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Abstract—Rotor Flux based Model Reference Adaptive System 

(RF-MRAS) is the most popularly used conventional speed 
estimation scheme for sensor-less IM drives. In this scheme, the 
voltage model equations are used for the reference model. This 
encounters major drawbacks at low frequencies/speed which leads to 
the poor performance of RF-MRAS. Replacing the reference model 
using Neural Network (NN) based flux estimator provides an 
alternate solution and addresses such drawbacks. This paper 
identifies an NN based flux estimator using Single Neuron Cascaded 
(SNC) Architecture. The proposed SNC-NN model replaces the 
conventional voltage model in RF-MRAS to form a novel MRAS 
scheme named as SNC-NN-MRAS. Through simulation the proposed 
SNC-NN-MRAS is shown to be promising in terms of all major 
issues and robustness to parameter variation.  The suitability of the 
proposed SNC-NN-MRAS based speed estimator and its advantages 
over RF-MRAS for sensor-less induction motor drives is 
comprehensively presented through extensive simulations.  
 

Keywords—Sensor-less operation, vector-controlled IM drives, 
SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, 
artificial neural network 

I. INTRODUCTION 
DVANCES in digital technology have made the vector 
control realizable by industries for high performance 
variable speed control applications. Various vector 

controlled techniques for induction motor drives have been 
proposed in the literature. In particular, sensor-less vector 
control is an emerging area. The speed sensor which is 
expensive, fragile, requires extra attention from failures under 
hostile environment and needs special enclosures and cabling 
is not needed for sensor-less closed loop control of Induction 
Motor (IM) drives. This leads to cheaper and more reliable 
control.The performance of sensor-less vector controlled IM 
drive depends to a large extent on the knowledge of motor 
speed. Various techniques for speed estimation have been 
suggested such as Model Reference Adaptive System 
(MRAS), Luenberger and Kalman filter Observers, Sliding 
Mode Observers. MRAS scheme offer simpler 
implementation and require less computational effort 
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compared to other methods and therefore the most popular 
strategies used for sensor-less control [1]-[3]. Various MRAS 
schemes have been introduced in the literature based on rotor 
flux, back electromotive force, and reactive power [3]-[5]. 
However, rotor flux MRAS, first introduced by Schauder [3], 
is the most popular MRAS strategy. In this strategy, 
conventional voltage model equations for flux estimation are 
used as the reference model. Conventional voltage model 
suffers from the problems of pure integrator and variation of 
stator resistance especially at low frequencies/speed [6], [7]. 
Several techniques were proposed in the literature to 
overcome the problems of pure integrator [8]-[10]. Neural 
Network (NN) based estimators provide an alternate solution 
for flux estimation. It dispenses the direct use of complex 
mathematical model of the machine and hence overcomes the 
problems of integrator. The nonlinear dynamic system 
mapping capability of neural network was well proven in the 
literature [11]. Several Neural Network methods were 
reported for flux estimation. Programmable-cascaded low pass 
filter was realized as a recurrent NN whose weights were 
obtained through a polynomial-NN [12]. SLFF-NN trained 
using input/output data was proposed for rotor flux estimation 
[1]. It is shown to improve the performance of the drive at 
very low and near zero speed, provide immunity to motor 
parameter variations, remove low-pass filter/ integrator and 
reduce the error. 

A compact NN model with desired accuracy assumes 
importance in real implementation of on-line flux estimator to 
ensure faster estimation for effective control. In [13], Single 
Neuron Cascaded (SNC) NN model is identified and shown to 
provide distinctly compact NN model for on-line flux 
estimation. 

In this paper the application of SNC-NN model for MRAS 
is investigated. It replaces the conventional voltage model in 
the RF-MRAS to form a novel MRAS scheme named as 
‘SNC-NN-MRAS’ which enhances the accuracy of speed 
estimation at low frequencies/speed as compared to RF-
MRAS.  

The paper is organized as follows. Section II details the 
sensor-less IM drives, RF-MRAS and its issues and SNC-NN 
based flux estimator. The performance comparison of RF-
MRAS and SNC-NN-MRAS at low frequencies/speed are 
carried out, simulation results are presented and discussed in 
section III. Section IV concludes the paper. 

II. SPEED-SENSOR-LESS VECTOR CONTROLLED IM DRIVES 
The speed sensor-less vector control of induction motor 

drive presented was indirect rotor flux field oriented control. 
Fig. 1 shows the overall block diagram of the speed-sensor-
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less drive system of an induction motor. Generally through a 
PI controller, the speed error signal is processed and the 
torque command is generated. It is combined with the flux 
command corresponding to the flux error to generate the 
common reference to control the motor current. The reference 
is used to produce the PWM pulses to trigger the voltage 
source inverter and control the current and frequency applied 
to the IM drive.  

