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Abstract—Strict stability can present the rate of decay of the
solution, so more and more investigators are beginning to study the
topic and some results have been obtained. However, there are few
results about strict stability of stochastic differential equations. In
this paper, using Lyapunov functions and Razumikhin technique, we
have gotten some criteria for the strict stability of impulsive stochastic
functional differential equations with markovian switching.
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I. INTRODUCTION

IN many applications, one often assumes that the future
states of the systems considered are independent of the

past states and decided solely by the present states. However,
in most cases, the future states are concerned with the past
states. Functional differential equations give a mathematical
formulation of such systems [1]. Since functional differential
equations play an important role in a large number of fields,
qualitative properties of functional differential equations are
interesting to many researchers. Satisfyingly, some results are
derived ([11]-[13] and references therein). Especially, the con-
ditions which ensure the stability of the equilibrium solution
of functional differential equations are provided ([14],[15] and
references therein).

Impulsive effects exist in many evolution processes in
which states are changed abruptly at certain moments of time,
involving such fields as medicine and biology, economics, me-
chanics, electronics (see [4] and reference therein). However,
in addition to impulsive effects, stochastic effects likewise
exist in real systems. It is well known that a lot of dynamical
systems have variable structures subject to stochastic abrupt
changes. The abrupt changes in their structure and parameters
usually result from phenomena such as stochastic failures and
repairs of the components, changes in the interconnections
of subsystems, sudden environment changes, etc. ([6]-[7] and
references therein).

As we know, most of the definitions of stability are one-
sided estimation. However, strict stability is an strict concept
which presents much information about the rate of the decay
of the solutions. It not only give an estimation of upper
bound for the rate at which solutions approach to the trivial
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solution but also of lower bound [3]. V.Lakshmikantham and
S.Leea [2] introduced the concepts of strict stability in tube-
like domain. V.Lakshmikantham [3] employed strict stability
to prove uniformly asymptotical stability result. Zhang [5]
investigated the strict stability of impulsive functional differen-
tial equations. Motivated by the above description, taking into
account of impulsive effects and stochastic effects, we want to
consider the strict stability of impulsive stochastic functional
differential equations (ISFDE). To the best of our knowledge
to date, there are few literatures with respect to strict stability
of ISFDE. Therefore, we want to close he gap.

II. IMPULSIVE STOCHASTIC FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH MARKOVIAN SWITCHING

Let {Ω,F , {Ft}t≥0,P} be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
the filtration is continuous on the right and contains all P-
zero sets). Let B(t) = (B1(t), B2(t), ..., Bm(t))T be an
m-dimensional Brownian motion defined on the probabil-
ity space. Let PC(I;Rn) denote the family of functions
ϕ from I to Rn with ϕ(t+) = ϕ(t) for t ∈ I and
ϕ(t−) existing for t ∈ [0,∞] as well as ϕ(t+) = ϕ(t)
for all but points tk ∈ [0,∞]. If A is a vector or ma-
trix, its trace norm is denoted by |A| =

√
trace(ATA),

while its operator norm is denoted by ‖A‖ = sup{|Ax| :
x = 1}. PCb

F0
(I;Rn) denotes the family of all bounded,

F0-measurable, PC([−τ, 0];Rn)-valued random variable.
Let PCb

F0
(δ) = {ϕ|ϕ ∈ PC([−τ, 0];Rn) and E‖ϕ‖ ≤ δ},

PC b̄
F0

(θ) = {ϕ|ϕ ∈ PC([−τ, 0];Rn) and E||ϕ||1 > θ},
where the norm ‖ϕ‖ = sup

−τ≤s≤0 |ϕ(s)|, ‖ϕ‖1 =
inf−τ≤s≤0 |ϕ(s)|, respectively, and | · | is the Euclidean norm
in Rn, i.e., |x| =

√
xTx (x ∈ Rn).

