
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

493

Abstract—We present a hardware oriented method for real-time

measurements of object’s position in video. The targeted application
area is light spots used as references for robotic navigation. Different
algorithms for dynamic thresholding are explored in combination
with component labeling and Center Of Gravity (COG) for highest
possible precision versus Signal-to-Noise Ratio (SNR). This method
was developed with a low hardware cost in focus having only one
convolution operation required for preprocessing of data.

Keywords—Dynamic thresholding, segmentation, position
measurement, sub-pixel precision, center of gravity.

I. INTRODUCTION

UTOMATIC indoor- and outdoor navigation techniques for
robots and vehicles are of greatest importance for the

development of future smart products and household robots.
Fig. 1 depicts the schematic principle for navigation using a

video camera assembled on top of a vehicle and light beacons
sending light into the camera. This smart camera is able to
identify a number of beacons in its neighborhood and measure
the spatial positions of the light spots projected on the sensor.
The angle of the incoming light rays relative to the vehicles
direction can then be computed. Every beacon can be
identified using coded light such that the position and direction
of the vehicle can be calculated. This measurement technique
is very similar to nautical navigation on sea. Larsson et al.
presents a similar automatic navigation system based on a
rotating laser [1]. The machine vision system used for
navigation shown in Fig. 1 has motivated us to investigate how
to get high precision on the light spot position measurement at
real-time performance for a reasonable low hardware cost.

Most of the computations for a machine vision system are
preferably done on a computational platform closely located to
the image sensor. The smart camera, see Fig. 2A, constitutes
such a configuration [2][3].

Xin Cheng is with the Department of Information Technology and Media,

Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
(corresponding author to provide phone: +46-60148917; fax: +46-60148456;
e-mail: xin.cheng@miun.se).

Benny Thörnberg, Abdul Waheed Malik and Najeem Lawal are with the
Department of Information Technology and Media, Mid Sweden University,
Holmgatan 10, 851 70 Sundsvall, Sweden (e-mail: {benny.thornberg,
waheed.malik, najeem.lawal}@miun.se).

Fig. 1 Navigation of vehicle using smart camera and light beacons.

Machine vision algorithms are typically divided into the
following steps [4]: Video is acquired from the image sensor at
Image acquisition. Image objects are extracted from the pre-
processed video data at Segmentation, see Fig. 2B. During
Labelling, pixels belonging to the same image component are
assigned a unique label. At Feature extraction an image
component is described for example in terms of region features
such as area, ellipse-, square- or circle parameters.
Components can also be described in terms of gray value
features such as mean gray value or position. This feature
information can then be used for Classification of image
components. Information about recognised objects in the
camera’s observation area can then be transmitted at the
camera output using typically a very low bandwidth.

Field Programmable Gate Array (FPGA) is a computational
platform that offers massive parallelism, on-chip memories,
arithmetic units and is therefore found to be most suitable for
front end video processing [3][5].

Higher data
abstraction

Communi-
cation

Computational
platform

Memory

Lens

Image sensor

A B

Image acquisition

Preprocessing

Segmentation

Feature extraction

Classification

Higher data
intensity

Labeling

Fig. 2 A) Smart camera. B) Fundamental steps of machine vision.

Hardware Centric Machine Vision for High
Precision Center of Gravity Calculation

Xin Cheng, Benny Thörnberg, Abdul Waheed Malik and Najeem Lawal

A

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

494

However, due to the limited resources, it becomes essential to
consider hardware costs such as memory storage requirements,
bit-widths and complexity of arithmetic operations when
selecting and designing algorithms for implementation in real-
time FPGA systems.

When used for image processing, COG is an algorithm for
calculating the mass center of an image object [6]. The image
objects of interests must first be separated from the
background at an image segmentation step before the COG can
be applied separately on all objects [4][7]. This image
segmentation is at its simplest form a threshold applied
globally on the grey levels of the image. The precision of the
calculated COG is dependent on image noise as well as the
selected threshold. This is, because thresholding is the method
to exclude pixels with low SNR from the COG calculation.

