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Abstract—The presence of a vertical edge-crack within a web 

plate subjected to pure bending induces local compressive stresses 
about the crack which may cause tension buckling. Approximate 
theoretical expressions were derived for the critical far-field tensile 
stress and bending moment capacity of an edge-cracked web plate 
associated with tension buckling. These expressions were validated 
with finite element analyses and used to investigate the possibility of 
tension buckling in web-cracked trial girders. It was found that 
tension buckling is an unlikely occurrence unless the web is relatively 
thin or the crack is very long.  
 

Keywords—Fatigue crack, tension buckling, Rayleigh-Ritz, 
structural stability. 

I. INTRODUCTION 
EB plates form an integral part of beams and plate 
girders. These types of flexural members are oftentimes 

subjected to sub-critical cyclic bending stresses, as in the case 
of highway bridge plate girders. The fatigue loading produces 
fluctuating tensile stress concentrations at locations of 
discontinuity within a beam or plate girder, such as at 
imperfections in the welds connecting the web plate to the 
tension flange [1-11]. Over time, the fluctuating tensile stress 
concentrations may cause pre-existing microscopic flaws to 
form into through-thickness macrocracks [12, 13]. The fatigue 
loading may then cause a crack to propagate through the web 
plate in a direction transverse to the far-field tensile stresses 
[1-11]. One of the potential failure modes made possible by 
the presence of a growing crack is so-called tension buckling 
[14]. This phenomenon manifests itself in the form of 
wrinkling in the immediate region adjacent to the crack. 

Relatively few studies have investigated the effects of 
cracks on the reduction in strength of beam-like structures [15, 
16]. However, far more studies have examined the effects of 
holes and slots on the reduction in strength of beams and plate 
girders [17-21]. Although these studies did not consider 
tension buckling, other research has investigated tension 
buckling in cracked plates using experimental [22, 23], 
numerical [24-28], and theoretical methods [25, 26, 29]. 

The objective of this study was to develop a theoretical 
expression for the bending moment capacity, Mn, associated 
with tension buckling of a thin web plate containing a 
through-thickness fatigue edge-crack using various 
approximations.  Results obtained  from  the  expression  were 
compared with results from finite element (FE) analyses using 
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the general FE software ABAQUS. The bending moment 
capacities were then plotted as functions of edge-crack length 
for various web plate thicknesses and interesting conclusions 
were drawn. 

The focus of this study was specific to a thin web plate that 
is part of an I-shaped beam or plate girder subjected to pure 
bending (see Fig. 1). The fatigue edge-crack of length 2a was 
assumed to originate along the boundary between the web 
plate and the tension flange and extend vertically through the 
web. The tensile stress being applied to the base of the edge-
crack was assumed to be equal to the far-field tensile stress, 
σo, at the extreme fiber of the web plate as obtained from 
beam theory. The web plate was assumed to be a rectangular, 
homogeneous, linear isotropic elastic, thin plate with clamped 
support conditions along the longitudinal edges bordering the 
flange plates (see Table I). 

 

 
Fig. 1 I-shaped beam or plate girder under pure bending showing 
location of through-thickness fatigue edge-crack within web plate 

 
TABLE I 

WEB PLATE GEOMETRIC BOUNDARY CONDITIONS 

Edge (x, y) Ux Uy Uz Rx Ry Rz 

(-a, y) x 0 x x x x 

(Dw - a, y) x 0 x x x x 

II. COMPRESSIVE STRESS DISTRIBUTIONS 
The presence of the through-thickness edge-crack in the 

loaded web plate induces transverse compressive stresses, σx, 
adjacent to the crack which may cause local buckling (see Fig. 
2). The exact compressive stress distribution is difficult to 
obtain due to the non-symmetric configuration and 
complicated boundary conditions of the crack. As an 
alternative, the transverse stress distribution is approximated 
by considering the edge-crack to be a central crack located 
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within an infinite plate loaded by linearly varying far-field 
tensile stress distributions (see Fig. 3). 

 

 
Fig. 2 Web plate showing distribution of transverse stresses along the 

positive y-axis adjacent to the edge-crack 

 

 
Fig. 3 Central crack within an infinite plate subjected to linearly 

varying far-field tensile stress distributions 
 

The case in Fig. 3 is more general and the stress field about 
the central crack can be readily approximated by employing 
the principle of superposition [30, 31]. This stress field is 
obtained by superimposing the stress field for the case in Fig. 
3 without a crack with the stress field for the case of a central 
crack within an infinite plate subjected to linearly varying 
crack face tensile stresses, σy(xo) (see Fig. 4a). These tensile 
stresses are described by the function. 
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where xo is the distance along the x-axis measured from the 
origin of the coordinate system and Dw is the depth of the web 
plate. The variation of the crack face tensile stresses is 
identical to the stress variation of the case in Fig. 3. The 
maximum tensile stress occurs at xo = -a and is equal to σo. 
 