Let {r(t), t ∈ R+ = [0,∞)} be a right continuous Markov
chain on the probability space {Ω,F , {Ft}t≥0,P} taking
values in a finite state space S = {1, 2, ..., N} with generator
Γ = (γij)N×N given by

P (r(t+Δ) = j|r(t) = i) =
{

γijΔ + o(Δ), if i �= j,

1 + γiiΔ + o(Δ), if i = j.

where Δ > 0. Here γij ≥ 0 is the transition rate from i to j,
if i �= j; while γii = −

∑
j �=i

γij . We assume that Markov chain

r(·) is independent of the Brownian motion B(·). It is known
that almost every sample path of r(t) is right continuous step
function with a finite number of simple jumps in any finite
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sub-interval of R+.

In this article, we consider a class of impulsive stochastic
functional differential equation in which the state variables on
the impulsive are related to the time delay⎧⎪⎪⎨

⎪⎪⎩

dx(t) = f(t, xt, r(t))dt + g(t, xt, r(t))dW (t),
t ≥ t0, t �= tk,

x(tk) = I(tk, x(t−k )) + J(tk − τ, x(t−k − τ)),
k = 1, 2, · · · t = tk,

(1)

on the entire t ≥ 0 with initial data x0 = ϕ ∈ PCb
F0

(δ),
where xt = {x(t+ θ) : −τ ≤ θ ≤ 0} which is regarded as
a PC([−τ, 0];Rn)-valued stochastic process. Furthermore,
we assume that the moments of impulsive time tk satisfy
0 ≤ t0 < t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞.
Under some assumptions, we assume that there exists a unique
stochastic process which satisfies Eq.(1) and all solutions
which are denoted by x(t; t0, ϕ) on the entire t ≥ −τ are
continuous on the right and limitable on the left. We also
assume that f(t, 0) ≡ 0 and g(t, 0) ≡ 0, together with
I(tk, 0) ≡ 0, J(tk − τ, 0) ≡ 0. Therefore, Eq.(1) admits an
equilibrium solution x(t) ≡ 0.

Presently, we introduce and recall some notations and
definitions. Let K1 denote the family of strictly increasing
continuous convex functions ω1 : R+ → R+ such that
ω1(0) = 0; K2 denote the family of strictly increasing
continuous concave functions ω2 : R+ → R+ such that
ω2(0) = 0. Let K denote the family of increasing continuous
functions ϕ : R+ → R+ such that ϕ(s) < s for s > 0.

Definition 2.1 The function V : [t0,∞) × Rn × S → R+

belongs to the family C1,2, if
(1) the function V (·) is continuously once differential in

t and twice differentiable in x on each of the sets
[tk−1, tk) × Rn × S(k = 1, 2, · · · ) and for all t ≥ t0,
V (t, 0, 0) ≡ 0.

(2) V (t, x, i) is locally Lipschitzian in x.
(3) for each k = 1, 2, · · · , there exist finite limits

lim
(t,y)→(t−

k
,x)
V (t, y, i) = V (t−k , y, i),

lim
(t,y)→(t+

k
,x)
V (t, y, i) = V (t+k , y, i),

and V (t+k , x, i) = (tk, x, i),

where i ∈ S.
Definition 2.2 The equilibrium solution of Eq.(1) is called

to be strictly stable, if for any ε1 > 0, there exists a
δ1 = δ1(t0, ε1) > 0 such that ϕ ∈ PCb

F0
(δ1) implies

E|x(t; t0, ϕ)| < ε1, t ≥ t0, and for every 0 < δ2 ≤ δ1,
there exists an 0 < ε2 < δ2 such that

ϕ ∈ PC b̄
F0

(δ2), means ε2 < E|x(t; t0, ϕ)|, t ≥ t0.

Definition 2.3 The equilibrium solution of Eq.(1) is called
to be strictly uniformly stable, if δ1, δ2 and ε2 is independent
of t0.

III. MAIN RESULTS

In this section, we present our main results and complete
their proofs.

