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An eighth order Backward Differentiation Formula
with Continuous Coefficients for Stiff Ordinary

Differential Equations
Olusheye Akinfenwa, Member, IEEE, Samuel Jator, and Nianmin Yoa

Abstract—A block backward differentiation formula of uniform
order eight is proposed for solving first order stiff initial value
problems (IVPs). The conventional 8-step Backward Differentiation
Formula (BDF) and additional methods are obtained from the same
continuous scheme and assembled into a block matrix equation which
is applied to provide the solutions of IVPs on non-overlapping
intervals. The stability analysis of the method indicates that the
method is L0-stable. Numerical results obtained using the proposed
new block form show that it is attractive for solutions of stiff problems
and compares favourably with existing ones.

Keywords—Stiff IVPs, System of ODEs,Backward differentiation
formulas, Block methods, Stability.

I. INTRODUCTION

NUMERICAL solutions for ordinary differential equations
(ODEs) are very important in scientific computation,

as they are widely used to model real world problems.Stiff
systems are considered difficult because explicit numerical
methods designed for non-stiff problems are used with very
small step sizes.In the quest for better methods for solving
these systems, Curtiss and Hirschfelder [1] discovered the
backward differentiation formulae (BDF).

Since then, a great effort has been made in order to
obtain new numerical integration methods with strong stability
properties desirable for solving stiff systems. For a survey on
methods for stiff systems (see [2]). Since we are concerned
with the 8-step BDF which is an example of a linear multistep
method, we review briefly the k-step linear multistep methods
(LMMs) for the solution of the differential equations of the
form

y′ = f(t, y), y(t0) = y0 , x ε [t0, Tn] (1)

where f satisfies the Lipschitz condition as given in Henrici
[3]). The k-step LMM is conventionally written as

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j (2)
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Which has 2k+1 unknown α’s and β’s and therefore can be of
order 2k, where k is is the step number, however, according
to Dahlquist[4], the order of (2) cannot exceed k + 1 (k is
odd) or k+2 (k is even) for the method to be stable. Several
authors such as Lambert [5], Gear[6], Gragg and Stetter[7],
Butcher[8], Akinfenwa et-al[9] proposed modified forms of
(2) known as hybrid methods which were shown to overcome
the Dahlquist barrier theorem. Several other methods have
been proposed for efficiently solving (1) (see Keiper and Gear
[10], Enright([11], [12]), Hairer and Wanner[2], Cash[13] and
Brugnano and Trigiante[14]).

In this paper, the conventional 8-step BDF and additional
methods are obtained from the same continuous scheme and
assembled into a block matrix equation which is applied to
provide the solutions for (1). We note that block methods
were first introduced by Milne[15] for use only as a means of
obtaining starting values for predictor-corrector algorithms and
has since then been developed by several researchers (see [16],
[17], [18]), for general use. The advantage of a block method is
that in each application, the solution is approximated at more
than one point. The number of points depends on the structure
of the block method. Therefore, applying these methods can
give faster solutions to the problem which can be managed to
produce a desired accuracy.

The paper is presented as follows: In section 2, we discuss
the basic idea behind the algorithm and obtain a continuous
representation Y (t) for the exact solution y(t) which is used
to generate members of the block method for solving (1). In
section 3, we present the stability analysis of our block implicit
algorithm. In section 4, we briefly discuss the implementation
of the method. In section 5, we show the accuracy of our
method. Finally, in section 6 we present some concluding
remarks.

II. DERIVATION OF THE METHOD

We proceed by assuming that the exact solution y(t) is
locally represented in the range [t0, t0+8h] by the continuous
solution Y (t) of the form

Y (t) =
8∑

j=0

biφj(t) (3)

where bj are unknown coefficients to be determined and φjt
are polynomial basis function of degree 8. We thus construct
the 8-point BDF method with φjt = tj , j = 0, . . . , 8 by
imposing the following conditions
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Y (tn+i) = yn+j , j = 0, . . . , 7 Y ′ (tn+8) = fn+8, (4)

where yn+j is the approximation for the exact solution
y(tn+j), fn+8 = f(tn+8, yn+8) and n is the grid index.
It should be noted that equation (4) leads to a system of
equations which must be solved to obtain the coefficients
bj , j = 0, . . . , 8 which are substituted into (3) and after some
algebraic computation, our continuous representation yields
the form

Y (t) = −
7∑

j=0

αj(t)yn+j + hβ8(t)fn+8 (5)

where αj(t)andβ8(t) are continuous coefficients. The method
(5) is then used to generate the 8− step standard BDF (6) at
point t = tn+8.

