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Abstract—Offset mismatch, gain mismatch, and time-skew error 
between time-interleaved channels limit the performance of 
time-interleaved analog-to-digital converters (TIADC). This paper 
focused on the time-skew error. A new technique for calibrating 
time-skew error in M-channels TIADC is described, and simulation 
results are also presented. 

Keywords—Calibration, time-skew error, time-interleaved 
analog-to-digital converters.

I. INTRODUCTION

T HAS BEEN known that time interleaving more than one 
ADC is a well-known technique used to increase the 

maximum sample rate [1]. Unfortunately, the performance of 
time-interleaved ADCs is sensitive to offset and gain 
mismatches as well as time-skew errors between the 
interleaved channels. The gain and offset errors in 
time-interleaved ADC’s can be calibrated easily; the time-skew 
errors are difficult to process. In many cases it can become the 
dominant factor that limits the application of this architecture. 
To avoid the problem of the time-skew errors, the fractional 
delay filters was used in to calibration the time-skew errors in 
[2], but this method require the signal be oversampled  with a 
factor of two or almost two compare to the Nyquist rate. Blind 
adaptive equalization of time-skew errors was proposed in [3], 
however the algorithms are quite computationally demanding, 
and it is very difficult to be implemented in circuits. Also, the 
multirate filter bank method based on the modeling of the 
analog analysis filters was given in [4], but the performance of 
this method can not performance well in all the Nyquist 
bandwidth due the modeling inaccuracies.  

In this paper, a new technique based on the method of hybrid 
filterbank analog-to-digital converters is proposed. The transfer 
function of the reconstructing filters was derived; further, the 
impulse response of the transfer function was given in an 
analytical formula. Using the proposed method the time-skew 
errors can be calibrated as well as desired (in certain sense) by 
properly approximation the ideal reconstructing filters. 
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II. HYBRID ANALOG/DIGITAL FILTER BANKS

Consider the system in Fig.1, which we refer to as a hybrid 

analog/digital filter banks (HFB), or simply a filterbank ADC 

[5]. This system makes use of an analog analysis filter banks, 

uniform samplers and quantizers, upsamplers to retain the 

desired sampling rate1/ sT , and a digital synthesis filterbank. 

The sampling and quantization take place at the output of the 

analysis filters with the lower sampling frequency 

11 sT f M , since 1 sT MT , and the corresponding 

discrete-time frequency is 1 1T M . Ignoring the 

quantizations, The Fourier transform of the output signal can be 

written [2]: 
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The input signal 
cx t is supposed to be band limited to 

sT by external anti-alias filter. Then, within the 

interval , the output is: 
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Furthermore, considering mH j  band limited to :
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Perfect reconstruction means that the output is simply a 
sampled, scaled and delayed version of the input. So, taking 
into account equation (4), the perfect reconstruction conditions 
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are:
, , 0

0, 1, 2, , 1.
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0 ( )S jT e , with d  being the filter bank’s delay and 

c  a scale factor, indicates the HFB’s gain and phase, 

represents the distortion function. ( )jS
pT e  , 

1, , 1p M  are the aliasing functions since they show 

how the shifted, unwanted versions of the input are present in 

the output signal. Equation (4) contains M terms, so the perfect 

reconstruction conditions, as in (8) yields a linear system with 

M equations and M variables, the synthesis functions (as the 

analysis filter are supposed known).  Then, perfect 

reconstruction has a unique solution for every frequency value 

considered. This idea is exploited by the hybrid filter bank 

method of TIADC Presented here. 
If the analog analysis filters are selected according to 

, 0,1, , 1.kj t

kH j e k M  (9) 

Then, by sampling the output signals from the analysis filters 

in Fig.1. The subsequences mx k  can be obtained as: 

, 0,1, , 1.m c s mx k x kMT t m M  (10) 

The subsequences ( )mx k  are same as the discrete-time 

signals from the each channel of the TIADC. Thus the 

calibration of the time-skew error becomes to design the perfect 

reconstruction synthesis filter bank with the analysis filter bank 

be given in (9). This will be discussed in section III. 

III. DESIGN RECONSTRUCTION FILTER FOR CALIBRATION THE 

TIME-SKEW ERROR

A. Derivation of the Principal Result 

The system in Fig.1 is a perfect reconstruction (PR) system if 

equation (8) satisfied for some nonzero constant c and integer 

constant d. In the time domain, we have, in the PR case, 

( ) ( )y n cx n d . That is, with 1c , ( )y n is simply a 

shifted version of ( )x n . Ignoring the delay d, we can thus 

retain ( )cx t  from ( )y n , provided that the system in Fig.1 is 

PR system. Therefore, the PR condition in equation (8) has the 

following equivalent form for ( , ) :
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For simplification, here we use ( )mF  and ( )mH  to 

represent ( )j

mF e  and ( )m sH j T , respectively; and 

introduce variable kd  as k k sd t T . It has been expatiated in 

section II that for every frequency ( , ) , the PR 

condition has a unique solution. Thus, the equation (10) must 
hold on each of the M subintervals 

( ( 1) , )kI k k for 1, 2, ,k M  where 

2 M . We show next that the solution of (11) is 

facilitated by considering these subintervals and we will arrive 

at a system which has to be solved only on the small interval 1I .