We have found several articles on COG [6][8][9][10][11]
and several books and articles on image segmentation [4][7].
But to our knowledge, we have not found any article that
combines image segmentation with component labeling and
COG that investigates the accuracy and robustness of the
calculated object positions and its dependency of the SNR. We
propose in this work an enhanced segmentation method for
efficient extraction of light spots from a non uniform
background to be combined with component labeling and
COG for high precision measurement of image object
positions. This enhanced image object position measurement
algorithm is developed with a low hardware cost in focus. We
strongly believe that algorithms for real-time video processing
and machine vision must be developed in combination with an
analysis of a possible computational hardware platform.

II. CENTER OF GRAVITY

From the definition of COG [6], coordinate),(yxc of a

light spot in a gray-level 2D image can be calculated over a
neighborhood Ω of pixels,

)
)(

)(

)(

)(

(
∑

∑

∑

∑

∈

∈

∈

∈=

Ωx,y

Ωx,y

Ωx,y

Ωx,y

x,yw

x,yyw

,
x,yw

x,yxw

c(x,y) (1)

The coordinate weights)),((),(myxfayxw −⋅=

)),((min
,

yxfm
yx Ω∈

< when 0>a or)),((max
,

yxfm
yx Ω∈

> when

0<a are input data to the COG calculation. In the first case,
the COG is attracted to the brighter pixels in the neighborhood
or else darker pixels. Since the light spots in our study are
brighter pixels, we apply the first case by simply selecting

0=m and 1=a .
We can describe the approximate variance of the COG

based on the assumption of an input image with additive noise
having zero mean and variance 2σ [6],

()
2

22

2

22

)ˆ()ˆ(
)(var

w

Ωx,y

w

Ωx,y

N

y

,
N

x

x,yc
µ

σ

µ

σ

⋅

⋅

⋅

⋅
≈

∑∑
∈∈

. (2)

N is the number of pixels in a neighborhood Ω

and wµ̂ estimates the local mean value of the weight signal.

Equation (2) is found to be a good variance estimator under
the conditions that the neighborhood Ω has a mass center that
coincides with the light spot’s mass center. We define the
signal-to-noise ratio for an object as,

σ
µwSNR
ˆ

= . (3)

This allow us to rewrite the expression for the COG variance
from equation (2) as,

()
2

22
2

11
)(var

SNR
y,x

N
x,yc

Ωx,yΩx,y

⋅








⋅≈ ∑∑

∈∈

 (4)

The reversed standard deviation of the COG output can be
interpreted as the sub-pixel precision of the determined
position of an object. The reversed standard deviation is
simply developed from equation (4) as,

() SNR
y

,
x

N
x,ycstd

Ωx,yΩx,y

⋅


















≈
∑∑

∈∈

22

11
)(

1
. (5)

Thus, according to equation (5) we can expect that the
standard deviation of the calculated position of a light spot is
reversely proportional to the light spot’s SNR. But we can also
conclude that the same standard deviation will be dependent
on the neighborhood Ω of pixels. This neighborhood of pixels
is determined by the segmentation as depicted in Fig. 2B.

The simplest method for segmentation is to apply a
threshold on the pixel gray values. This threshold determines
which pixels are to enter into the neighborhood Ω. For bright
image components such as light spots on a dark background
and using smaller threshold, more pixels will enter into the
neighborhood Ω.

III. IMAGE SEGMENTATION BY THRESHOLDING

Thresholding plays an important role in segmenting objects
from background in image processing due to its intuitive
properties and simplicity of implementation. For a threshold
Txy, this operation can be formalized into,



 >

=
others 0

),(if 1
),(xyTyxf

yxB (6)

B(x,y) is the resulting binary image and f(x,y) is the input
gray level image. In this section, we will discuss different

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

495

methods for selecting the threshold Txy. We will also show how
preprocessing can be applied to suppress the influence of a
non homogeneous image background as well as how we have
improved this preprocessing compared to referenced literature.
At the end of this section, based on existing work, we propose
an FPGA based hardware architecture to be used for the image
segmentation.