Theorem 3.1 Assume that

(H1) There exist functions a1, b1 ∈ K1, V1 ∈ C1,2 such that

a1(|x(t)|) ≤ V1(t, x, i) ≤ b1(|x(t)|),
for (t, x, i) ∈ [t0 − τ,∞) ×Rn × S,

(H2) For any solution x(t) of Eq.(1), EV1(t+s, x(t+s), r(t+
s)) ≤ EV1(t, x(t), r(t)) with s ∈ [−τ, 0], implies that
D+EV1(t, x(t), r(t)) < 0;

(H3)

V1(tk, I(tk, x(t−k )) + J(tk − τ, x(t−k − τ)), r(tk))

≤
1 + dk

2
[V (t−k , x(t

−

k ), r(t−k ))

+ V (t−k − τ, x(t−k − τ), r(t−k − τ))],

where dk ≥ 0 and
∞∑

k=1

dk <∞;

(H4) There are functions a2, b2 ∈ K2, V2 ∈ C1,2 satisfying

a2(|x(t)|) ≤ V2(t, x, i) ≤ b2(|x(t)|),
for (t, x) ∈ [t0 − τ,∞) ×Rn;

(H5) For any solution x(t) of Eq.(1), EV2(t+s, x(t+s), r(t+
s)) ≥ EV2(t, x(t), r(t)) with s ∈ [−τ, 0], implies that
D+EV2(t, x(t), r(t)) > 0.

(H6)

V2(tk, I(tk, x(t−k )) + J(tk − τ, x(τ−k − τ)), r(tk))

≥
1 − ck

2
[V2(t−k , x(t

−

k ), r(t−k ))

+ V (t−k − τ, x(t−k − τ), r(t−k − τ))],

where 0 ≤ ck < 1 and
∞∑

k=1

ck <∞.

Thus the equilibrium solution of Eq.(1) is strictly uniformly
stable.

Proof For simplicity, we set t0 = 0. By virtue of a1, b1 ∈
K1, for given ε1 > 0,M > 0, we can find δ1 > 0
satisfying b1(δ1) < a1(ε1)/M . Note that for t ∈ [−τ, 0] and
ϕ ∈ PCb

F0
(δ1)

EV1(t, x(t), i0) = EV1(t, ϕ(t), i0) ≤ b1(δ1).

In what follows, we claim that inequality

EV1(t, x(t), r(t)) ≤ b1(δ1), t ∈ [0, t1), (2)

is true. However, if the inequality (2) is not true, then there
exists s1 ∈ [0, t1) satisfying

EV1(s1, x(s1), r(s1)) > b1(δ1) ≥ EV1(t0, x(t0), i0).

Define

s2 = inf{s1 ∈ [0, t1)|EV1(s1, x(s1), r(s1)) > b1(δ1)},

then

EV1(s2, x(s2), r(s2)) = b1(δ1),
EV1(s2 + s, x(s2 + s), r(s2 + s)) ≤ EV1(s2, x(s2), r(s2)),
s ∈ [−τ, 0],
D+EV1(s2, x(s2), r(s2)) ≥ 0,
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which contradicts the assumption (H2). Therefore inequality
(2) must hold. Now we estimate EV1(t, x(t), r(t)) at the
moment of impulsive time t1. From (H3) and together with
(2), yield that

EV1(t1, x(t1), r(t1))

= EV1(t1, I(t1, x(t−1 )) + J(t1 − τ, x(τ−1 − τ)), r(t1))

≤
1 + d1

2
[EV1(t−1 , x(t

−

1 ), r(t−1 ))

+ EV1(t−1 − τ, x(t−1 − τ), r(t−1 − τ))]
≤ (1 + d1)b1(δ1).

We assume that, for m = 1, 2, · · · , k, the following inequali-
ties hold

EV1(t, x(t), r(t)) ≤ (1 + d1) · · · (1 + dm−1)b1(δ1),
t ∈ [tm−1, tm),
EV1(tm, x(tm), r(tm)) ≤ (1 + d1) · · · (1 + dm)b1(δ1).