The performance of sensor-less vector controlled IM drive 
to a large extent depends on the accuracy of speed estimation. 
There are many speed estimation schemes available in the 
literature. Out of which, Rotor Flux Model Reference 
Adaptive System (RF-MRAS) is the most popular MRAS 
strategy.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Sensor-less Vector Controlled IM Drives showing the Speed 
Estimator 

 
The general block diagram of MRAS scheme for speed 

estimation is shown in Fig. 2. The MRAS scheme consists of a 
reference model which determines the desired states and 
adaptive (adjustable) model which generates the estimated 
values of the states. The error between these states is fed to an 
adaptation mechanism to generate an estimated value of the 
rotor speed which is used to adjust the adaptive model. This 
process continues till the error between two outputs tends to 
zero. 

A. RF-MRAS 
In RF-MRAS, the state variable used is the rotor flux. 

Conventional voltage model equations for rotor flux 
estimation are used as the reference model because it is 
independent of the rotor speed. The voltage model equations 
are given from (1)-(4).  
 

( )s s s dtv iRsds ds ds= −Ψ ∫ (1)
( )s s s dtv iRqs sqs qs= −Ψ ∫  (2)

( )Lrs s siLsdr ds dsLm
σ= −Ψ Ψ  (3)

( )Lrs s siLqr qs s qsLm
σ= −Ψ Ψ  (4)

 

 
Fig. 2 MRAS Scheme for Speed Estimation  

 
The current model equations for rotor flux estimation are 

used as the adaptive model because it is dependent on the 
rotor speed. The current model equations are given in (5) and 
(6). 

1s
Ldr m s ssi rds drqrdt T Tr r

ω
Ψ

= − − ΨΨ  (5)

1sqr Lm s ssi qrqs rdt drT Tr r
ω

Ψ
= + − ΨΨ  (6)

Where, 
( )s sv vqsds  - Stator voltages d axis (q axis) 
( )s si iqsds  - Stator currents d axis (q axis) 

( )s sqsdsΨ Ψ  - Stator flux d axis (q axis) 
( )s sqrdrΨ Ψ  - Rotor flux d axis (q axis) 

( )R Rs r  - Stator resistance (rotor) 
( )L Ls r  - Stator inductance (rotor) 

Lm  - Magnetization inductance 
2

1 - Lm
L Lr s

σ = -Leakage Co-Efficient 

T r  -Rotor Time Constant 
 

With correct speed signal, ideally, the fluxes calculated 
from the reference model and those calculated from the 
adaptive model will match, that is, s

drΨ = ' s
drΨ  and sqrΨ = ' sqrΨ , 

where s
drΨ and sqrΨ  are reference model outputs and ' s

drΨ  and 
' sqrΨ  are the adaptive model outputs. An adaptation algorithm 

with PI controller, as indicated, can be used to tune the speed 
( ),r estω  so that the error 0ξ = . 

In designing the adaptation algorithm for the MRAS, it is 
important to take account of the overall stability of the system 
and ensure that the estimated speed will converge to the 
desired value with satisfactory dynamic characteristics. Using 
popov’s criteria for a globally asymptotically stable system, 
the following relation for speed estimation can be derived.  
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' 's s s sqr qrdr drξ = −Ψ Ψ Ψ Ψ  
In steady state, 0ξ =  balancing the fluxes; in other words, 

s
drΨ = ' s

drΨ  and sqrΨ = ' sqrΨ  
The reference model (voltage model) in the RF-MRAS 

encounters major drawbacks at low frequencies/speed which 
lead to the poor performance of RF-MRAS. This in turn 
affects the performance of the speed sensor-less operation.   

(1) Integrator Drift Problem: 
The application of pure integrator for flux estimation is 

difficult. This is because the dc bias in the measured signal for 
integration is inevitable, no matter how small it is, makes the 
estimated flux drift from the actual.  

(2) Parameter Variation Problem: 
The voltage model equations are dependent on resistance Rs 

and inductances Ls, Lm, Lr. The variation of these parameters 
tends to reduce the accuracy of the flux estimation. 
Particularly, temperature variation of Rs becomes more 
dominant. A small change in Rs would cause the voltage 
model based estimator to drift at low frequency. At higher 
frequency, the influence of Rs change on the estimator is 
negligible.  
In this paper, Single Neuron Cascaded Neural Network based 
flux estimator is proposed to replace the conventional voltage 
model based flux estimator to form a novel MRAS scheme 
named as “SNC-NN-MRAS” to improve the MRAS 
performance at low frequencies/speed. 