A. Optimized global threshold using Otsu’s criterion

Otsu’s criterion [7] selects a global threshold T such that it
maximizes the in between variance of classes belonging to
objects and background. If the image has objects with equal
intensity and a distinct background such that its image
histogram becomes bimodal, we can get an optimized
threshold by using Otsu’s method. However, an image having
a non uniform background and multiple light spots with
different range and illumination intensities, Otsu’s criterion
cannot be applied directly with good results.

B. Variable- or dynamic thresholding

We know the local standard deviation σxy denotes the local
contrast and the local mean mxy denotes the local average
intensity. By comparing the pixel intensity with its local
average intensity, we can segment it even if the background is
non uniform [4][7]. If the local contrast is also considered, it is
named Variable thresholding [7] and the local threshold Txy
can be determined by the following formula,

xyxyxy bmaT += σ . (7)

The non negative constants a and b are selected on
experimental basis.

Dynamic thresholding as described in [4] is very similar to
equation (7) but the threshold is now defined as Txy=mxy+ Ddiff.
In this case the thresholding is based on a global nonzero
constant Ddiff selected on experimental basis. From this we
conclude that Dynamic thresholding can alternatively be
described as two subsequent steps:

1) Image preprocessing: Calculate an estimation of the

image background by using the local mean values and
subtract this background from the original image. This
operation corresponds to a high-boost filter [7].

2) Thresholding: Apply a global threshold T on the
preprocessed image according to equation (6).

The Image preprocessing in step 1 constitutes one single

convolution operation, suitable for real-time video processing.
This is a 2D filter, preferable illustrated in the frequency
domain. The amplitude characteristic for an 11x11 pixels filter
mask is shown in Fig. 3. It is the combination of mean value
and subtraction as described in step 1 results in a high-boost
filter. The stop band for the low frequencies will suppress the
image background while higher frequencies for the small light
spots will pass this filter.

-4
-2

0
2

4

-4

-2

0

2

4
0

0.2

0.4

0.6

0.8

1

Normalized frequency [rad/s]

Filter Amplitude Characteristic

Normalized frequency [rad/s]

A
m

pl
itu

de

Fig. 3 Ampl. characteristics for pre-processing filter of Algorithm 1.

Since the image background is suppressed at step 1, the
global threshold T used at step 2 could possibly be optimized
using Otsu’s criterion [7]. However the global statistics
required for this operation will have a high hardware cost
associated with it. A much simpler computation of the global
threshold T is,

()),(max yxfPT ⋅= . (8)

P is another global threshold specified in percentage of the
maximum pixel value for a whole video frame (image). P was
experimentally selected to P=0.10 for all experiments in this
work.

C. Improved preprocessing

Equation (5) estimates the stability of the COG output under
the influence of noise assuming a fixed neighborhood Ω
centered over the image object. However, the thresholding
operation is also sensitive to noise which means that the
neighborhood Ω will shrink, grow and alter its shape in a non
deterministic manner. In order to reduce the noise sensitivity,
we suggest that the filter’s response to the high frequencies
must be limited. Fig. 4 shows the frequency response for a
modified preprocessing filter. This filter was generated by
simply convolving the filter mask corresponding to amplitude
characteristic in Fig. 3 with a Gaussian function g(x,y) defined
for an 11x11 pixel neighbourhood Ф.

2

22

2

,

),(
),(

),(
),(σ

yx

vu

eyxh
vuh

yxh
yxg

+−

Φ∈

=∧=
∑

. (9)

 The parameter σ was experimentally selected to σ=1.2. We
see in Fig. 4 that the resulting amplitude characteristic now
corresponds to a two dimensional band pass filter. For this
simple addition to the preprocessing filter, the improvement of
the subpixel precision for the calculated light spot positions
will be shown in section V.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

496

-4
-2

0
2

4

-4

-2

0

2

4
0

0.2

0.4

0.6

0.8

Normalized frequency [rad/s]

Filter Amplitude Characteristic

Normalized frequency [rad/s]

A
m

pl
itu

de

Fig. 4 Pre-processing filter of Algorithm 2 and 3.