(3)

For m = k + 1, we will show that

EV1(t, x(t), r(t)) ≤ (1+d1) · · · (1+dk)b1(δ1), t ∈ [tk, tk+1),
(4)

Assume that the inequality (4) is not true. Set

s1 = inf{s ∈ [tk, tk+1)|EV1(s, x(s), r(s))
> (1 + d1) · · · (1 + dk)b1(δ1)},

then

EV1(s1, x(s1), r(s1)) = (1 + d1) · · · (1 + dk)b1(δ1),
EV1(s1 + t, x(s1 + t), r(s1 + t))
≤ (1 + d1) · · · (1 + dk)b1(δ1), t ∈ [−τ, 0],
D+EV1(s1, x(s1), r(s1)) ≥ 0,

together with (3), which contradicts the assumption
(H2). Therefore, the inequality (4) holds. We estimate
EV1(t, x(t), r(t)) at the moment of impulsive time tk+1. With
the assumption (H3), obtain that

EV1(tk+1, x(tk+1), r(tk+1))

= EV1(tk+1, I(tk+1, x(t−k+1))

+ J(tk+1 − τ, x(t−k+1 − τ)), r(tk+1))

≤
1 + dk+1

2
[EV1(t−k+1, x(t

−

k+1), r(t
−

k+1))

+ EV1(t−k+1 − τ, x(t−k+1 − τ), r(t−k+1 − τ))]

≤ (1 + d1) · · · (1 + dk)(1 + dk+1)b1(δ1).

Consequently, the following inequalities hold for any k ≥ 0,

EV1(t, x(t), r(t)) ≤(1 + d1) · · · (1 + dk−1)b1(δ1),
t ∈ [tk−1, tk),

EV1(tk, x(tk), r(tk)) ≤(1 + d1) · · · (1 + dk)b1(δ1).
(5)

In view of assumption of (H1), for any t ≥ 0, we can choose
k ≥ 0 such that t ∈ [−τ,+∞) and show that

Ea1(|x(t)|) ≤ EV1(t, x(t), r(t)) ≤Mb1(δ1) < a1(ε1).

Therefore,
E|x(t; 0, ϕ)| < ε1.

Now, let 0 < δ2 ≤ δ1 and choose 0 < ε2 ≤ δ2, such
that a2(δ2) > b2(ε2)/N . Note that for t ∈ [−τ, 0] and ϕ ∈
PC b̄

F0
(δ2)

EV2(t, x(t), i0) = EV2(t, ϕ(t), i0) ≥ a2(δ2).

In what follows, we claim that inequality

EV2(t, x(t), r(t)) ≥ a2(δ2), t ∈ [0, t1), (6)

is true. However, if the inequality (6) is not true, then there
exists s1 ∈ [0, t1) satisfying

EV2(s1, x(s1), r(s1)) < a2(δ2) ≤ EV2(t0, x(t0), i0).

Define

s2 = inf{s1 ∈ [0, t1)|EV2(s1, x(s1), r(s1)) < a2(δ2)},

then

EV2(s2, x(s2), r(s2)) = a2(δ2),
EV2(s2 + s, x(s2 + s), r(s2 + s)) ≥ EV2(s2, x(s2), r(s2)),
s ∈ [−τ, 0],
D+EV2(s2, x(s2), r(s2)) ≤ 0,

which contradicts the assumption (H5). Therefore inequality
(6) must hold. Now we estimate EV2(t, x(t), r(t)) at the
moment of impulsive time t1. From (H6) and together with
(6), yield that

EV2(t1, x(t1), r(t1))
= EV2(t1, I(t1, x(t−1 )) + J(t1 − τ, x(τ−1 − τ)), r(t1))

≥
1 − c1

2
[EV2(t−1 , x(t

−

k ), r(t−1 ))

+ EV2(t−1 − τ, x(t−1 − τ), r(t−1 − τ))]
≥ (1 − c1)a2(δ2).

We assume that, for m = 1, 2, · · · , k, the following inequali-
ties hold

EV2(t, x(t), r(t)) ≥ (1 − c1) · · · (1 − cm−1)a2(δ2),
t ∈ [tm−1, tm),
EV2(tm, x(tm), r(tm)) ≥ (1 − c1) · · · (1 − cm)a2(δ2).