B. SNC-NN based Flux Estimator used as a Reference 
Model in MRAS 

The block diagram of SNC-NN based flux estimator is 
shown in Fig.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 The Inputs and Outputs of SNC-NN based Flux Estimator 
 

The inputs to SNC-NN Model are direct and quadrature axis 
stator voltages { ( )s kvds , ( 1)s kvds − , ( )s kvqs , ( 1)s kvqs − } and stator 

currents { ( )s kids , ( 1)s kids − , ( )s kiqs , ( 1)s kiqs − } measured at kth and 
k-1th sample. The outputs are the direct and quadrature axis 
rotor fluxes { ( )s kdrΨ , ( )s kqrΨ }.  
 

 
Fig. 4.  SNC-NN with multiple inputs/single output  

 
Where, 

p  - Input vector, [1, 2, ... ]p R=  
,

,
m kwi j  - Link weight of neuron ‘i’ of layer ‘m’ for input 

from neuron ‘j’ of layer ‘k’. 

,
mwi R  

- Input weight of neuron ‘i’ of layer ‘m’ for 
external input ‘R’. 

mbi  - bias for neuron ‘i’ of layer ‘m’. 

mf  - Activation functions of all neurons in a layer 
‘m’. 

mai  
- Output of neuron ‘i’ of layer ‘m’ 

 
The Single Neuron Cascaded (SNC) architecture [13] with 

multiple inputs/single output is shown in Fig. 4. SNC-NN 
architecture consists of an input layer, hidden layers and an 
output layer. The first hidden layer receives only external 
signals as inputs. Other layers (M) receive external inputs and 
outputs from all previous (M-1) 1ayers.  

To create multilayer structure hidden layers are added one 
by one and the whole network trained repeatedly using the 
concept of moving weights so as to obtain compact network 
[13], [14]. This process continues, till the performance index 
is reached.  

Around 13,200 data sets were obtained through simulation. 
To make SNC-NN model robust to Rs change, the training 
data is obtained with 25% change in Rs. The activation 
function for hidden and output layers is chosen as tan-sigmoid 
and pure linear function respectively. The SNC-NN is trained 
with input/output data using LM algorithm for the target mean 
square error (MSE) of 1×10-7. The obtained SNC-NN model 
for on-line flux estimation has the structure 8-13(h)-2 (h-
hidden layer with one neuron). The obtained SNC-NN model 
for flux estimation replaces the conventional voltage model in 
the RF-MRAS.  

III. COMPARISON OF RF-MRAS AND SNC-NN-MRAS 
The performance of RF-MRAS and SNC-NN-MRAS are 

investigated for low frequency problems (Integrator drift and Rs 
variation problems) and compared. Both the problems are 
investigated under very low frequency of 3Hz at no load 
condition. 
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A. Integrator Drift Problem 
The application of pure integrator for flux estimation is 

difficult. This is because the dc bias in the measured signal for 
integration is inevitable, no matter how small it is, makes the 
estimated flux drift from the actual. To investigate the dc drift 
problem, a dc bias of 2% of the peak current is added to the 
measured current.  

 
(a) 

 
(b) 

Fig. 5 d-axis Rotor Flux for integrator drift Problem: 
(a) Voltage Model  (b) SNC-NN Model 

 
(a) 

 
(b) 

Fig. 6 q-axis Rotor Flux for integrator drift Problem:  

 
(a) 

(a) Voltage Model (b) SNC-NN Model  
 

 
(b) 