D. Hardware architecture for image segmentation

The improved preprocessing, previously described in
section III.C combines a high-boost filter with a Gaussian
smoothening filter in one single convolution operation. For
real-time processing on FPGA, convolving is preferable
implemented using the hardware architecture shown in Fig. 5.
This is a memory hierarchy where data reuse is exploited.
There are First-In-First-Out (FIFO) registers used for delaying
the video data equal to the number of clock cycles
corresponding to one line of progressive video. These FIFO
registers are preferably implemented in on-chip block-RAMs
[12]. Pixel delays are implemented as registers close to the
data path. The computational logic is preferably pipelined such
that a throughput of one pixel per clock cycle is achieved.

IV. MEASUREMENT OF IMAGE OBJECT POSITIONS

In previous section, we proposed a method to be used for
segmentation of light spots from image background. In this
section, we also include image component labeling and
computation of light spot’s position by COG.

A. Three alternative algorithms

We have developed three alternative algorithms from which
we will choose the one that gives the best performance. These
algorithms are represented as Signal Flow Graphs (SFG)
divided into two main parts, Preprocessing and Object
processing. See Fig. 6 and Fig. 7. Preprocessing corresponds
for Algorithm 1 in Fig. 6 to the filter illustrated in Fig. 3.

 Line Delay1 Line Delay10 Line Delay2

1 1 1

10 pixel delay

1 1 1 1 1 1

Computation kernel for preprocessing

Output pixel
Fig. 5 Hardware architecture for the preprocessing filter.

11x11 convolving
with low pass filter

Input
video stream

Background
subtraction

+

Thresholding
B=(In>Th)

In

B

Component
Labelling

COG

Output

Preprocessing

Object processing

11x11 convolving
with low pass filter

Input
video stream

Background
subtraction

+

Thresholding
B=(In>Th)

In

B

Component
Labelling

COG

Output

11x11 convolving
with Gaussian

smoothening filter

Algorithm 1 Algorithm 2

Fig. 6 Signal flow graph for Algorithm 1 and 2.

Preprocessing

Object processing

11x11 convolving
with low pass filter

Input
video stream

Background
subtraction

+

Thresholding
B=(In>Th)

In

B

Component
Labelling

COG

Output

11x11 convolving
with Gaussian

smoothening filter

Algorithm 3

Squaring
O=P*P

P

O

Fig. 7 Signal flow graph for Algorithm 3.

The method for segmentation used for Algorithm 1 equals

the dynamic thresholding as described in [4] and presented in
section III.B.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

497

N C - 2 1 1

P9 P8 P7

P6 P5

P7 P8 P9

A)

B)
Pixel stream

input

C

R

Kernel for labelling and
region feature extraction

P6

Stream of codes
Region features of labelled objects

Fig. 8 A) Neighbourhood of labeled codes. B) Kernel and delay line.

Algorithm 2 shown in Fig. 6 and Algorithm 3 shown in Fig.

7 are both based on the improved dynamic thresholding using
the preprocessing filter shown in Fig. 4. Object processing
corresponds for all three algorithms to thresholding, labeling
and COG calculation. The only difference is that for Algorithm
3, COG is calculated on the squared pixel data.

B. HW architecture for component labelling and COG

Based on previous research, we propose the following
hardware architecture as suitable for implementation of
component labelling and COG calculation on FPGA [13].

A neighbourhood of labels that can be used for both 4- and
8-connectivity labelling is shown in Fig. 8A. A delay line of
one FIFO-buffer and two registers holds the recursive data
dependency arising from the neighbourhood of previously
labelled pixels, see Fig. 8B. Pixels are assigned labels at P5
based on the neighbouring labels in P6 to P9. We assume that
the latency of the labelling is exactly one clock cycle. The
length of the FIFO buffer is NC – 2 numbers of elements where
NC equals the length of one image row [13]. The kernel for
labelling and COG calculation (feature extraction) is further
described in Fig. 9.

