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Abstract—The medical data statistical analysis often requires the 

using of some special techniques, because of the particularities of 
these data. The principal components analysis and the data clustering 
are two statistical methods for data mining very useful in the medical 
field, the first one as a method to decrease the number of studied 
parameters, and the second one as a method to analyze the 
connections between diagnosis and the data about the patient’s 
condition. In this paper we investigate the implications obtained from 
a specific data analysis technique: the data clustering preceded by a 
selection of the most relevant parameters, made using the principal 
components analysis. Our assumption was that, using the principal 
components analysis before data clustering - in order to select and to 
classify only the most relevant parameters – the accuracy of 
clustering is improved, but the practical results showed the opposite 
fact: the clustering accuracy decreases, with a percentage 
approximately equal with the percentage of information loss reported 
by the principal components analysis. 
 

Keywords—Data clustering, medical data, principal components 
analysis.  

I. INTRODUCTION 
HE  most common difficulties met in the medical data 
statistical analysis come from the following facts: we have 

to deal, in the most cases, with a very large number of 
parameters, and the parameters are often very different in their 
nature – because, in order to establish a correct and accurate 
diagnosis, the physician needs to make many analysis, to 
observe many parameters that characterize the patient’s 
condition and to get information using all the possible sources. 
Therefore, the physician has to manage a lot of data, very 
different in their nature: numerical values of different body 
markers, images, sounds (often also characterized by 
quantitative measures) and a lot of qualitative values – which 
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are codes for the physician’s observations, more or less 
subjective in their intimate structure, about the disease’s 
anamnesis. In this context, a correct diagnosis come mostly 
from the physician’s experience, often accumulated during 
many years of practice. The computer is not able yet to supply 
the knowledge, intuition and experience of a good physician, 
but the researchers work in order to create the so-called 
“expert systems” – computerized applications which are able 
to establish the diagnosis based on the values of a large 
amount of parameters collected and regarding the patient’s 
condition.  

A useful tool in this purpose is the data clustering, used in 
the following manner: we record first all the medical 
parameters that characterize a disease or a class of diseases, 
and we try to classify them in a number of clusters equal with 
the number of possible diagnosis, knowing also the right 
diagnosis for each record; in this way we find the clustering’s 
accuracy, often expressed in percentages. Then, if the 
percentage is not good enough, we can change the clustering 
algorithm, or we can change the set of analyzed parameters by 
adding or removing them, until we obtain the best percentage 
of accuracy. After this stage we can use the obtained 
procedure in order to establish automatically the diagnosis for 
new    patients, using only the values of the previous selected 
parameters and the clustering algorithm. 

In order to obtain a good tool for automated diagnosis, the 
principle is to use the most significant medical parameters, 
without any concern about their amount (because, with the 
increasing of their number, theoretically the method’s 
accuracy must improve). Even more, using this method we 
can find also new correlations between medical parameters 
specific for a certain disease, which can lead to new research 
directions in the medical field. The only problem with this 
method is generated by the long time necessary for the data 
processing, especially when we deal with many medical 
parameters and large databases of patients (with a few 
thousand of cases). Therefore, a possible question is: How to 
reduce the number of parameters selected for analysis, without 
the decreasing of the clustering’s accuracy? 

On the other hand, the principal components analysis is a 
statistical method well-known as very efficient for data 
reduction – being given a number of parameters, this 
technique helps us to select the most relevant parameters, with 
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a minimal loss of information.  
Taking in consideration the specificity of these techniques, 

we assumed that, selecting the most relevant medical 
parameters by a principal component analysis and then 
clustering only those parameters, the final result will be an 
improving of the clustering accuracy, and we intended to 
check this supposition in a practical situation. The obtained 
results are presented in the following sections. 

II. MATERIAL AND METHOD 

A. The Principal Components Analysis Method  
This method of data analysis, described by Pearson (1901) 

and Hotelling (1933), concerns the finding of the best way to 
represent n samples by using vectors with p variables, in such 
a manner so the similar samples are represented by points as 
close as possible. In order to find the principal components 
from a set of variables, the method used is the analysis of 
eigenvalues and eigenvectors, which starts from a data 
representation using a symmetrical matrix and transforms it. 

