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Abstract—Finding suitable non-supersingular elliptic curves for 

pairing-based cryptosystems becomes an important issue for the 
modern public-key cryptography after the proposition of id-based 
encryption scheme and short signature scheme. In previous work 
different algorithms have been proposed for finding such elliptic 
curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 
4, 5}. In this paper a new method is presented to find more 
non-supersingular elliptic curves for pairing-based cryptosystems with 
general embedding degree k and large values of cofactor h. In 
addition, some effective parameters of these non-supersingular elliptic 
curves are provided in this paper. 
 

Keywords—Family of group order, kth root of unity, 
non-supersingular elliptic curves polynomial field. 

I. INTRODUCTION 
FTER the proposition of identity-based encryption scheme 
[1] and short signature scheme [2], selecting suitable 

elliptic curves for pairing-based cryptosystems becomes one of 
the most important issues in public-key cryptography. Elliptic 
Curve Discrete Logarithm Problem (ECDLP) on such elliptic 
curves can be reduced to Discrete Logarithm Problem (DLP) 
over an extension field by Tate Pairing or Weil Paring [10]. 
Thus supersingular elliptic curves appear as the nature choice 
[12]. However, because of the weakness of supersingular 
elliptic curves [3], [6], there is a need to find non-supersingular 
elliptic curves with the same features suitable for pairing-based 
cryptosystems.  

In 2001, Miyaji et al. [4] first proposed a method to find 
suitable non-supersingular elliptic curves for pairing-based 
cryptosystems. Later Scott and Barreto [3] extended their work 
and found more suitable elliptic curves. Gallbraith et al. [7] 
summarized the method proposed by the early researchers and 
presented some families of group orders of non-supersingular 
elliptic curves suitable for pairing-based cryptosystems. 
Brezing and Weng [5] also proposed an alternative method to 
find such elliptic curves.  
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In this paper we propose a new method for finding more 
non-supersingular elliptic curves for pairing-based 
cryptosystems. Compared to the previous work, the new 
method ignores the restrictions imposed on the embedding 
degree k and cofactor h. By the proposed method some 
effective parameters are found and thus elliptic curves can be 
generated by Complex Multiplication (CM) method [8]. 

This paper is organized as the follows. In sections 2 we give 
an analysis of previous work on finding suitable 
non-supersingular elliptic curves for paring-based 
cryptosystems. In section 3 we describe the new method and 
discuss certain important features. In section 4 some effective 
parameters of non-supersingular elliptic curves are provided 
with different values of embedding degree k [4] and cofactor h 
[3]. Finally, we draw the conclusion in section 5. 

II. ANALYSIS OF PREVIOUS WORK 
To find suitable elliptic curves for pairing-based 

cryptosystems, certain equations are to be solved. Assume the 
cofactor h is an integer, r is the order of a point as a big prime 
and t is the trace of an elliptic curve, we want to find the elliptic 
curve over Fq, where q = p is a prime number (we only consider 
the prime field in this paper). ECDLP on such elliptic curves 
can be reduced to DLP over Fq

k, where k is the embedding 
degree [12]. Certain conditions determine whether such an 
elliptic curve exists or not. They are described as  the follows. 
 )(qdr kΦ=  (1)  

where k is the embedding degree and d is an integer and Φk(q) 
is the cyclotomic polynomial of q with embedding degree k.  
 tqhr −+= 1  (2) 
where h is an integer. By combining the above two equations 
together, we have 
 )1( −Φ= tsr k  (3) 
where s is also an integer [3]. Besides these equations we still 
need  

 qt 2≤  (4) 

as the Hasse bound. With all the above equations we compute 
the elliptic curve by solving 
 22 4 tqDV −=  (5) 
where D is chosen by certain conditions as outlined in [11]. 

When solving (5), it is desired to find quadratic relations 
between q and t, as the proposed families of group orders [7]. 
Then (5) can be transformed into a well known Pell equation 
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[9] as 
 muDVy =− 22  (6)    
where D should be a square free number.  