The Labeller assigns label codes. Label pairs (A,B) are sent
to the Equivalence table whenever neighbouring labels are
found equal and must be merged. Label merging is targeted to
either Table A or B dependent on odd or even frame (O/E).
Resolving of linked lists of labels is thus frame interleaved
with labelling and label merging.

In parallel with assigning label codes for connected image
components, data is accumulated in data table A or B. This
accumulation corresponds in the case of COG calculation to
the numerators and denominators for each connected
components, see equation (1). When the Resolver is ready, the
division of numerator and denominator according to equation
(1) is done.

Binary pixel
stream input

O/E

En

Data
table A

Data
table B

Data table

P7 P8 P9 P6

Labeller

Equivalence table

O/E A B EW

En En

Table A Table B

Mux

Resolver

Eq. read port

Gray scale- or colour
pixel stream input

Codes

Equivalences

COG calculation

COG data of
labelled objects

Table ready

En

Fig. 9 Kernel for labeling and calculation of COG.

This final calculation of COG will require access to the

resolved equivalence table. This division is preceded by
accumulation of numerators and denominators in Data table A
or B. Accumulation of data and final calculation of COG is
thus frame interleaved.

V. EXPERIMENTAL SETUP

The experiments carried out to analyze the performance of
Algorithm 1 to 3 are described in this section.

A. Image acquisition

A board was used as a laminate for the assembly of 90
infrared Light Emitting Diodes (IR-LED). Se Fig. 10A.

A)

B)

Fig. 10 A) Camera setup for image acquisition of 90 LED light spots.

 B) Intensity mesh plot of three light spots.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

498

Fig. 11 Synthetic background added to original image of light spots.

A camera equipped with an optical IR band pass filter was set
up in front of this board using a rigid tripod. The IR filter
matches the optical wavelength of the LEDs such that the
influence from visible stray light was suppressed. A series of
images having the same condition for lightening and exposure
were acquired. A mesh plot of the intensity for four out of 90
LEDs is shown in Fig. 10B.

B. Simulations

A simulation script was written in Matlab to read the 250
images previously acquired and stored in a data file.
Algorithms 1 to 3, see Fig. 6 and Fig. 7, were all modeled
using Matlab. The acquired images were then used as
simulation stimuli in order to analyze the subpixel precision
versus SNR for the 90 light spots under the influence of image
noise.

In addition, we also wanted to efficiently verify the ability
of the image segmentation to suppress the influence of a
background shade. For this purpose we created a synthetic
background shown in Fig. 11. This background was then
added to all images to allow for a simple comparison with the
results using no synthetic background. Subpixel precision
versus SNR is expected to be unaffected by this synthetic
background.

The plotting of subpixel precision versus SNR requires a
method to calculate the SNR for each light spot within a series
of images.

C. Signal-to-Noise-Ratio

First, we calculate the mean power frame P(x,y) from N
number of frames,

∑
=

=
N

t
t yxf

N
yxP

1

2),(
1

),(. (10)

A mean value frame M(x,y) is also calculated from the same N
number of frames,

∑
=

=
N

t
t yxf

N
yxM

1

),(
1

),((11)

The mean power frame P(x,y) and the mean value frame
M(x,y) is then used to calculate a frame of standard deviations
S(x,y) for all pixels. This is a pixel wise measure of the
temporal noise, estimated from N number of frames.

),(),(),(2 yxMyxPyxS −= (12)

Let the mean value frame M(x,y) be a measure of the signal
and the standard deviation S(x,y) a measure of the noise. Then
the Signal-to-Noise-Ratio for a single light spot detected
within a neighborhood Ω becomes,

∑

∑

Ω∈

Ω∈=

yx
l

yx
l

yxS

yxM

SNR

,

2
,

2

),(

),(
. (13)

The SNR was calculated at simulation according to equation
(13) for all 90 light spots.

VI. RESULTS

This section presents the simulation result from analyzing
subpixel precision versus SNR for the 90 LEDs illustrated in
Fig. 10A. Positions of LED light spots where calculated using
Algorithm 1 to 3, described in section IV. SNR was calculated
for each light spot according to equation (13).