Toward this end, we note from (10) that for 1, 2, ,k M
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These equations for the k th subinterval can be reduced to 

equations holding on 1I by simple variable change, and then 

using the property of S

mH  in (7), we find that (12) have 

the form 
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Hence, we have a set of M equations for each of the M

subintervals , 1, ,kI k M ; the salient observation here is 

that for each subinterval the system is the same—only the 

position of 
( 1)j k d

Me  changes as the subinterval is 

varied. For 1I , equation (13) can be written more 

compactly in matrix as: 
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Fig. 2 TIADC output spectra: (a) without and (b) with calibration 
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For 1I and 1, ,k M , the matrix dA is a 

Vandermonde matrix [6] and matrix ,dE is a diagonal 

matrix. The necessary and sufficient condition for nosingularity 

of ( )dA  and ( , )dE is that 
2kjd M

e be distinct, which is 

the same condition as , ,k md d Mr k m r . In 

practice, the condition of kd can be satisfied without severe 

restriction, so there always exists a unique 

( 1)F k satisfying (19) for fixed 1, ,k M .
1 1( 1) , kk d dF E A B  (19) 

As k varies from 1 to M, ( 1)F k  are determined on 

the successive subintervals , 1, ,kI k M through (19). In 

fact, if mk  is the mkth element of matrix dA , and use the 

inverse matrix of ,dE is ,dE , then: 
( 1)

1

1
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1 , ; .
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Thus the terms of the inverse matrix ( )dA  effectively 

determined 
0 1
( ), , ( )

M
F F  on the full 

interval , .

B. Calculation of the Impulse Response 

In this section, we calculate the impulse response of the 
discrete-time synthesis filters. By inverse discrete-time Fourier 
transformation, 
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If we make the change of variable ' ( 1)k  in the 

kth integration, then using the equation (20), mf n can be 

written as: 
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Using the inverse of Vandermonde matrix and the Lagrange 
interpolation polynomials in [6], then the impulse response 

mf n  can be written as: 
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Equation (22) given the impulse response of the perfect 

reconstruction synthesis filters. Using these filters the periodic 

nonuniform samples from the TIADC can be reconstructed to 

uniformly sampled discrete-time signal. However, the impulse 

response of these filters is infinite in extent. To make the filter 

causal and realizable in practice with a finite-impulse response 

(FIR) structure, the natural choice is to truncate the filters about 

md d since the ideal [ ]
m

f n  decays as 
m

d d d  increase. 

Further a windowing function [ ]
m

w n  is also used which 

produce realizable FIR filters ˆ [ ]
m

f n  according to 

, for

0, for
m m m

m

m

f n w n n d d L
f n

n d d L
 (23) 

These windowed filters will be of length 2L unless dm is an 
integer, in which case it is trivial. The windowing function 
serves to smooth the time response. Without this windowing 
function a truncated filter’s magnitude response is subject to 
Gibbs phenomenon, or large amounts of ripple. Frequency 
domain convolution serves to smooth out the ripple effects, 
although at the expense of an increased region of transition. 
This paper considers the Kaiser window, which has the design 
feature that the tradeoff between its transition region width and 
smoothing capability is somewhat controllable through its 

parameter .

IV. DESIGN EXAMPLE AND SIMULATION RESULTS

To illustrate the usefulness of the proposed system, an 

example from [2] will be used. The continuous-time signal 

( )cx t  is composed of the sum of four sinusoid terms with unit 

amplitude and respective frequencies of 16sF , 8sF ,

3 16sF , and 4sF . Five interleaved ADCs with respective 
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kd  offsets [0 0.96 2.02 2.99 4.03] . This 

corresponds to respective time-skew errors 

of [0 0.04 0.02 0.01 0.03 ]s s s sT T T T . Fig. 9(a) 

shows spectra before time-skew error calibration. The four 

tones that extending to 0dB  are the only desired tones, all 

others have resulted from the imperfect sampling and are 

undesired. After using the calibration technique, the spectra are 

shown in Fig. 9(b).  

Overall calibration performance is evaluated through 

examining the signal to noise-noise-distortion ration (SNDR) 

and spurious free dynamic range (SFDR). Before calibration 

the average SNDR is 30.5dB , and the average SFDR 

is 35.5dB . After calibration the average value of SNDR 

is 71.7dB ; and the average value of the SFDR is 85.8dB over 

5000N samples, the parameter of Kaiser window 4 .

The reconstruction filters are 100th order.  As shown in Fig. 3 

and Fig. 4. 

From the equation (20), we can known that the 

reconstructing filters are discontinuous in the points between 

any successive subintervals , 1, ,
k

I k M . So, the transition 

region takes the form of a small region of magnitude response 

inaccuracy centered about these points. This makes the 

reconstruction filters bank a poor calibration for signals 

occupying these frequencies (This can be seen from Fig. 3 and 

Fig. 4). Higher order synthesis filters will reduce the region of 

this error, as will decreasing the transition region through 

window design. Decreasing the transition region through 

windowing parameters is also of limited use due to the increase 

in undesirable ripple effects throughout a large portion of the 

spectrum, resulting in a poor reconstruction of the signals. But 

this tradeoff is acceptable for some applications where the 

accuracy is not seriously required. Further, in the applications 

where the accuracy is required, the error minimization method 

can be applied in these circumstances (This will be written in 

another paper). 

V. CONCLUSION

This paper has described a new technique for calibration of 
the time-skew errors in time-interleaved analog-to-digital 
converters. The proposed technique based on the method of 
hybrid filter bank analog-to-digital converters. The transfer 
function of the reconstructing filters was derived; further, the 
impulse response of the transfer function was given in an 
analytical formula. Using the proposed method the time-skew 
errors can be calibrated as well as desired (in certain sense) by 
properly approximation the ideal reconstructing filters. 
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