Fig. 7 Response of MRAS based speed estimator for integrator drift 
Problem 

 (a) RF-MRAS (b) SNC-NN-MRAS 
 

The d-axis rotor flux estimated from voltage model and 
SNC-NN Model is shown in Fig. 5. The q-axis rotor flux 
estimated from voltage model and SNC-NN Model is shown 
in Fig. 6. From the results obtained, it is clearly understood 
that d and q-axis rotor fluxes estimated from the SNC-NN 
tracks the actual flux very well even in the presence of dc bias 
with the d and q-axis rotor flux MSE of 4.50×10-5 and 
2.60×10-5 respectively. Thus SNC-NN model based flux 
estimator is found to be less sensitive to dc bias problem.  This 
is due to the inherent presence of saturating nonlinear 
activation function in the NN, where as d and q-axis rotor 
fluxes estimated from the voltage model gets deviated from 
the actual. It is also noted that the error in the d and q-axis 
rotor fluxes keeps on increasing with time. Thus, from the 
above analysis, it is understood that SNC-NN model exhibits 
stable performance where as voltage model shows unstable 
performance with the presence of small dc bias.The 
performance of SNC-NN-MRAS and RF-MRAS for dc drift 
problem is presented in Fig. 7. For the comparison, both the 
figures are shown with same scale. From the results obtained, 
it is seen that the SNC-NN-MRAS based speed estimation 
displays stable performance tracks the actual speed well 
whereas RF-MRAS becomes unstable and fails to estimate. 
The SNC-NN-MRAS based speed estimation is shown to 
overcome the drift problem. 
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B. Parameter Variation Problem 
Another major problem of voltage model based flux 

estimation is stator resistance (Rs) variation problem. A small 
change in Rs would cause the estimator to drift at low 
frequency. At higher frequency the influence of Rs change on 
the estimator is negligible.  

 
(a) 

 
(b) 

Fig. 8 Locus Diagram of Rotor Fluxes for Rs change: 
 (a) Voltage Model (b) SNC-NN Model 

 

 
(a) 

 
(b) 

Fig. 9 Response of MRAS based Speed Estimator for Rs change:  

(a) RF-MRAS (b) SNC-NN-MRAS 
 

To investigate the Rs variation problem a 25% step change 
in Rs is applied at 2sec. The locus diagram of rotor fluxes is 
shown in Fig. 8. It is understood that the locus diagram of 
rotor fluxes of SNC-NN model closely tracks the locus of the 
actual flux and it is centered on the origin similar to the actual 
flux where as the locus diagram of rotor fluxes of voltage 
model is not centered on the origin and it is shifted away from 
the origin approximately 0.25wb. Hence, SNC-NN model is 
found to estimate the flux components very well even when 
there is change in the parameter. Thus SNC-NN model is 
robust to Rs variation as compared to voltage model. 
The performance of SNC-NN-MRAS and RF-MRAS for Rs 
variation problem is shown in Fig. 9.From the results 
obtained, it is obvious that the speed estimated from the SNC-
NN-MRAS tracks closely the actual speed even when there is 
a change in the parameter and the error in the speed estimation 
is almost negligible whereas RF-MRAS becomes unstable and 
fails to estimate. The SNC-NN-MRAS based speed estimation 
is shown to overcome the Rs variation problem. The voltage-
based model can also be made robust to Rs variation with an 
additional on-line Rs estimator, which may increase the 
complexity of the drive system. The NN based estimator, 
trained for parameter variations, exhibits robust speed 
estimation even in the presence of parameter variation. 

IV. CONCLUSION 
The performance of sensor-less vector controlled IM drives 

to a large extent depends on the accuracy of speed estimation. 
RF-MRAS is the popularly used speed estimation scheme for 
sensor-less vector controlled IM drives. The reference model 
(conventional voltage model) in RF-MRAS encounters major 
drawbacks at low frequencies/speed which leads to poor 
performance of RF-MRAS. This paper proposes SNC-NN 
model based flux estimator which replaces the conventional 
voltage model in the RF-MRAS to form a novel MRAS 
scheme named as SNC-NN-MRAS. The proposed SNC-NN-
MRAS based speed estimator is designed to be robust to 
parameter variations and its performance is compared with 
RF-MRAS for the various issues such as integrator drift and 
Rs variation problems at low frequencies/speed. Through 
extensive simulations, the proposed SNC-NN-MRAS is 
shown to improve the speed estimation at low 
frequencies/speed as compared to RF-MRAS and found to be 
promising alternative for sensor-less vector controlled IM 
drives. 
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APPENDIX 
The parameters of the induction machine used for 

simulation are given in the table shown below. 
INDUCTION MOTOR PARAMETERS 

Parameters Values Parameters Values 

Rated Power 
Rated voltage 
Rated current 

Type 
Frequency 

Number of poles 
Rated Speed 

1.1kW 
415V 
2.77A 
3 Ph 
50Hz 
4 
1415RPM 

Stator Resistance (Rs) 
Rotor Resistance (Rr) 

Magnetizing Inductance (Lm) 
Stator  Inductance (Ls) 
Rotor  Inductance (Lr) 

Total Inertia (JT) 
Friction Coefficient (B) 

6.03Ω 
6.085Ω 
0.4893H 
0.5192H 
0.5192H 
0.011787Kgm2 

0.0027Kgm2/s 
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