Fig. 12 and Fig. 13 show the simulation results for
Algorithm 1 and 2. Fig. 14 and Fig. 15 show the simulation
results for Algorithm 3 with and without the synthetic
background added.

Fig. 12 to Fig. 14 all show 90 values corresponding to the
90 LEDs in the experimental setup as illustrated in Fig. 10. In
addition to the 90 values there is also a line fitted to data
having least square error. The parameters for these lines are
shown in Table I for all the diagrams. The first column in
Table I shows the line intersection with the vertical axis at
SNR=11. The second column shows the line slope.

VII. ANALYSIS

Algorithm 2 in comparison with Algorithm 1 shows about
160 percent improvement of subpixel precision at SNR=11
and according to Table I. Algorithm 2 also has about 50
percent stronger slope.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

499

11 12 13 14 15 16 17 18 19 20 21
10

15

20

25

30

35

40

45

50

55
Subpixel precision in Column dimension versus SNR

SNR

1/
st

dD
ev

(C
)

Fig. 12 Sub-pixel precision vs SNR for Algorithm 1 with data offset.

11 12 13 14 15 16 17 18 19 20 21
0

20

40

60

80

100

120
Subpixel precision in Column dimension versus SNR

SNR

1/
st

dD
ev

(C
)

Fig. 13 Sub-pixel precision vs SNR for Algorithm2 with data offset.

This improved performance is obviously due to the changes
we made to the preprocessing filter described in section III.C.
However, the correlation between SNR and subpixel precision
is weaker for Algorithm 2 when comparing Fig. 12 and Fig.
13. From equation (5) based on an estimator of COG variance
published in [6] we expect a linear dependency of subpixel
precision versus SNR for the light spots. This estimation is
based on that a light spot is always centered within a
neighborhood Ω. However, this can never be the case when Ω
grows and shrinks as a result of image noise at segmentation.
Equation (5) shows that subpixel precision is also dependent
on Ω.

The only difference between Algorithm 2 and Algorithm 3
is that the latter computes COG based on squared image data.
See Fig. 6 and Fig. 7. This difference obviously improves the
correlation when comparing Fig. 13 and Fig. 14.

11 12 13 14 15 16 17 18 19 20 21
10

20

30

40

50

60

70

80

90
Subpixel precision in Column dimension versus SNR

SNR

1/
st

dD
ev

(C
)

Fig. 14 Sub-pixel precision vs SNR for Algorithm 3 with data offset.

11 12 13 14 15 16 17 18 19 20 21
10

20

30

40

50

60

70

80

90
Subpixel precision in Column dimension versus SNR

SNR

1/
st

dD
ev

(C
)

Fig. 15 Sub-pixel precision vs SNR for Alg. 3 without data offset.

TABLE I
PARAMETERS FOR LEAST SQUARE FITTED LINES

Intersection with vertical axis at

SNR=11
Slope

Algorithm 1 9.0 4.40
Algorithm 2 23.7 6.61
Algorithm 3 26.6 6.18
Algorithm 3
without synthetic
background added

26.7 6.14

The improvement of subpixel precision at SNR=11 is 195
percent if compared with Algorithm 1. When making this
improvement by firstly squaring data, we think it is important
to also scale and truncate data for preserved fixed point
precision. Otherwise the storage requirement for the data
tables shown in Fig. 9 will explode in size. Remember that
these data tables are used to accumulate the numerators and
denominators according to equation (1). Exactly how the fixed

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

500

point precision will affect the hardware implementation and
subpixel precision is beyond the scope of this paper and needs
further investigation.

We can conclude that when Algorithm 3 is simulated with
input images having a synthetic background added or not, it
does not cause any detectable difference in subpixel precision.
We take this as a proof that the segmentation really acts as
dynamic and transparent to reasonable background shades.

In addition to the results generated from simulations shown
in section VI, we have also analyzed and suggested hardware
architectures for FPGA-based real-time computation. We
strongly believe that algorithms developed for machine vision
having real-time constraints must also be accompanied with a
primary solution for hardware implementation. This is,
because hardware resources are always limited and we think it
is beneficial to have the computational platform in mind
already at algorithm development.