(7)

For m = k + 1, we will show that

EV2(t, x(t), r(t)) ≥ (1−c1) · · · (1−ck)a2(δ2), t ∈ [tk, tk+1),
(8)

Assume that the inequality (8) is not true. Set

s1 = inf{s ∈ [tk, tk+1)|EV (s, x(s), r(s))
< (1 − c1) · · · (1 − ck)a2(δ2)},

then

EV2(s1, x(s1), r(s1)) = (1 − c1) · · · (1 − ck)a2(δ2),
EV2(s1 + t, x(s1 + t), r(s1 + t)) ≥ (1 − c1) · · · (1 − ck)a2(δ2),
t ∈ [−τ, 0],
D+EV2(s1, x(s1), r(s1)) ≤ 0,

together with (7), which contradicts the assumption
(H5). Therefore, the inequality (8) holds. We estimate
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EV2(t, x(t), r(t)) at the moment of impulsive time tk+1. With
the assumption (H6), obtain that

EV2(tk+1, x(tk+1)), r(tk+1)
= EV2(tk+1, I(tk+1, x(t−k+1))

+ J(tk+1 − τ, x(t−k+1 − τ)), r(tk+1))

≥
1 − ck+1

2
[EV2(t−k+1, x(t

−

k+1), r(t
−

k+1))

+ EV2(t−k+1 − τ, x(t−k+1 − τ), r(t−k+1 − τ))]

≥ (1 − c1) · · · (1 − ck)(1 − ck+1)a2(δ2).

Consequently, the following inequalities hold for any k ≥ 0,

EV2(t, x(t), r(t)) ≥(1 − c1) · · · (1 − ck−1)a2(δ2),
t ∈ [tk−1, tk),

EV2(tk, x(tk), r(tk)) ≥(1 − c1) · · · (1 − ck)a2(δ2).
(9)

In view of assumption of (H4), for any t ≥ 0, we can choose
k ≥ 0 such that t ∈ [tk, tk+1) and show that

Eb2(|x(t)|) ≥ EV2(t, x(t), r(t)) ≥ Na2(δ2) > b2(ε2).

By virtue of a2, b2 ∈ K2, therefore,

E|x(t; 0, ϕ)| > ε2.

Thus, the zero solution of (1) is strictly uniformly stable, and
the proof is completed.

Theorem 3.2 Assume that

(A1) There exist functions a1, b1 ∈ K1, V1 ∈ C1,2 such that

a1(|x(t)|) ≤ V1(t, x, i) ≤ b1(|x(t)|),
for (t, x) ∈ [t0 − τ,∞) ×Rn × S;

(A2) For any solution x(t) of Eq.(1), there exists
a ω1 ∈ K , such that EV1(t + s, x(t +
s), r(t + s)) ≤ ω−1

1 (EV1(t, x(t), r(t))) with
s ∈ [−τ, 0], implies that D+EV1(t, x(t), r(t)) <

φ1(t)ψ1(EV1(t, x(t), r(t))), φ1 , ψ1 : C[R+, R+],locally
integrable, and for all k ∈ Z+,
V1(tk, x(tk), r(tk)) ≤ ω1(V1(t−k , x(t

−

k ), r(t−k )));
(A3) There exists a constant C1 > 0 such that∫ tk

tk−1

φ1(s)ds < C1, k ∈ Z+;

Also for any u > 0,
∫ ω

−1
1 (u)

u

ds

ψ1(s)
ds ≥ C1;

(A4) There are functions a2, b2 ∈ K2, V2 ∈ C2,1 satisfying

a2(|x(t)|) ≤ V2(t, x, i) ≤ b2(|x(t)|),
for (t, x) ∈ [t0 − τ,∞) ×Rn × S;

(A5) For any solution x(t) of Eq.(1), there exists
a ω2 ∈ K , such that EV2(t + s, x(t +
s), r(t + s)) ≥ ω2(EV2(t, x(t), r(t))) with
s ∈ [−τ, 0], implies that D+EV2(t, x(t), r(t)) <

φ2(t)ψ2(EV2(t, x(t), r(t))), φ2 , ψ2 : C[R+, R+],locally
integrable, and for all k ∈ Z+,
V2(tk, x(tk), r(tk)) ≥ ω−1

2 (V1(t−k , x(t
−

k ), r(t−k )));

(A6) There exists a constant C2 > 0 such that∫ tk

tk−1

φ2(s)ds < C2, k ∈ Z+;

Also for any u > 0,
∫ ω2(u)

u

ds

ψ2(s)
ds ≥ C2.

Thus the equilibrium solution of Eq.(1) is strictly uniformly
stable.