Actually in the strict sense (1) can also be presented as r| qk – 
1 and qi – 1 is not divisible by r when i < k. It is same for (3). 
However, under a mild condition [14], we can just consider q 
and t – 1 as kth roots of unity modulo r, like what had been done 
in [5]. The k should be the smallest integer satisfying the 
condition. This generates the equations as 

 rq k mod1≡  (7) 
and  

 rt k mod1)1( ≡−  (8)  
Miyaji et al. [4] first proposed the method to find 

non-supersingular elliptic curves suitable for pairing-based 
cryptosystems. As the reason pointed by [3], their method only 
could find the curves when embedding degree k was 3, 4, 6 and 
cofactor h was 1. Scott and Barreto [3] extended the work of 
Miyaji et al. In their paper more suitable elliptic curves were 
found when the embedding degree k ∈ {3, 4, 6} and h ∈ {1, 2, 
3, 4, 5}. They combined (1) and (3) into (5) and transformed (5) 
into a Pell equation. But because of the limitations for solving 
Pell equations, h was only taken from 1 to 5. Meanwhile since 
the Pell equation [3] could only be set up when sr = Φk(t – 1) is 
a quadratic equation, the embedding degree k needed to be in 
the range of {3,4,6}. Galbraith et al. [7] proposed the idea of 
suitable families of group orders of non-supersingular elliptic 
curves for pairing-based cryptosystems when k ∈ {3, 4, 6}. 
They found that when q and t were satisfying certain quadratic 
relations, as the families of group orders, numerous suitable 
elliptic curves could be produced by CM method. But there 
were same limitations in their work as embedding degree k ∈ 
{3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. Brezing and Weng [5] 
proposed an alternative way to find such non-supersingular 
elliptic curves. They used the equation t = ζ(t-1)_k + 1, where 
ζ(t-1)_k was a kth root of unity modulo r. When r is presented by 
a cyclotomic polynomial, polynomial forms of t could be easily 
found. However since they only represented r as a cyclotomic 
polynomial, not all suitable non-supersingular elliptic curves 
were found by their method (e.g. the suitable examples 
proposed in [3]). 

III. NEW METHOD FOR FINDING MORE NON-SUPERSINGULAR 
ELLIPTIC CURVES FOR PAIRING-BASED CRYPTOSYSTEMS 

 
In this section we propose a new method for finding suitable 

non-suitable elliptic curves for pairing-based cryptosystems. 
First we deduce some useful equations. As proposed in [5], 
from (2) and (5) we can get the difference between 4q and t2 
after knowing t and r. It can be described as 

 rttqDV mod)2(4 222 −−≡−=  (9) 
where t should satisfy (8). Represented in polynomial field, we 
have 

 )(mod)2)(()()( 22 xrxtxVxD −−≡  (10) 

Then after getting r(x) and t(x), D(x)V2(x) can be obtained. But 
whether  

 4/)]()()([)( 22 xtxVxDxq +=  (11)  
satisfies (7) should be tested. In polynomial field (7) can be 
written as 

 )(mod1)( xrxq k ≡  (12) 
After finding the effective q(x), we can directly solve 

 )()(4 22 xtxqDV −=  (13) 
as a possible Pell equation if D(x)V2(x) = 4q(x) – t2(x) is 
quadratic. Otherwise all values of x should be tested to satisfy 
that q(x), r(x) are prime numbers and meanwhile small values 
of D exist. 

The main idea of our new method can be described as the 
follows. For finding suitable non-supersingular elliptic curves 
for pairing-based cryptosystems, in polynomial field we 
assume q, t, r as q(x), t(x) and r(x); meanwhile h, d, s, D and V 
should be considered as h(x), d(x), s(x), D(x) and V(x). At first 
we use an arbitrary irreducible polynomial r(x) to represent 
prime r. Then by (t(x) – 1)k ≡ 1 mod r(x) we can find trace 
polynomials t(x), where k should be the smallest integer with 
this condition. From D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 
mod r(x) we can compute D(x)V2(x) after knowing t(x) and 
r(x). Then the irreducible polynomial q(x) can be obtained by 
q(x) = [D(x)V2(x) + t2(x)]/4. After that we test whether q(x) 
satisfies q(x)k ≡ 1 mod r(x). If the q(x) is effective, the 
D(x)V2(x) found above is valid. Now if D(x)V2(x) = 4q(x) –  
t2(x) is a quadratic polynomial, a Pell equation as DV2 = 4q(x) –  
t2(x) may be set up and suitable values of D can be found by 
solving this Pell equation; otherwise we must test all possible 
values of x to satisfy that q(x) and r(x) are prime numbers and 
small values of D exist in the same time. After finding all the 
parameters, the desired elliptic curve can be established by CM 
method [8]. 

