, starget
I (�r) and starget

II (�r) res-
pectively, that we can use in our OSVM algorithm:

starget
II (�r) = ms P target

III
(�r) (9)

In the OSVM algorithm, a square grid of side a is placed
over the MCS. This way, a set of K points (approximately
π(R/a)2) regularly spaced through the MCS is obtained.
To adjust the overlapping of the type II MUs to the target
function in (9), we can minimize the mean squared error of
the overlapping over the set of points of the grid:

es =
1
K

K∑
k=1

(
sII(�qk) − starget

II (�qk)
)2 (10)

Then, to place the type I MUs so that the global overlapping
within the MCS is constant, we minimize the spatial variance
of the global overlapping in the MCS. This can be estimated
through the sample variance of the overlapping over the set of
points of the grid:

vs =
1
K

K∑
k=1

(
s(�qk) − ms

)2 (11)
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where ms is the sample mean of the overlapping calculated
as:

ms =
1
K

K∑
k=1

s(�qk) (12)

This way we ensure both a constant global overlapping, and
a distribution of the MU types in accordance with a target
distribution given by the target type II overlapping function.

C. Model algorithm

In the proposed model we make several physiological
assumptions and approximations:

• The MCS is approximated by a circle of radius R.
• The MUTs are approximated by circles of radius Ri.
• The MFs are approximated by hexagons of apothem

RMF , placed over a regular grid.
• MUFD is assumed to be constant for all the MUs.
• MUFN is assumed to vary exponentially, satisfying the

twitch-force Fuglevand law.
• The MUT area distribution is approximated by an expo-

nential law.
• The NI smaller MUs are assumed to be type I, and the

rest (NII ) are assumed to be type II.
• The innervation of each MF is recreated as an equal

probability competition among its covering MUs.
With these assumptions, the proposed model is described in

the following algorithm:
1) Creation of the MCS as a circle of radius R.
2) Determination of the MUT radii applying the exponen-

tial law [1]:
Ri = α· exp(β · i) (13)

where α and β are calculated so that R1 = Rmin and
RN =Rmax.

3) Determination of the MUT positions, applying the
OSVM algorithm as follows:

a) Creation of the square spatial sampling grid, with
side a.

b) Determination of the number of type I MUs, NI .
c) Placement of the type II MUs in a random order.

Each MUT is centered on the point of the grid that
minimizes the sampling error in (10). If various
points lead to the same minimum value, one of
them is selected with equal probability. If the MUT
centered in the selected position exceeds the MCS
boundary, the value of its radius is recalculated so
that the area of the MUT inside the MCS equals
πR2

i .
d) Placement of the type I MUs in a random order.

Each MUT is centered on the point of the grid that
minimizes the sampling variance in (11). If various
points lead to the same minimum value, or if the
MUT centered in the selected position exceeds the
MCS boundary, the solutions of the previous point
are applied.

4) Creation of the hexagonal grid of MFs, with apothem
RMF , including only the MFs with its center inside the
MCS.

5) Determination of the MU that innervates each MF, by
equal probability random selection from all the MUs
covering the MF.

The determination of the number of type I MUs, NI , is
done by calculating the expected number of type I MFs, MI ,
from the target of the innervation for the type I MFs, and the
expected number of MFs for the different MUs, modeled by
the exponential function in (13), so that NI is the minimum
number of MUs needed to sum up MI MFs [17].

D. Model evaluation

Simulations were performed in the MatlabTM 7 environment
(The Mathworks, Natick, MA, USA). Critical parts of the code
were written in C to accommodate the intensive computing
requirements of the simulations. The default settings for our
simulations correspond to the first dorsal interosseous muscle
[17], [18], [25], a small muscle of the hand typically used
in simulations of complete muscles. Unless explicitly stated,
the input parameters for the simulations used throughout the
paper are: R = 7mm,N = 120, Rmin = 1mm,Rmax =
5mm,Rfibre = 55μm, and a = 0.35mm.