Let X = {x1, x2, ... xp} be a set of points that makes a cloud 
in the Rn space [1]. We try to find the directions u1, u2, ... 
where the cloud’s dispersion is maximal. To do this, we find 
the cloud’s centroid and the lines L1, L2, ... around which the 
cloud’s points are closely grouped and pass through the 
centroid, so the directions u1, u2, ... will be those lines 
directions. Denoting by dj the distance from the xj point to a 
line L, the problem is to find the line where the quantity J = 

∑
=

p

j
jd

1

2  is minimal. It is demonstrated that this line pass 

through the cloud’s centroid [2]. Making a data normalization 
by the translation x’ = x – m, x ∈ X (m = the average value of 
the points x ∈ X), the cloud X becomes X’, with average 0 
and the centroid situated in the coordinate system’s origin; 
denoting by u the direction vector of the searched 
line,⎟⎢u⎟⎢=1, the criteria function becomes J : Rn → R: 
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The minimization of the function J is then equivalent with 
the maximization of the function I : Rn → R, defined by: 
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Because ⎟⎢u⎟⎢=1 we determine for the I function the 
maximal value for the unit sphere vectors. The quadratic 

matrix with d order, S = MxxM
p
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Tjj
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'' , is the spreading 

matrix of the normalized points cloud. The function’s I(u) = 
uTSu extreme values on the unit sphere vectors are identical 
with the proper vectors of the S matrix, and the proper vector 

corresponding to the biggest proper value of S is identical 
with the direction where I(u) is maximal. 

The proper vectors of the S matrix, denoted by u1, u2, ... un, 
and taken in descendant order of their corresponding proper 
values, are the principal directions, or the principal 
components of the points cloud and shows the cloud’s 
orthogonal directions. The cloud is maximally extended in the 
u1 direction (main proper vector).   

 
B. The Data Clustering: The Hierarchical Clustering and 

the K-Means Methods 
The general algorithm of hierarchical clustering was 

proposed by S.C. Johnson and has the purpose to built a chain 
of partitions based on the set of input data and an ultra-metric 
distance, in such a way so, at each step, the diameters of the 
classes are growing. We denote the input data to classify by X: 
X = { x1, x2, x3, ... xp }. 

The algorithm is [3,  4]: 
Step 0:  
Let P0 be the discrete partition, P0 = { P1

0, P2
0, ...Pp

0}, 
where Pi

0 = { xi }, i = 1, 2, ... p  
Let denote:  
δ (Pi

0, Pj
0) = δ (xi, xj) – the ultrametric distance,  

ν0 = 0 
L0 = {1, 2, ...n} – the set of the indexes of found partitions; 
Step t (t ≥ 1): 

1. Find νt = min {δ (Pi
t−1 , Pj

t−1) ⏐ Pi
t−1 , Pj

t−1 ∈ P t−1, i < j } 
2. Define the coefficients sets of the identified pairs: 

C t = {(i, j) ⏐ i, j ∈Lt–1 , i < j, δ (Pi
t−1 , Pj

t−1) = νt } 
I t = {i ∈Lt–1 ⏐i < j, (i, j) ∈ C t } 
J t = {j ∈Lt–1 ⏐i < j, (i, j) ∈ C t } 

(the elements identified by these coefficients will be further 
tested, because they will generate the searched classes). 

