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    Abstract—The ionization energy in semiconductor           
systems in nano scale was investigated by using effective mass 
approximation. By introducing the Hamiltonian of the system, the 
variational technique was employed to calculate the ground state and 
the ionization energy of a donor at the center and in the case that the 
impurities are randomly distributed inside a cubic quantum well. The 
numerical results for GaAs/GaAlAs show that the ionization energy 
strongly depends on the well width for both cases and it decreases as 
the well width increases. The ionization energy of a quantum wire 
was also calculated and compared with the results for the well. 
 

Keywords—quantum well, quantum wire, quantum dot, impurity 
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I. INTRODUCTION 
Experimental growth techniques such as molecular beam 

epitaxy, chemical vapor deposition and   electron lithography 
in recent years has motivated interests in semiconductor-
confined nanostructures for their utility in electronic and 
optoelectronic devices. 

 In the past few decades, a large amount of work, both 
theoretical and experimental, has been devoted to the study of 
the nature of impurity state in quantum well structures. The 
ideal system for studying two dimensional carriers in 
semiconductors is AsAlGaGaAs xx−1/ quantum well 
systems (QW). The measurements are leading to the electronic 
and optical properties of such nanostructures. Recently, 
different authors have investigated semiconductor-metal 
transition in guasi-2D GaAs/GaAlAs system are demonstrated 
the transition for very narrow wells [1,2]. A similar model was 
used by the present authors to investigate the semiconductor-
metal transition in many valley semiconductors [3]. In this 
paper, the ionization energy of a donor in a center of a cubic 
quantum well and quantum wire, in the case where the donor 
is located at the center and where the impurities are distributed 
are compared. In this regard a proper trial wave function is 
used to calculate numerically the ground state and ionization 
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energy of the donor in a quantum well and wire by variational 
technique.    
 

II.MODEL AND CALCULATIONS 
  The Hamiltonian of the system is given by [4]: 
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Where *m  and )(rε are the effective mass and the dielectric 
function of GaAs, respectively. The second term is the screened 
coulomb potential and )(rV is the confining potential. 
     For a quantum box the confining potential is given as: 
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Using the Thomas-Fermi screening function, )(rε  is given as: 
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Where 0ε  is the static dielectric constant of GaAs and λ  is 

the screening parameter given by )(4 22 ξπλ ne=  where 
)(ξn  is the density of states at the Fermi level. Since an exact 

solution of the Schrodinger equation for the given 
Hamiltonian is not possible, here the variational method with 
a trial wave function 
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Satisfying the boundary condition, with α  as a variational 
parameter is used to calculate the ground state energy of the 
donor impurity in the well. The expectation value of H is 
given by: 
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where P is given as: 
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When the impurities are distributed randomly the Anderson 
localization comes into play [5,6]. Considering 

)exp()( ii rArP β−= as the probability of finding an 

impurity at ir  when another impurity is at the origin, the 
potential energy can be written as [4]: 
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Where λβδ += . Therefore
rr

erV
)(

)(
2

0 ε
−

=
 
in Eq.(5) can 

be replaced by )(rVd  if  Anderson localization is considered. 

In Eq. (9), β  as given in ref.[6] is 0.95.                                                                                 
The ionization energy is given by : 
 
 

( )

,....)3,2,1,,(,,,

2
222

*

2

min

====

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−=

lnm
L
lK

L
nK

L
mK

KKK
m

E

HEE

lnm

lnmsub

subion

πππ

h  

                                             (10)   
 
 

III. RESULT AND DISSCUSION 

 
The numerical results obtained by Matlab are presented in 

Figs.1 to 5. Fig.1 and 2 show the ionization energy as a 
function of the size for a cubic well and a wire with square 
cross section. As it is seen from the figures, the ionization 
energy for both, the quantum well and the wire, decreases as 
the size increases, and approaches to zero for the size larger 
than 400A°, where the well and wire indicate metallic 
behavior. Our results are quite similar in shape, but smaller in 
value, than those reported by J. Peter et al [4, 7] where a 
cosine form for the trial function has been employed.   

The effects of randomness in impurity distribution, for the 
quantum well and wire, are given in Fig. 3 and 4,respectively. 
As it is seen from the figures the randomness enhances the 
ionization energy for both cases.  

To see the effect of impurities in the ionization energy 
clearly, the results for the case where the donor is located at 
the center and where the impurities are distributed in the wire 
are compared and shown in Fig. (5). as it is seen from the 
figure the ionization energy is higher when the impurities are 
spread in the wire. 

 
Fig.1 Variation of the ionization energy as a function of size in 

angstrom for a cubic well 
 

 
Fig.2. Variation of the ionization energy as a function of  size in 

angstrom for a square wire 
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Fig.3 Variation of ionization energy as function of size in angstrom 

for cubic well in presence of impurities. 

 
Fig. 4 Variation of ionization energy as function of size in angstrom 

for square wire in presence of impurities. 

 
Fig. 5 The effect of confinement of the carrier in quantum wire. 

for random impurity distribution ( ))(rVd  and  screened potential 

without considering the random distribution of impurities ))(( 0 rV . 
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