Proof For simplicity, we set t0 = 0. For given 0 < ε1.
Choose δ1 = δ1(ε1) > 0, such that ω−1

1 (b1(δ1)) < a1(ε1).
Note that for t ∈ [−τ, 0] and ϕ ∈ PCb

F0
(δ1),

EV1(t, x(t), i0) = EV1(t, ϕ(t), i0) ≤ ω−1
1 (b1(δ1)).

In what follows, we claim that inequality

EV1(t, x(t), r(t)) ≤ ω−1
1 (b1(δ1)), t ∈ [0, t1), (10)

is true. However, if the inequality (10) is not true, then there
exists s ∈ [0, t1) satisfying

EV1(s, x(s), r(s)) > ω−1
1 (b1(δ1)) > b1(δ1) ≥ EV1(t0, x(t0), i0).

Define

s1 = inf{s ∈ [0, t1)|EV1(s, x(s), r(s)) > ω−1
1 (b1(δ1))},

then

EV1(s1, x(s1), r(s1)) = ω−1
1 (b1(δ1)),

EV1(t, x(t), r(t)) ≤ ω−1
1 (b1(δ1)), t ∈ [t0 − τ, s1],

and also, there exists an s2 ∈ [t0 − τ, s1), such that

EV1(s2, x(s2), r(s2)) = b1(δ1),
EV1(t, x(t), r(t)) ≥ b1(δ1), t ∈ [s2, s1],

Therefore, for t ∈ [s2, s1] and −τ ≤ s ≤ 0, we have

EV1(t+ s, x(t+ s), r(t+ s)) ≤ ω−1
1 (b1(δ1))

≤ ω−1
1 (EV1(t, x(t), r(t)))

In view of condition(A2), we get

D+EV1(t, x(t), r(t))
< φ1(t)ψ1(EV1(t, x(t), r(t))), t ∈ [s2, s1].

(11)

And integrate the inequality (11) over [s2, s1], we have by
condition (A3),
∫ V1(s1,x(s1),r(s1))

V1(s2,x(s2),r(s2))

du

ψ1(u)
≤

∫ s1

s2

φ1(s)ds ≤
∫ t1

0

φ1(s)ds < C1.

On the other hand,
∫ V1(s1,x(s1),r(s1))

V1(s2,x(s2),r(s2))

du

ψ1(u)
=

∫ ω
−1
1 (b1(δ1))

b1(δ1)

du

ψ1(u)
≥ C1,

which is a contradiction. So inequality (10) holds. Now, we
estimate EV1(t, x(t), r(t)) at the moment of impulsive time
t1. With the assumption (A2), obtain that

EV1(t1, x(t1), r(t1)) ≤ ω1(EV1(t−1 , x(t
−

1 ), r(t−1 ))) ≤ b1(δ1).
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We assume that, for m = 1, 2, · · · , k, the following inequali-
ties hold

EV1(t, x(t), r(t)) ≤ ω−1
1 (b1(δ1)), t ∈ [tm−1, tm),

EV1(tm, x(tm), r(tm)) ≤ b1(δ1) ≤ ω−1
1 (b1(δ1)).

(12)

For m = k + 1, we will show that

EV1(t, x(t), r(t)) ≤ ω−1
1 (b1(δ1)), t ∈ [tk, tk+1), (13)

In view of the similar proof for above, then the inequality (13)
holds.Now, we estimate EV1(t, x(t), r(t)) at the moment of
impulsive time tk+1. With the assumption (A2), obtain that

EV1(tk+1, x(tk+1), r(tk+1))
≤ ω1(EV1(t−k+1, x(t

−

k+1), r(t
−

k+1)))

≤ b1(δ1) ≤ ω−1
1 (b1(δ1)).

In view of assumption of (A1), for any t ≥ 0, we can choose
k ≥ 0 such that t ∈ [−τ,+∞) and show that

Ea1(|x(t)|) ≤ EV1(t, x(t), r(t)) ≤ ω−1
1 (b1(δ1)) < a1(ε1).

Therefore,
E|x(t; 0, ϕ)| < ε1.