 
Fig. 4 Central crack within an infinite plate subjected to (a) linearly 

varying and (b) uniform crack face tensile stresses 

 
The superimposed stress field of the case in Fig. 3 without a 

crack has no effect on the transverse stress distribution about 
the central crack, and so the stress field is sought for the case 
in Fig. 4a. This case is greatly simplified by recognizing from 
(1) that, for small crack lengths and large web plate depths, σo 
is nearly equal to the crack face tensile stresses at the crack 
end given by σy(a). The distribution of crack face tensile 
stresses is therefore approximated as uniform tensile stress, σo’ 
(see Fig. 4b). 

The magnitude of σo’ is taken as the average of σo and σy(a) 
expressed by 
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The two-dimensional stress field of the case in Fig. 4b is 

obtained by employing the Airy stress function, F(x,y). The 
Airy stress function must satisfy any given boundary 
conditions and the biharmonic equation given by [31] 
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which identically satisfies the equilibrium and compatibility 
equations. The stress field is expressed as [31] 
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For elastic bodies containing cracks, the Airy stress function 
may be expressed in terms of the Westergaard stress function, 
Z(ζ), as [32] 
 

ZyZF ImRe +=                                                                (5) 
 
where 
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and ζ is the complex variable ζ = x + iy. Substitution of (5) 
into (4) results in the stress field becoming 
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The Westergaard stress function for the case in Fig. 4b is 

expressed as [33] 
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Evaluating the integral results in [34] 
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Substituting (2) and (9) into (7)1 and setting x = 0 results in 
the following expression for the two-dimensional transverse 
stress distribution along the positive y-axis of the central crack 
shown in Fig. 3 
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Alternatively, setting x = ±a results in the transverse stress 
distribution at the crack ends given by 
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Based on the prior assumption considering the edge-crack to 
be a central crack within an infinite plate, (10) approximately 
describes the transverse stress distribution at the middle of the 
crack on the positive y-axis, and (11) approximately describes 
the transverse stress distribution along the clamped edge of the 
web plate and at the far end of the crack (see Fig. 5). 
 

 
Fig. 5 Transverse stress distributions at the middle and ends of edge-

crack 

III.  TENSION BUCKLING CAPACITY 
The transverse stress distributions given by (10) and (11) 

are used to calculate the local buckling stress of the portion of 
web plate adjacent to the edge-crack by employing the 
Rayleigh-Ritz method. This portion of plate is assumed to be a 
rectangular embedded plate (see Fig. 6a) with clamped support 
conditions along three edges and a free edge formed by the 
edge-crack (see Fig. 6b). This assumption is deemed to be 
reasonable in light of the first buckling mode shapes obtained 
by Brighenti [25] during FE analyses of centrally cracked 
plates in tension. 

 

 
Fig. 6 (a) Location of embedded plate adjacent to edge-crack with (b) 

exact and (c) approximate transverse stress distributions 
 
The compressive stress distribution adjacent to the crack is 

approximated by loading the clamped edge of the embedded 
plate bordering the tension flange with a transverse 
compressive stress distribution, σx’(-a, y), taken as the average 
of (10) and (11), given by 
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Substituting (10) and (11) into (12) results in a lengthy 
expression for the transverse stress distribution (see Fig. 6b). 
Examination of (12) reveals that the stress distribution is 
triangular in shape and can be simplified as a linear 
distribution, σx”(-a, y) (see Fig. 6c). The slope is taken as one 
half of (2) divided by the width, b, of the embedded plate, and 
the x-intercept is taken as one half of (2). The value of b is 
assumed to be equal to the extent of σx’(-a, y) in compression 
and is determined by setting (12) equal to zero and solving for 
y resulting in 
 

ab 16.1≅                                                                              (13) 
 
Accordingly, the simplified transverse stress distribution 
becomes 
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In accordance with the Rayleigh-Ritz method, the buckled 

shape of the embedded plate is assumed to take on a form 
described by a deflection function, w(x,y). The deflection 
function satisfies the geometric boundary conditions indicated 
in Fig. 6b and includes an arbitrary variable, A. The change in 
total potential energy, П, with respect to A is set to zero and 
the stress distribution given by (14) enabling this equilibrium 
is solved for. The total potential energy of the embedded plate 
is given by [35] 
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where W is the strain-energy density function, V is the volume 
of the plate, Ti are the applied surface tractions, ui are the 
corresponding displacements, and S is the surface over which 
the tractions are applied. D is the plate rigidity given by 
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where E is the modulus of elasticity, ν is Poisson’s ratio, and 
tw is the web plate thickness. 