In the follows we discuss some important features before the 
proposition of the new method. 

A. Polynomial Field  
Instead of searching in the integer field, finding the suitable 

parameters of the elliptic curves in the polynomial field is much 
more efficient. The reason is that q and r must be taken as 
secure parameters. For the security reason, qk > 21024 [3] is 
taken. Meanwhile to resist Pohlig-Hellman attack [13], the 
group order should contain a prime factor larger than 160 bits. 
This gives another security condition as r > 2160. Thus it is hard 
to solve the above equations in the integer field. 

B. Selecting r(x) 
When dealing the issue in polynomial field, prime r is 

represented as r(x). Here r(x) must be an irreducible polynomial 
since r is prime. Then how to determine the degree of r(x) 
affects the whole searching procedure. As analyzed above, if 
we want D(x)V2(x) = 4q(x) – t2(x) to be a quadratic polynomial, 
as the necessary condition to set up a Pell equation, we should 
have degree(r(x)) ≤ 2. Different with [5], we regard r(x) as any 
arbitrary irreducible polynomials. 
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C. Selecting t(x) 
After assuming the form of irreducible polynomial r(x), the 

trace polynomial t(x) should satisfy (t(x) – 1)k ≡ 1 mod r(x). 
Considering (4), we can get degree(t(x)) < degree(q(x))/2. For 
the reason of good performance, we also require lg(q)/lg(r) ≤ 2 
[3] and then degree(q(x)) ≥ degree(r(x)) ≥ degree(q(x))/2 can 
be obtained. As a result, we should use degree(t(x)) ≤ 
degree(r(x)). 

D. Choosing different forms of D(x)V2(x) 
As the analysis given above, polynomial D(x)V2(x) can be 

obtained by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 mod r(x) 
after knowing t(x) and r(x). In most cases V2(x) will equal 1 
since it is hard to find square polynomial factors of 4q(x) – 
t2(x).  If we want to set up a Pell equation, D(x)V2(x) must be 
chosen as a quadratic polynomial as ax2 + bx + c; otherwise we 
have to test all possible values of x to satisfy that q(x) and r(x) 
are prime numbers and meanwhile small values of D exist. In 
the latter case, since it is impossible to search the whole integer 
field, D(x)V2(x) must contain a square polynomial factor as 
V2(x), which means degree(V(x)) > 0; or degree of D(x)V2(x) 
is much smaller than the degree of q(x). Then it is possible to 
find small values of D without solving any Pell equations. 

Compared to suitable q and t, the values for D must be a 
rather small integer (e.g. D < 1010) [3]. This is actually a very 
strict condition since meanwhile we need q and t as secure 
parameters. When k = 6, we require that q6 > 21024 [3] and r > 
2160 [13]. This gives that q >2171≈1051. Since |t| < 2q1/2, (5) will 
always generate a very large number. It is very hard to find a 
value of D smaller than 1010 for implementation. 