Now, let 0 < δ2 ≤ δ1. Choose 0 < ε2 ≤ δ2, such
that b2(ε2) < ω2(a2(δ2)). Note that for t ∈ [−τ, 0] and
ϕ ∈ PC b̄

F0
(δ2),

EV2(t, x(t), i0) = EV2(t, ϕ(t), i0) ≥ ω2(a2(δ2)).

In what follows, we claim that inequality

EV2(t, x(t), r(t)) ≥ ω2(a2(δ2)), t ∈ [0, t1), (14)

is true. However, if the inequality (14) is not true, then there
exists r′ ∈ [0, t1) satisfying

EV2(r′, x(r′), r(r′)) < ω2(a2(δ2))
< a2(δ2) ≤ EV2(t0, x(t0), i0).

Define

r1 = inf{r′ ∈ [0, t1)|EV2(r′, x(r′), r(r′)) < ω2(a2(δ2))},

then

EV2(r1, x(r1), r(r1)) = ω2(a2(δ2)),
EV2(t, x(t), r(t)) ≥ ω2(a2(δ2)), t ∈ [t0 − τ, r1],

and also, there exists an r2 ∈ [t0 − τ, r1), such that

EV2(r2, x(r2), r(r2)) = a2(δ2),
EV2(t, x(t), r(t)) ≤ a2(δ2), t ∈ [r2, r1],

Therefore, for t ∈ [r2, r1] and −τ ≤ s ≤ 0, we have

EV2(t+ s, x(t+ s), r(t + s)) ≥ ω2(a2(δ2))
≥ ω2(EV2(t, x(t), r(t)))

In view of condition(A5), we get

D+EV2(t, x(t), r(t))
< φ2(t)ψ2(EV2(t, x(t), r(t))), t ∈ [r2, r1].

(15)

And integrate the inequality (15) over [r2, r1], we have by
condition (A3),

∫ V2(r1,x(r1),r(r1))

V2(r2,x(r2),r(r2))

du

ψ2(u)
≤

∫ r1

r2

φ2(s)ds ≤
∫ t1

0

φ2(s)ds < C2.

On the other hand,

∫ V2(r1,x(r1),r(r1))

V2(r2,x(r2),r(r2))

du

ψ2(u)
=

∫ ω2(a2(δ2))

a2(δ2)

du

ψ2(u)
≥ C2,

which is a contradiction. So inequality (14) holds. Now, we
estimate EV2(t, x(t), r(t)) at the moment of impulsive time
t1. With the assumption (A5), obtain that

EV2(t1, x(t1), r(t1)) ≥ ω−1
2 (EV2(t−1 , x(t

−

1 ), r(t−1 ))) ≥ a2(δ2).

We assume that, for m = 1, 2, · · · , k, the following inequali-
ties hold

EV2(t, x(t), r(t)) ≥ ω2(a2(δ2)), t ∈ [tm−1, tm),
EV2(tm, x(tm), r(tm)) ≥ a2(δ2) ≥ ω2(a2(δ2)).

(16)

For m = k + 1, we will show that

EV2(t, x(t), r(t)) ≥ ω2(a2(δ2)), t ∈ [tk, tk+1), (17)

In view of the similar proof for above, then the inequality (17)
holds.Now, we estimate EV2(t, x(t), r(t)) at the moment of
impulsive time tk+1. With the assumption (A5), obtain that

EV2(tk+1, x(tk+1), r(tk+1))

≥ ω−1
2 (EV2(t−k+1, x(t

−

k+1), r(t
−

k+1)))

≥ a2(δ2) ≥ ω2(a2(δ2)).

In view of assumption of (A4), for any t ≥ 0, we can choose
k ≥ 0 such that t ∈ [−τ,+∞) and show that

Eb2(|x(t)|) ≥ EV2(t, x(t), r(t)) ≥ ω2(a2(δ2)) > b2(ε2).

Therefore,

E|x(t; 0, ϕ)| > ε2.

Thus, the zero solution of (1) is strictly uniformly stable, and
the proof is completed.

Remark 3.1 In Eq.(1), let g(t, xt, r(t)) ≡ 0 and J(tk −
τ, x(t−k − τ)) ≡ 0, then our result is the result derived in
paper [5],that is to say ,our result is the generation of paper
[5].
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