The additional methods are obtained by evaluating the first
derivative of (5) given by (7) at the points t = tn+j , j =
1, . . . , 7. Thus we have the additional methods as (8).

The integrators (8) together with (6) are combined
as a one block 8 point block BDF methods of order
(8, 8, 8, 8, 8, 8, 8, 8)T with error constants:

C9 = ( 89
6088 ,−

2423
575316 ,

817
383544 ,−

277
159810 ,

2563
1150632 ,−

901
191772 ,

347
18264 ,

280
6849 )

T

III. STABILITY ANALYSIS

In what follows, (6) and (8) can be rearranged and rewritten
as a matrix finite difference equation of the form

A(1)Yω+1 = A(0)Yω + hB(1)Fω (9)

where

Yω+1 = (yn+1, yn+2, yn+3, yn+4, yn+5, yn+6, yn+7, yn+8)
T

Yω = (yn−7, yn−6, yn−5, yn−4, yn−3, yn−2, yn−1, yn)
T

Fω = (fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8)
T

for ω = 0, . . . and n = 0, 8, . . . , N − 8, and the matrices
A(1), A(0), B(1) are 8 by 8 matrices whose entries are given
by the coefficients of (6) and (8). In particular, the matrices
are defined as equation (10).

A. Zero-stability

It is worth noting that zero-stability is concerned with the
stability of the difference system in the limit as h tends to
zero. Thus, as h → 0, the method (9) tends to the difference
system

A(1)Yω+1 −A(0)Yω = 0

whose first characteristic polynomial ρ(R) is given by

ρ(R) = det(RA(0) +A(1)) =
280

761
R7(1−R) (11)

Following Fatunla[19], the block method (9) is zero-stable,
since from (11), ρ(R) = 0 satisfies |Rj | ≤ 1, j = 1, . . . , ν,
and for those roots with |Rj | = 1, the multiplicity does not
exceed 1.

Fig. 1. Stability Region

1) Consistency: The block method (9) is consistent as it
has order p > 1. According to Henrici[3],convergent, since
convergence = zerostability + consistency.

B. Linear stability

The linear stability properties of the eight point block BDF
methods are determined by expressing them in the form (9)
and applying them to the test equation

y′ = λy , λ < 0

which is applied to (9) to yield

Yω+1 = D(z)Yω , z = λh, (12)

where the matrix D(z) is given by

D(z) = −(A(1) − zB(1))−1A(0)

From (12) we obtain the stability function R(z) : C → C
which is a rational function with real coefficients given by
(13).

The stability domain of the method (or region of absolute
stability), S, is defined as

S = [z ∈ C : R(z) ≤ 1] (14)

Specifically, when the left-half complex plane is contained
in S, the method is said to be A-stable. Below in Fig. 1, we
show the plot with rectangle representing the zeros and plus
sign representing the poles of (13). The plot in white represents
the stability region which corresponds to the stability function
(13). Clearly, from the figure, it is obvious that our method
is not A- stable since according to Hairer and Wanner [2] it
has at least a pole of the stability function (13) in the left half
complex plane.

However , the method is L0-stable as in Cash [13] since it
satisfies the requirement that:
Maxz≤0|R(z)| ≤ 1, z real and limz→−∞R(z) = 0
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yn+8 =
280h

761
fn+8 −

35

761
yn +

320

761
yn+1 −

3920

2283
yn+2 +

3136

761
yn+3 −

4900

761
yn+4 +

15680

2283
yn+5 −

3920

761
yn+6 +

3920

761
yn+7 (6)