The model was evaluated with four different MF-type
distributions:

• Logistic sigmoid on distance:

P target
II

(�r) = (1 + exp(10.4 − 2d(�r)))−1 (14)

where d(�r) is calculated as

d(�r) =
√

(rx + 4)2 + r2
y (15)

and �r is split into its two Cartesian coordinates (rx, ry).
• Complementary logistic sigmoid on distance:

P target
II

(�r) = 1 − (1 + exp(10.4 − 2d(�r)))−1 (16)

where d(�r) is calculated as previously.
• Step function on the x-axis:

P target
II

(�r) =
{

1 if rx ≤ 0
0 if rx > 0 (17)

• Linear function on the x-axis:

P target
II

(�r) = (rx − R)/2R (18)

The four proposed functions have a mean value of 0.5
when integrated over the MCS, which means that the expected
number of MFs of both types is the same; i.e., half of the
total number of MF within the MCS, M/2. Although the
first function resembles the MF-type distribution observed
by Richmond et al. [23], it is important to note that these
functions are proposed only for evaluation purposes, and that
any particular implementation to simulate a given muscle
should be preceded by an histochemical study to estimate the
corresponding PII

(�r).
In Fig. 1, we can observe the simulation results obtained

for the first MF-type spatial distribution function, with expec-
tations and variances calculated over 10,000 different realiza-
tions of the muscle. In Fig. 1(a), we see that the expectation of
the overlapping is almost constant, as pretended by the use of
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Fig. 1. Simulation results for the logistic sigmoid on distance MF-type spatial distribution given in (14) showing: (a) expectation of the global overlapping,
E[s(�r)]; (b) expectation of the type I MUs overlapping, E[sI(�r)]; (c) variance of the type I MUs overlapping, V ar[s(�r)]; (d) target type I MF probability
spatial distribution, P target

II
(�r); (e) expectation of the type I MF innervation probability, E[PII

(�r)]; and variance of the type I MF innervation probability,
V ar[PII

(�r)]. The range of values of all the contour plots is shown on the right of each plot, and is divided in 10 equally spaced bins.
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Fig. 2. Simulation results for three different MF-type spatial distributions: (a) complementary logistic sigmoid distribution as given in (16); (b) step function
as given in (17); (d) linear function as given in (18). Each paired graph shows the target type I MF probability spatial distribution, P target

II
(�r) (upper plot)

and the expectation of the type I MF innervation probability, E[PII
(�r)] (lower plot). The contour plots are divided into 10 equally spaced bins.
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the OSVM algorithm. As we have seen, this is the prerequi-
site for the overlapping-innervation probability proportionality
relationship given in (7) to be valid. This proportionality is
experimentally proved when comparing the expectation of the
MU-type overlapping in Fig. 1(b), with the expectation of the
MF-type probability, in Fig. 1(e). In Fig. 1(c), we see the
variance of the MU-type overlapping. We can see that the low
variance properties of the OSVM are also present in the MU-
type overlapping, in the modified algorithm. In the case of this
logistic sigmoid target function, which is depicted in Fig. 1(d),
we observe a high degree of matching between the target and
the resulting MF-type distribution in Fig. 1(e). Finally, we can
observe that the variance of the MF-type probability, shown
in 1(f), is almost negligible in the areas where we find only
one MF-type, while it increases in the transition regions, as
expected where the MF-type proportions reach the 50%.

The evaluation with the other three patterns helps to under-
stand the limitations of the algorithm to satisfy an arbitrary
overlapping target function. It is important to remember that
the pattern has to be reproduced by placing the MUT circles
within the MCS in the most adequate positions, and that the
MUT radii used in the simulations range from 1 to 5 mm,
while the MCS has a radius of only 7 mm. In addition, when
the MUT exceeds the MCS boundary, its radius is increased
to satisfy the design value for the MUT area. This way, if a
complex target function has to be reproduced, it is easier for
the algorithm to reproduce the details with small MUs.

This can be observed in Fig. 2(a), where the complementary
target function of that employed in Fig. 1 is used. Here, the
detail of the “horns” must be covered by type II MUs, which
are much bigger than type I MUs. Hence, the capability of
reproducing this pattern is rather limited. In the case of a step
function, as can be observed in Fig. 2(b), the steep gradient
can be quite acceptably reproduced, with only some residual
deficiencies that are present in the external parts of the MCS.
Finally, when assuming a linear pattern, as in Fig. 2(c), the
resulting MF-type distribution has a more progressive gradient,
but also suffers from the difficulties derived from the large size
of the type II MUs, as can be observed in the left part of the
MCS, where the concentration of type I MUs was supposed to
decrease as we move to the (−R, 0) point, but it unexpectedly
takes its maximum in a more inner region.

It has to be clear that smaller MUs will always lead to a
better agreement between the target and the simulated MF-
type distribution, but as in the case of the distribution itself,
this should be grounded on experimental physiological data.

III. CONCLUSION

We have presented a model for muscle architecture that
allows a non-uniform distribution of the MU types, and
accordingly a non-uniform distribution of the MFs within the
MCS. This is the first muscle architecture model that does not
suppose an homogeneous distribution of MUs and MFs. This
will allow for the simulation of muscles with higher degree of
realism, and EMG signals with a better statistical agreement
with those recorded in clinical routine.
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