3. Define the working variables:  
I(1) = I t  - the set of coefficients to check 
L(t) = ∅ - the set of coefficients already checked 
r = 1 

4. Find: 
ir = min {i ∈ I(r)} 
J(r) = {j ⏐(ir , j) ∈ C t }  
Pir

t = Pir
t–1 ∪ { Pj

t–1⏐ j ∈ J(r) } 
5. Update the working sets – by moving the ir coefficient: 

I(r+1) = I(r) - {ir } 
L(t) = L(t) ∪ {ir } 

6. If I(r+1) = ∅, go to step 7 (all the coefficients are 
checked). 

Otherwise, r = r + 1; go back to step 4.  
7. Lt = L(t) ∪ {i ∈Lt–1 − (I t ∪ J t) } – update the 

coefficients set 
δ (Pi

t , Pj
t) = δ (Pi

t−1 , Pj
t−1), i, j ∈Lt, i < j – update the ultra-

metric distance  
Pi

t = Pi
t–1, if i ∈Lt–1 − (I t ∪ J t) 

Pt = { Pi
t⏐ i ∈Lt} – the partition found at step t 

8. The algorithm’s stop condition: 
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If ⏐Lt⏐= 2, define Pt+1 = {X} 
             L = {P0, P1, ... Pt+1}, STOP  

If ⏐Lt⏐> 2, define t = t +1 and repeat the step t.  
 
This general algorithm can be used in different variants, 

according with the formula of the ultra-metric distance used; 
one of these variants is the so-called Average Linkage / Group 
Average Algorithm. 

The Average Linkage algorithm uses the distance between 
classes: 

dmed(Ar, As) = ∑ ∑
∈ ∈r sAx Aysr

yxd
pp

),(1 , 

where pi = number of elements in the Ai class.  
The distance dmed can also be written as: 
dmed(Ar, As,) = ∑∑∑∑ j k

jjskrj

k
sk

j
rj

yxdAA
AA

),(1  

where Arj = 
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,1 , and d(x, y) is a pseudodistance.  

We notice that d minimize an average squared error. 
Denoting by:  

ujk = 
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⇒ ujk = Arj ⋅ Ask, 
we define the squared error∑ − 2)),(( dxxdu kjjk , which 
measures the deviation from the d distance of the distances 
between points. The condition of minimal squared error 
becomes: 
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This method has the following advantages: 
1) If the data set contains a partition where the distances 

between the classes points are smaller than the distances 
between classes, then that partition is accurately detected. 

2) If the data set has a tree-like structure, then the method 
detects this hierarchy. 

3) Let P = {A1, …, Am} a partition of X set, obtained by this 
method. If we remove from X the elements of the Ai class, 
then the method applied to the rest of data leads to a partition 
with m – 1 classes, identical with the P partition without the 
Ai class. 

 
The n-means algorithm is another well-known method used 

for data clustering, which has even better results than the 
general hierarchic clustering.  

We denote, like in the previous case, by X = {x1, x2, ... xp} 
the set of the objects to cluster, which are represented as 
vectors in the n-dimensional Euclidean space. The used 
dissimilarity measure will be: 

D(x, y) = ⎟⎢x – y⎟⎢2. 
We assume that the X set is made by clusters approximately 

compact and well-differentiated, which can be represented by 

single points – the classes prototypes, denoted by Li ∈ Rn, 
corresponding to the class Ci. We also know the number of 
clusters we need to obtain. 

The dissimilarity between a point x ∈ X and the prototype 
Li is the error made when we approximate the point x by the 
prototype Li, being expressed as:  

D(x, Li) = ⎟⎢x – Li⎟⎢2. 
Let also be IC the characteristic function of the C set, and: 

Cij = ICi(xj) = 
⎩
⎨
⎧ ∈

otherwise
Cxifi i

j

,0
,  . 

The criteria function will be: 
J(P, L) = ∑ ∑∑
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Into a Euclidean space the scalar product has the form: 
(x, y) = xTMy 
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We must find the L representation which is a minimum for 
the care J(P, ⋅ ) function: 
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We denote the number of elements in the Ci class with pi, pi 

= ∑
=

p

j
ijC

1

, therefore Li = ∑
∈ iCxi

x
p
1 .           