Y ′(t) =
1

h
(

7∑
i=0

α′
j(t)yn+j + hβ′

8(t)fn+8) = f(tn+j , yn+j) (7)

hfn+1 − 5h
761

fn+8 = − 383
3040

yn − 24129
15220

yn+1 +
15841
4566

yn+2 − 5215
1522

yn+3 +
25585
9132

yn+4 − 14861
9132

yn+5 +
4627
7610

yn+6 − 521
4566

yn+7

hfn+2 +
5h

2283
fn+8 = 1159

63924
yn − 658

2283
yn+1 − 128731

136980
yn+2 +

4510
2283

yn+3 − 11065
9132

yn+4 +
4286
6849

yn+5 − 2003
9132

yn+6 +
3166
79905

yn+7

hfn+3 − h
761

fn+8 = − 391
63924

yn + 111
1522

yn+1 − 2311
4566

yn+2 − 1325
3044

yn+3 +
3735
3044

yn+4 − 2171
4566

yn+5 +
677
4566

yn+6 − 537
21308

yn+7

hfn+4 +
h

761
fn+8 = 199

53270
yn − 425

11415
yn+1 +

2353
11415

yn+2 − 620
761

yn+3 +
35

1522
yn+4 +

8852
11415

yn+5 − 691
3805

yn+6 +
2204
79905

yn+7

hfn+5 − 5h
2283

fn+8 = − 1229
319620

yn + 349
9132

yn+1 − 2423
13698

yn+2 +
2395
4566

yn+3 − 11765
9132

yn+4 +
67241
136980

yn+5 +
2143
4566

yn+6 − 1723
31962

yn+7

hfn+6 +
5h
761

fn+8 = 433
63924

yn − 246
3805

yn+1 +
2563
9132

yn+2 − 1690
2283

yn+3 +
4155
3044

yn+4 − 4846
2283

yn+5 +
15859
15220

yn+6 +
1242
5327

yn+7

hfn+7 − 35h
761

fn+8 = − 503
21308

yn + 1001
4566

yn+1 − 20881
22830

yn+2 +
6895
3044

yn+3 − 33985
9132

yn+4 +
19901
4566

yn+5 − 6307
1522

yn+6 +
208903
106540

yn+7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

A(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

24129
15220

− 15841
4566

5215
1522

− 25585
9132

14861
9132

− 4627
7610

521
4566

0
658
2283

128731
136980

− 4510
2283

11065
9132

− 4286
6849

2003
9132

− 3166
79905

0
− 111

1522
2311
4566

1325
3044

− 35
1522

2171
4566

− 677
4566

537
21308

0
425

11415
− 2353

11415
620
761

− 35
1522

− 8852
11415

691
3805

− 2204
79905

0
− 349

9132
2423
13698

− 2395
4566

11765
9132

− 67241
136980

− 2143
4566

1723
31962

0
246
3805

− 2563
9132

1690
2283

− 4155
3044

4846
2283

− 15859
15220

− 1242
5327

0
− 1001

4566
20881
22830

− 6895
3044

33985
9132

− 19901
4566

6307
1522

− 208903
106540

0
− 320

761
3920
2283

− 3136
761

4900
761

− 15680
2283

3920
761

− 3920
761

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 − 383
3044

0 0 0 0 0 0 0 1159
63924

0 0 0 0 0 0 0 − 391
63924

0 0 0 0 0 0 0 199
53270

0 0 0 0 0 0 0 − 1229
319620

0 0 0 0 0 0 0 433
63924

0 0 0 0 0 0 0 − 503
21308

0 0 0 0 0 0 0 − 35
761

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

B(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 5
761

0 −1 0 0 0 0 0 − 5
761

0 0 −1 0 0 0 0 1
761

0 0 0 −1 0 0 0 − 1
761

0 0 0 0 −1 0 0 5
761

0 0 0 0 0 −1 0 − 5
761

0 0 0 0 0 0 −1 35
761

0 0 0 0 0 0 0 280
761

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

R(z) =
3(1680 + 5880z + 9660z2 + 9800z3 + 6769z4 + 3283z5 + 1089z6 + 210z7)

5040− 22680z + 49140z2 − 68040z3 + 67347z4 − 50463z5 + 29531z6 − 13698z7 + 5040z8
(13)

IV. IMPLEMENTATION

The implementation of the above block methods is summa-
rized as follows:

A. Summary

On the partition IN : {a = t0 < t1 < . . . < tN−1 < tN =
b,n = 0, 1, 2, . . . , N − 1.

Step 1. Choose N for k = 8, h = b−a
N the number of blocks

π = N
8 using (9) n = 0, ω = 0 the values (y1, y2, . . . , y8)

T

are generated simultaneously over the subinterval [t0, t8] as y0
are known from the IVP (1).