VIII. CONCLUSIONS

Algorithm 3 has an improved method for segmentation of
image components in comparison with state of the art dynamic
thresholding. These improvements are as high as 195 percent
for the subpixel precision at SNR=11 and 40 percent for the
slope. This means that any improvements of SNR for the
navigation system that we target caused by longer exposure
times or more intensive illumination will pay off better in
terms of improved subpixel precision when Algorithm 3 is
used instead of Algorithm 1.

This analysis will be very useful when designing the
navigation systems that we target. Decisions can be made on
balancing exposure time, light intensity and subpixel precision
for a given camera setup.

The real-time constraints for the kind of machine vision
systems that we target require aggressive parallelization of the
computation to be met. FPGAs are known to offer this
parallelism. Therefore we also in this work, based on previous
research, suggest hardware architectures suitable for
computation of the developed algorithm.

ACKNOWLEDGMENT

The Swedish KK-foundation and Mid Sweden University is
gratefully acknowledged for their financial support.

REFERENCES

[1] Larsson U., Zell C., Hyyppä K., Wernersson Å.: Navigating an
Articulated Vehicle and Reversing with a Trailer. Proceedings 1994
IEEE International Conference on Robotics and Automation, vol. 3, pp.
2398--2404, San Diego, USA (1994).

[2] Wolf W., Ozer C., Lv T.: Smart cameras as embedded systems.
Computer, vol. 35, no. 9 (2002).

[3] Dias F., Berry F., Serot J., Marmoiton F.: Hardware, design and
implementation issues on a fpga-based smart camera. Proc. First
ACM/IEEE international conference on distributed smart cameras. pp
20--26, Vienna, Austria (2007).

[4] Carsten Steger, Markus Ulrich and Christian Wiedemann,Machine
vision algorithms and applications, Wiley-VCH 2008.

[5] Wnuk M.: Remarks on hardware implementation of image processing
algorithms. Int. journal of applied mathematics and computer science.
Vol. 18, No. 1, pp105--110 (2008).

[6] H. C. van Assen, M. Egmont-Petersen, and J. H. C. Reiber, “Accurate
Object Localization in Gray Level Images Using the Center of Gravity
Measure: Accuracy Versus Precision, IEEE Transaction on Image
Processing,” Vol. 11, No.12 December 2002.

[7] R.C. Gonzales and R.E. Woods, Addison Wesley,Digital Image
Processing, 2008, third edition.

[8] A. Patwardhan, Subpixel position measurement using 1D,2D and 3D
centroid algorithms with emphasis on applications in confocal
microscopy, Journal of Microscopy, Vol. 186,Pt 3, June 1997, pp. 246-
257.

[9] Alexander Fish, Dmitry Akselrod and Orly Yadid-Pecht-Pecht, High
Precision Image Centroid Computation via an Adaptive K-Winner-
Take-all Circuit in Conjunction with a Dynamic Element Matching
Algorithm for Star Tracking Applications, Analog Integrated Circuits
and Signal Processing, 39, 251–266, 2004.

[10] G.A.W. West, & T.A. Clarke, 1990, "A survey and examination of
subpixel measurement techniques.", ISPRS Int. Conf. on Close Range
Photogrammetry and Machine Vision, SPIE Vol. 1395, pp 456 - 463,
Sept. 3-7.

[11] Clarke, T.A. Cooper, M.A.R. & Fryer, J.G., 1993. An estimator for the
random error in subpixel target location and its use in the bundle
adjustment. Optical 3-D measurements techniques II, Pub. Wichmann,
Karlsruhe:161-168.

[12] B.Thörnberg et al. “Bit-Width Constrained Memory Hierarchy
Optimization for Real-Time Video Systems”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol26, No
4, pp 781-800, April 2007.

[13] B. Thörnberg and N. Lawal, “Real-time component labelling and feature
extraction on FPGA”, Proc. of International Symposium on Signals,
Circuits and Systems, Iasi, Romania 2009,