The geometric boundary conditions indicated in Fig. 6b are 
explicitly expressed as 
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A simple deflection function of the following form satisfies 
these conditions 
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Substituting (13), (14), and (18) into (15) results in an 
expanded expression for the total potential energy. Setting the 
change in total potential energy with respect to A to zero 
requires that 
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From calculus of variations, δ(A2) = 2A δA, which allows for 
A to be canceled from the expanded expression [35]. Solving 
for the far-field tensile stress and dividing the result by tw 
gives 
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where σY is the uniaxial yield strength of the web plate 
material. This expression represents an approximation of the 
critical far-field tensile stress at the extreme fiber of the web 
plate corresponding to local buckling of the portion of web 
adjacent to the edge-crack. It follows that the bending moment 
capacity of the web plate associated with tension buckling is 
given by 
 

SM crn σ=                                                                          (21) 
 
where S is the elastic section modulus of the web plate with 
respect to the strong axis of bending. 

IV.  FE ANALYSIS 
FE analyses were employed to validate the critical far-field 

tensile stress given by (20). ABAQUS was used to model four 
full-scale trial plate girders with length, L, of 5 m in a 
cantilevered configuration as shown in Fig. 7a. An external 
bending moment, Mo, was applied to the free end of each 
girder such that a constant internal bending moment was 
induced throughout the entire length (see Fig. 7b). Each girder 
was modeled with a constant web plate depth of 127 cm and 
flange width, bf, of 35 cm (see Fig. 7c). 

A different web plate thickness was assigned to each trial 
girder. The flange thickness, tf, was assumed to be twice the 
thickness of tw. A vertical edge-crack was modeled at the mid-
span of each girder on the tension side of the web plate. Four 
different crack lengths were tested for each trial girder for a 
total of 16 tests (see Table II). Also, each girder was modeled 
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corresponding far-field tensile stress was calculated from (14). 
The resulting critical far-field tensile stresses obtained from 
(20) and the FE analyses are summarized in Table III. The 
critical stress given by (20) is mostly conservative and is more 
accurate for longer crack lengths. 

 
TABLE III 

ANALYTICAL AND NUMERICAL TENSION BUCKLING STRESSES 
Plate 

Girder 
(PG) 

Eq.  
(20) 

(GPa) 

FE 
Analysis 

(GPa) 

% 
Error 

Plate 
Girder 
(PG) 

Eq.  
(20) 

(GPa) 

FE 
Analysis 

(GPa) 

% 
Error 

PG-1a 4.77 5.83 18.2 PG-3a 76.4 67.2 -13.7 

PG-1b 1.23 1.57 21.7 PG-3b 19.7 22.0 10.5 

PG-1c 0.33 0.43 23.3 PG-3c 5.28 6.61 20.1 

PG-1d 0.10 0.10 0.00 PG-3d 1.55 1.52 -1.97 

PG-2a 19.1 21.2 9.91 PG-4a 305 156 -95.5 

PG-2b 4.93 6.04 18.4 PG-4b 79.0 69.6 -13.5 

PG-2c 1.32 1.72 23.3 PG-4c 21.2 24.1 12.4 

PG-2d 0.39 0.39 0.00 PG-4d 6.18 5.85 -5.64 

V. RESULTS AND DISCUSSION 
The bending moment capacities of the trial girder web 

plates given by (21) were plotted as functions of edge-crack 
length (see Fig. 9). The horizontal portions of the plots 
indicate the elastic bending moment capacities. The web plate 
capacities of PG-1 and PG-2 were controlled by tension 
buckling when the crack lengths were 7 cm and 14 cm, 
respectively. The web plate capacities of PG-3 and PG-4 
remained unaffected by tension buckling for all crack lengths. 
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Fig. 9 Bending moment capacities of PG-1 through PG-4 web plates 

plotted as functions of crack length 
 
Alternative failure modes of the trial girders including 

flange local buckling, lateral-torsional buckling, elasto-plastic 
failure, and brittle fracture were not considered in this study. 
Tension buckling is concluded to be an unlikely mode of 
failure in web-cracked girders unless the web is exceptionally 
thin or the crack is very large in comparison to the web depth. 
The expressions given by (20) and (21) could be used by 
engineers as an additional design check for the bending 
moment capacity of an I-shaped beam or plate girder 
considering existing or presumed vertical web-crack 
configurations. 
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