Step 2. for n = 8, ω = 1, (y9, y10, . . . , y16)T are obtained
over the subinterval [t8, t16] since y8 is known from the first
block.

Step 3. The process is continued for n = 2k, . . . , N−k and
ω = 2, . . . , π to obtain approximate solutions to (1) on sub-



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:2, 2011

200

intervals [t0, tk], . . . , [tN−k, tN ] N is a positive integer and n
the grid index.

We explain briefly the implementation of the block methods.
For linear problem we use the Gaussian elimination to solve
the resulting k x k matrix in each block with our written
Matlab code. While for non- linear problem the code uses
the Newton iteration. The following notation is used to specify
the iteration yj+1

n+i denotes the (j + 1)th iterative value of yn+i

and δj+1
n+i = yj+1

n+i − yjn+i for i = 1, 2, . . . , k and i = 1, 2, . . .
Thus the Newton iteration of the 8 point block BDF method
for (15) takes the form

y
(j+1)
n+i = y

(j)
n+i −

f
(j)
n+i

f
′(j)
n+i

(15)

y
(j+1)
n+1

− y
(j)
n+1

=
a1y

(j)
n+1

+a2y
(j)
n+2

+...+a7y
(j)
n+7

+hf
(j)
n+1

+hβ8f
(j)
n+8

1+h
δfn+1
δyn+1

+hβ8
δfn+8
δyn+8

+ D1

y
(j+1)
n+2

− y
(j)
n+2

=
c1y

(j)
n+1

+c2y
(j)
n+2

+...+c7y
(j)
n+7

+hf
(j)
n+2

+hV8f
(j)
n+8

1+h
δfn+2
δyn+2

+hV8
δfn+8
δyn+8

+ D2

y
(j+1)
n+3

− y
(j)
n+3

=
d1y

(j)
n+1

+d2y
(j)
n+2

+...+c7y
(j)
n+7

+hf
(j)
n+3

+hν8f
(j)
n+8

1+h
δfn+3
δyn+2

+hν8
δfn+8
δyn+8

+ D3

. . .

. . .

. . .

y
(j+1)
n+8

− y
(j)
n+8

=
g1y

(j)
n+1

+g2y
(j)
n+2

+...+g7y
(j)
n+7

+y
(j)
n+8

+hψ8f
(j)
n+8

1+hψ8
δfn+8
δyn+8

+ D8

Put in matrix form then becomes:

J (1)δ(1) = α(0)Y (1) + hβ(0)F (1) +D (16)

Where
D1, D2, . . . , D8 are known from the initial value of

the problem. Thus we obtain the approximated values of
yn+1, yn+2, . . . , yn+8 as

y
(j+1)
n+1 = y

(j)
n+1 + δ

(j+1)
n+1

y
(j+1)
n+2 = y

(j)
n+2 + δ

(j+1)
n+2

...

y
(j+1)
n+8 = y

(j)
n+8 + δ

(j+1)
n+8

V. NUMERICAL EXAMPLES

A. Example 1

Example 1: Our first example is the problem whose
Jacobian matrix J has purely imaginary eigenvalues on the
range 0 ≤ t ≤ T

y′1 = −αy2 + (1 + η)cos(t), y1(0) = 0
y′2 = αy2 − (1 + η)sin(t), y2(0) = 1

With exact solution of the system given by

y1 = sin(t) , y2 = cos(t)

For any value of the parameter η.Thus, the jacobian J has the
following expression

TABLE I
A COMPARISON OF METHODS FOR NUMBER OF CORRECT DIGITS Δ

,T = 100, AND η = 10 FOR EXAMPLE 1
h M(8, r8) Our BBDF8

4/5 3.43 3.97
2/5 5.67 6.38
1/5 8.23 8.28
1/10 9.29 10.72
1/20 11.24 12.45
1/40 12.57 14.23

TABLE II
A COMPARISON OF METHODS FOR EXAMPLE 2

method feval nstep
BGH stiff 256 214
Gear type 317 248
V SCRK8 99 8

Our BBDF8 100 13

J =

(
0 −η
η 0

)

)

the eigenvalues −iη , iη.

We compare our method with that of [20] for the correct
digit Δ = − log10 (

||yi(T )−yn,i||∞
||yn,i||∞ ) at the end of the interval

for various values of h as shown in Table I.