The Li prototype is the centroid of the Ci class.  
The representation L = {L1, L2, ... Ln} induces a new 

partition obtained using the closest neighbor rule: a point xj 
goes into the class with the closest centroid: 

xj ∈ Ci if ⎟⎢xj – Li⎟⎢< ⎟⎢xj – Lk⎟⎢, k∈{1, 2, ... m}, k ≠ i.   
In order to simplify the algorithm, this rule can also be 

expressed as: 

Cij = 
⎪⎩

⎪
⎨
⎧ ≠∀−<−
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ikLxLxif k
j

i
j
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,,1 . 

The n-means algorithm is presented below [5]: 
 
Step 1. Let P0 = {C1, C2, ... Cm} be an initial partition of X. 
Step 2. Calculate the prototypes of this partition, 
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Step 3.  
3.1. Calculate a new partition using the rule: 
For each input vector xj, j ∈{1, 2, ... p}, add this vector into 

the partition with the closest prototype: 
xj ∈ Ci if ⎟⎢xj – Li⎟⎢< ⎟⎢xj – Lk⎟⎢, ∀ k∈{1, 2, ... m}, k ≠ i, or 

Cij = 
⎪⎩

⎪
⎨
⎧ ≠∀−<−

otherwise

ikLxLxif k
j

i
j

,0

,,1 . 

3.2. Update the prototypes of the new partition. 
Step 4. Calculate the error function corresponding to the 

new partition,  
E = ∑ ∑

= ∈

−
m

i Cx
ij

ij

Lx
1

2  

If the error function is not significantly different (the new 
partition is identically with the previous one), STOP. 

Otherwise, go to Step 3. 
 
The problem of choosing the initial partition can be easily 

solved by taking an arbitrary selection of m points from the 
data set. 

The algorithm leads to good results when the data are 
separated in distinct and compact classes; its performance 
level highly depends on the initial partition and the number of 
classes to generate. The main elements which decrease its 
efficiency are [6]: 

- The problem of clusters validity: it is necessary to 
establish by experiments the optimal number of classes into a 
given dataset, excepting the situations when this number is 
pre-defined. 

- The pseudo-gravitational effect: when the classes have 
very different sizes, the criteria function tends to favor the 
partitions that broke the bigger classes against the partitions 
that keep that classes united; in this way the points situated in 
border positions are often misclassified. 

- The noise presence: isolated points, whose integration in 
certain classes is difficult. 

The data analysis was performed in SPSS 13.0, on a dataset 
made using Microsoft Visual FoxPro.  

III. RESULTS 
In order to check the practical efficiency of this method, we 

took under analysis a set of 212 patients from three categories: 
healthy patients (65 cases), patients with liver cirrhosis (65 
cases) and patients with liver hepatitis (82 cases). These 
patients were included into a study about the connections 
between the liver diseases and the heart’s health - measured 
using detailed electrocardiograms. The study’s purpose was to 
find if we can extract, using the heart’s activity analysis, 
certain conclusions about the liver’s state of health.  

The heart’s activity was recorded by ECG, and 38 
parameters were analyzed, as it follows: the diastolic blood 
pressure; the systolic blood pressure; the cardiac frequency; 
the diameter of the aorta at the ring; the diameter of the 

ascendant aorta; the inter-ventricular septum width; the left 
ventricle posterior wall width; the left ventricle mass; the right 
atrium diameter; the right ventricle diameter; the left ventricle 
mass index; the diastolic left ventricle diameter; the systolic 
left ventricle diameter; the shortening ratio; the diastolic 
volume; the systolic volume; the ejection ratio; the cardiac 
flow; the left atrium diameter; the E wave velocity; the A 
wave velocity; the E / A ratio; the iso-volume relaxation time; 
the E wave deceleration time; the systolic pressure into the 
pulmonary artery; the pulmonary artery at the ring diameter; 
the average pulmonary arterial pressure; TAPSE; the inferior 
cave vein diameter; the average arterial blood pressure; the 
peripheral vascular resistance; the pre-ejection time; the 
ejection time; the pre-ejection time / ejection time ratio; the 
nervous conductivity speed; QTc and the O2 arterial satiation 
(CLINO and ORTO). 