This idea can be proved by the examples proposed in [3] and 
[7]. The authors [7] noticed that compared to other families, 
q(x) = 208x2 + 30x + 1 and t(x) = –26x – 2 is particularly 
“lucky” in generating suitable (q, t) pairs. But it seemed they 
did not give the reason why this family could generate most of 
the examples in [3]. Actually for the suitable families as the 
quadratic polynomial relations between q(x) and t(x), it needs 
that 4q(x) – t2(x) can be factorized. This ensures larger 
possibility of the existence of small values of D. In fact when 
q(x) = 208x2 + 30x + 1 and t(x) = –26x – 2, D(x)V2(x) equals 
4q(x) – t2(x) as 4x(39x + 4). Compared to D(x)V2(x) as any 
irreducible quadratic polynomials, it is easier to find values of x 
to make q(x), r(x) as prime numbers and meanwhile x or 39x + 
4 has a large square factor. In other words, when transformed 
into Pell equations, these quadratic equations with the feature 
of factorization are more likely to produce suitable values of D. 
However, 4q(x) – t2(x) is always an irreducible quadratic 
polynomial [7]. It is very difficult to find suitable x to satisfy 
that q(x) and r(x) are prime numbers and 4q(x) – t2(x) has a 
large square factor in the same time. The other “lucky” family 
pointed out by [7] also has this feature. The above analysis 
illustrates the fact that most of the families proposed by [7] are 
hard for implementation. 

When the difference between 4q(x) and t2(x), as D(x)V2(x), 
is not a quadratic form, we must test all possible values of x to 
make r(x) and q(x) prime with the existence of small values of 

D. Actually in such situation it is desired that D(x)V2(x) = 4q(x) 
– t2(x) contains a factor as a square polynomial V2(x), which 
means degree(V2(x)) > 0; otherwise D(x)V2(x) itself should 
only has terms with smaller degree compared to q(x). Thus the 
degree of D(x) will be small and effective values of D may 
exist. If the degree of V(x) is large, small values of D can be 
obtained easily. This makes the computation of CM method 
more efficient. 

With all of the analysis, now we give the whole algorithm for 
finding suitable non-supersingular elliptic curves for 
pairing-based cryptosystems.  

 
Algorithm 
Input: embedding degree k, 21024 < qk and r > 2160 
Output: x0, q(x), t(x), r(x), D(x)V2(x) 

1) Choose an irreducible polynomial r(x) 
2) Compute trace polynomial t(x) by (t(x) – 1)k ≡ 1 mod 

r(x), k is the embedding degree 
3) Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) 

– t2(x) ≡ – (t(x) – 2)2 mod r(x). If D(x)V2(x) is taken as 
a quadratic polynomial, it should be represented as the 
ax(bx + c) or (ax + b)(cx + d); otherwise degree(V(x)) 
> 0 or degree(D(x)V2(x)) < 2degree(r(x)) should be 
satisfied. 

4) After obtaining D(x)V2(x), compute q(x) by q(x) = 
[D(x)V2(x) + t2(x)]/4. Then test whether the 
irreducible polynomial q(x) satisfy q(x)k ≡ 1 mod r(x)  

5) If the obtained effective q(x) is a quadratic 
polynomial, set up and solve the possible Pell equation 
as DV2 = D(x)V2(x) = 4q(x) – t2(x); otherwise test all 
values of x to find x0 satisfying that q(x0), r(x0) are 
prime numbers and meanwhile small values of D 
exist. The security conditions should be satisfied.  

6) Output x0 and q(x), t(x), r(x), D(x)V2(x); otherwise 
repeat from step 1. 

IV. EXPERIMENTAL RESULTS 
In the implementation we run the above algorithm when k = 

6 and k = 12. The following results are some effective 
parameters of non-supersingular elliptic curves. The programs 
are implemented on a PC with 1.7 GHz Pentium IV and 256Mb 
RAM. 

 
K = 6  
(1) r(x) = 52x2 + 14x + 1, q(x) = 208x2 + 30x + 1, t(x) = –26x – 2, 
D(x)V2(x) = 4x(39x + 4), 21024 < q6 and r > 2160 
x = –76678828867367445744045 
r = 305741425416493202361689487439975889605713608671 
q = 1222965701665972809446759943409454109976443779851 
t = 1993649550551553589345168 
h = 4 
DV2 = 4q – t2 = 717595 × 11305715911188715612622 

This example had been presented in [3]. The family of the 
group order had been proposed in [7]. By using our method, the 
same results are also found. After finding more quadratic 
relations between q(x) and t2(x) with the feature of 
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factorization, more suitable parameters of non-supersingular 
elliptic curves are obtained as the follows. Here r is allowed to 
contain a small factor and thus the cofactor h is enlarged.  
 