B. Example 2

Example 2: Next, we consider a well known classical sys-
tem see ([21], [22], [23]) in the range 0 ≤ t ≤ 10

y′1 = 998y1 + 1998y2, y1(0) = 1

y′2 = −999y1 − 1999y2, y2(0) = 1

Its exact solution is given by the sum of two decaying
exponentials components.

y1 = 4e−t − 3e−1000t , y2 = −2e−t + 3e−1000t

The stiffness ratio is 1:1000. In Table II, we present result
for that BGH stiff solver in Hall and Watt [24] and the
version of the Gear method in Stabrowski [22], along with
that of V SCRK8 in Vigo-Aguiar and Ramos [23]. For our
method we use the step h = 0.1. The parameters considered
are the number of function evaluations, feval, and the total
number of integration steps, nstep. The exact solution, our
numerical solution and the absolute error at the end of the
last 10 time step (9.1, 10) are presented in Table III.

Remark: Although the V SCRK8 has fewer functions
evaluations the method was evaluated with an initial step
h = 10−4 but our method uses relatively large step size at
h = 10−4 which shows its’ efficiency and good accuracy.
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J(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + h
δfn+1

δyn+1
+ hβ8

δfn+8

δyn+8
a2 . . . a7 0

c1 1 + h
δfn+2

δyn+2
+ hV8

δfn+8

δyn+8
. . . c7 0

. . .

. . .

. . .

e1 . . . 1 + h
δfn+7

δyn+7
+ hν8

δfn+8

δyn+8
0

g1 g2 . . . g7 1 + hψ8
δfn+8

δyn+8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

δ(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δ
(j+1)
n+1

δ
(j+1)
n+2

δ
(j+1)
n+3

...
δ
(j+1)
n+7

δ
(j+1)
n+8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, α(0) =

⎛⎜⎜⎜⎝
−1 −a1 −a2 . . . −a7 0
−c1 −1 −c3 . . . −c7 0

...
...

...
...

...
...

−e1 −e2 . . . −e6 −1 0
−g1 −g2 −g3 . . . −g7 −1

⎞⎟⎟⎟⎠ , Y(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y
(j)
n+1

y
(j)
n+2

y
(j)
n+3

...
y
(j)
n+7

y
(j)
n+8

⎞⎟⎟⎟⎟⎟⎟⎟⎠

β(0) =

⎛⎜⎜⎜⎝
1 0 0 . . . 0 −β
0 1 0 . . . 0 −V
...

...
...

...
...

...
0 0 1 . . . 1 −nu
0 0 0 . . . 0 −ψ

⎞⎟⎟⎟⎠ , F (1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f
(j)
n+1

f
(j)
n+2

f
(j)
n+3

...
f
(j)
n+7

f
(j)
n+8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, D =

⎛⎜⎜⎜⎜⎝
D1

D2

D3

...
D7

D8

⎞⎟⎟⎟⎟⎠

TABLE III
RESULT FOR BBDF8 AT h = 0.1 FOR EXAMPLE 2

t
Exact BBDF8 Absolute error

y1(t) × 10−3 y1 × 10−3 (|y1(t) − y1|)
y2(t) × 10−3 y2 × 10−3 (|y2(t) − y2|)

9.1 0.44666323396046 0.44666323491111 9.506 × 10−13

-0.22333161698023 -0.22333161745555 4.753 × 10−13

9.2 0.40415760734837 0.40415760820822 8.598 × 10−13

-0.20207880367419 -0.20207880410411 4.299 × 10−13

9.3 0.36569692591269 0.36569692669097 7.782 × 10−13

-0.18284846295635 -0.18284846334548 3.891 × 10−13

9.4 0.33089626222653 0.33089626293039 7.038 × 10−13

-0.16544813111326 -0.16544813146520 3.519 × 10−13

9.5 0.29940731955080 0.29940732018840 6.376 × 10−13

-0.14970365977540 -0.14970366009420 3.188 × 10−13

9.6 0.27091494596342 0.27091494653686 5.734 × 10−13

-0.13545747298171 -0.13545747326843 2.867 × 10−13

9.7 0.24513398021289 0.24513398077913 5.662 × 10−13

-0.12256699010644 -0.12256699038957 2.831 × 10−13

9.8 0.22180639772871 0.22180639823954 5.108 × 10−13

-0.11090319886435 -0.11090319911977 2.554 × 10−13

9.9 0.20069872822470 0.20069872868725 4.625 × 10−13

-0.10034936411235 -0.10034936434363 2.312 × 10−13

10.0 0.18159971904994 0.18159971946833 4.183 × 10−13

-0.09079985952497 -0.09079985973416 2.092 × 10−13

C. Example 3

Example 3: Consider the Stiffly nonlinear problem which
was proposed by Kaps [25] in the range 0 ≤ t ≤ 10