All these parameters were numeric, so their clustering 
didn’t require special data transformation. Using the 
hierarchical clustering – average linkage between groups 
method, based on the Euclidean distance and a predefined 
number of 3 clusters, the accuracy of fitting between the 
generated clusters and the right diagnosis was of 76.42 % (a 
common value for the hierarchical clustering method).  Using 
the n-means clustering, also with a predefined number of 3 
clusters, the accuracy of fitting was better (80.66 %), 
according with the Table I. 

 
TABLE I 

NUMBER OF CASES IN EACH CLUSTER (1ST METHOD) 
1 51.000
2 53.000

Cluster 

3 108.000
Valid 212.000
Missing .000

 
After this step, we proceeded to a principal component 

analysis, in order to reduce the number of parameters used for 
the next clustering. From the variance analysis we found a 
number of 12 principal components (with initial eigenvalues > 
1.00), according to the Scree Plot in Fig. 1. The cumulative 
initial eigenvalue of these components is 75.41 % - so these 
components correspond to an information (variability) loss of 
24.59 %, compared with the whole set of parameters. 

 
Fig. 1 The Scree Plot of the 38 parameters initial eigenvalues 
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By calculating the Component Scores Coefficient Matrix 
and selecting the parameters with the highest values, we found 
that the 12 principal components correspond to the following 
parameters: the left ventricle mass; the average pulmonary 
arterial pressure; the E wave deceleration time; the right 
ventricle diameter; the pre-ejection time / ejection time ratio; 
the systolic left ventricle diameter; the E wave velocity; the O2 
arterial satiation (CLINO); the systolic blood pressure; the 
ejection ratio; the E / A ratio and the diameter of the aorta at 
the ring, in this order. 

Finally, we took these parameters and we proceeded to a 
new clustering, using only them. Using the same methods like 
in the previous step, we obtained the following results: 
- using the hierarchical clustering – average linkage between 
groups method, based on the Euclidean distance and a 
predefined number of 3 clusters, the accuracy of fitting 
between the generated clusters and the right diagnosis is very 
weak – 47.17 %; 
- using the n-means clustering, also with a predefined number 
of 3 clusters, the accuracy of fitting is also weak (56.13 %), 
according with the Table II. 
  

TABLE II 
NUMBER OF CASES IN EACH CLUSTER (2ND METHOD) 

1 51.000 
2 57.000 

Cluster 

3 104.000 
Valid 212.000 
Missing .000 

 
Comparing these results, it clearly follows that the number 

of parameters reduction by principal component analysis is 
not a good choice for the data clustering optimization. 

IV. DISCUSSIONS AND CONCLUSION 
In order to seek the reasons of this result, we turned back at 

the variability loss, reported by the principal components 
analysis; the corresponding value was 24.59 % - which is an 
acceptable value. Looking instead at the accuracy loss in 
clustering, we found the results reported in Table III. 

 
 
 
 
 
 
 

TABLE III 
THE CLUSTERING COMPARATIVE ACCURACIES 

 Using all 
parameters 

(accuracy %) 

After the 
parameters 
selection 

(accuracy %)  

The 
difference in 

accuracy 

The 
hierarchical 
clustering 

 
76.42 % 

 
47.17 % 

 
29.25 % 

The n-means 
clustering 

80.66 % 56.13 % 24.53 % 

 
 
Therefore we can conclude the following thing: the values 

of information loss by selecting the principal components 
from a set of parameters and of accuracy loss by reducing the 
number of parameters involved in clustering are almost equal 
– so, even if the information loss by selecting the principal 
components is acceptable – as all the statistics books suggest, 
this quantity is not absorbed when we proceed to any type of 
further data analysis. For example, in the case of data 
clustering, this information loss is entirely preserved and 
transferred negatively over the clustering’s accuracy.  

So, the clustering algorithms cannot be optimized by 
reducing the number of parameters taken into account, even if 
we use in this purpose classic methods (like the principal 
components analysis); the only possibilities in this purpose 
remain the structural changes in the algorithms – and, 
basically, the optimal choice of the dissimilarity measure. 
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