(2) r(x) = 13x2 + 7x + 1,q(x)  = 52x2 + 41x + 8, t(x) = 13x + 5, 
D(x)V2(x) = (3x + 1)(13x + 7), 21024 < q6 and r > 2160 
x = 156827708198894751651410401 
r = 1522543289361570673414220010509278243128375354583920 
      1 
q = 1278936363063719365667944810866553930813467069318828 

  101 
t = 2038760206585631771468335218 
h = 84 
DV2 = 4q – t2 = 5 × 4379959525607033561531676762 

To find simpler examples, we start from more restrict 
condition. We require that D(x)V2(x) = 4q(x) – t(x)2 can be 
factorized as one square polynomial multiplying with one 
constant number. This is such a restrict condition and we loose 
the value of lg(q)/lg(r) to about 2. In the following example, the 
value of x only needs to satisfy that q(x) and r(x) are prime 
numbers since 4q(x) – t2(x) is always effective for generating 
small values of D. 
 
(3) r(x) = 3x2 – 3x + 1, q(x) = 9x4 – 9x3 + 9x2 – 3x + 1, t(x) = 3x2 + 1, 
D(x)V2(x) = 3(3x2 – 2x + 1)2, 21024 < q6 and r > 2160  
x = 1208925819614629174707026 
r = 4384504911992708754617216393051424823871277172951 
t = 4384504911992708754617220019828883667758801294029 
q = 192238833232881907416092449740846045864506803420131 
       72953010162927246286125473585503144906437903607 
DV2 = 4q – t2 =  
3 × 43845049119927087546172176019772444385004518799772 

With the above results, certain non-supersingular ellitptic 
curves suitable for pairing-based cryptosystems can be easily 
obtained by using CM method. When changing the values of x, 
these polynomial families can produce different elliptic curves.   
 
K = 3 
When embedding degree k = 3, besides the quadratic relations 
between q(x) and t(x), we find other results in which the values 
of D is always effective.     
 
(4) r(x) = x2 + x + 1, q(x) =  3x4 + 3x3 + 4x2 + 2x + 1, t(x) = –3x2 – 2x 
– 2, h(x) = 3x2 + 4, D(x)V2(x) = 3x4, 21024 < q3 and r > 2160  
x = 1208925819614629174710702 
r = 14615016373309029182146292381612542575745680435 07 
q = 6407961107762730247281031416832094288669969321336719 
      105533822464081583120486986614959472949665093 
t = – 4384504911992708754643886505557943158094529419818 
DV2 = 4q – t2 = 
3 × 14615016373309029182146280292354346429453933328042  
 
K = 12 
When k = 12, it is unlikely to find quadratic relations between 
4q(x) and t2(x) to set up Pell equations. But it is still possible to 
find certain forms of D(x)V2(x) = 4q(x) – t(x)2 with certain 
square polynomials factors. Thus small values of D can be 
obtained. The following examples are two of the results found 

by our method.  
 
(5) r(x) = x4 – x2 + 1, t(x) = –x + 1, q(x) = x6 + 2x5 – 2x3 + x + 1 
 D(x)V2(x) = (x + 1)2(4x4 – 4x2 + 3), lg(q)/lg(r) ≈ 1.5 
 
(6) r(x) = x4 – x2 + 1, t(x) = –x + 1, q(x) = x8 + 2x7 + x6 + x2 + x + 1, 
D(x)V2(x) = (x + 1)2(4x6 + 3), lg(q)/lg(r) ≈ 2 

 
Since the square polynomials contained in D(x)V2(x) can be 

ignored in implementations, when replacing x2 or x3 as y, 
certain Pell equations will be set up form the two examples and 
thus small values of D should be obtained.  

V. CONCLUSION 
In this paper, we describe a new method to find more 

non-supersingular elliptic curves for pairing-based 
cryptosystems without limitations on embedding degree k and 
cofactor h. The curves found in this paper are important for the 
realization of pairing-based cryptosystems over ordinary 
elliptic curves with desired parameters.  
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