y′1 = (ε−1 + 2)y1 + ε−1y2, y1(0) = 1
y′2 = y1 − y2 − y22 , y2(0) = 1

The smaller ε is, the more serious the stiffness of the system.
Its exact solution is given by

y1 = y22 , y2 = e−t

We compare our method with that of Wu and Xia [26], PRM

TABLE IV
A COMPARISON OF METHODS FOR EXAMPLE 3

ε = 10−3 ,Erri = |yi(t)− yi|
method t h N err1 err2

WuandXia
1 0.002 500 2.5606 × 10−7 8.0150 × 10−8

10 0.001 10000 5.5468 × 10−16 6.0936 × 10−12

BBDF8
1 0.05 20 4.5602 × 10−13 6.2638 × 10−13

10 0.01 1000 6.6466 × 10−20 2.3988 × 10−17

TABLE V
A COMPARISON OF METHODS FOR EXAMPLE 3 USING ε = 10−6 ,

Erri =
|yi(t)−yi|

|−yi|

method h err1 err2

PRM(3stage4thorder
0.1 7.283× 10−2 1.259× 10−8

0.01 4.076× 10−5 2.349× 10−6

BBDF8
0.5 4.780× 10−11 69.268× 10−11

0.05 4.034× 10−18 1.078× 10−19

of Li rong and and de-gui liu [27] and M(8, r8) in Chartier
[20] taking values ε−3, ε−6 and ε−8 respectively.

The table below shows the result of our method compapared
with that of [27].

Lastly, for this example the result of our method compa-
pared with that of [20]. It can be seen that for this example
our method show superiority over the all the three methods
for the different values of ε compared especially when the
step size h is relatively high.

For our last example we present without comparison the
result for different choices of the constant stepsize h, the
absolute error for h at the end of the interval T = 10.

D. Example 4

Example 4: Consider the weakly damped oscillatory prob-
lem in the range 0 ≤ t ≤ 10
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TABLE VI
A COMPARISON OF METHODS FOR THE NUMBER OF CORRECT DIGITS ΔFOR

EXAMPLE 3 USING ε = 10−8

method M(8, r8) BBDF8

h = 1/4 4.66 5.80
h = 1/8 5.67 7.93
h = 1/16 6.26 10.21
h = 1/32 8.47 12.52
h = 1/64 10.83 12.87
h = 1/128 15.63 12.58

TABLE VII
RESULT FOR OUR METHOD BBDF8 FOR EXAMPLE 4 erri = |yi(t)− yi|

h err1 err2 err3
0.1 6.565× 10−7 2.302× 10−6 2.302× 10−6

0.05 5.849× 10−9 6.767× 10−9 6.767× 10−9

0.01 2.237× 10−14 1.747× 10−13 1.747× 10−13

y′ = Ay, y(0) = y0

Where

A =

⎛⎝ 0.01 −1 1
2 −100.005 99.995
2 99.995 −100.005

⎞⎠
The exact solution is

y1(t) = e−0.01t(cos(2t)− sin(2t))

y2(t) = e−0.01t(cos(2t) + sin(2t)) + e−200t

y3(t) = e−0.01t(cos(2t) + sin(2t))− e−200t

VI. CONCLUSION

A 8-step BDF with continuous coefficients has been pro-
posed and implemented as a self-starting method for solution
of stiff systems of ODEs. The method avoids complicated
subroutines needed for existing methods requiring starting val-
ues or predictors. The good stability and consistency property
of our method makes it attractive for numerical solution of
stiff problems. We have demonstrated the accuracy of the
methods for both linear and non linear problems. Our future
research will be focused on the implementation of the method
to parabolic partial differential equations, since it is L0 -
stability.
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