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Abstract—We present a hardware oriented method for real-time

measurements of object’s position in video. Thgeted application
area is light spots used as references for robatiigation. Different
algorithms for dynamic thresholding are exploredcmbination
with component labeling and Center Of Gravity (CG&) highest
possible precision versus Signal-to-Noise RatioREN his method
was developed with a low hardware cost in focusirtgawnly one
convolution operation required for preprocessingaifi.
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. INTRODUCTION

position

Fig. 1 Navigation of vehicle using smart camera gttt beacons.

A UTOMATIC indoor- and outdoor navigation techniques for p1achine vision algorithms are typically divided dnthe

robots and vehicles are of greatest importancetter

development of future smart products and housefudddts.

Fig. 1 depicts the schematic principle for navigatusing a
video camera assembled on top of a vehicle and tighcons
sending light into the camera. This smart camerabie to
identify a number of beacons in its neighborhood areasure
the spatial positions of the light spots projeadedthe sensor.
The angle of the incoming light rays relative t@ thehicles
direction can then be computed. Every beacon can
identified using coded light such that the positom direction
of the vehicle can be calculated. This measurensafinique
is very similar to nautical navigation on sea. Isars et al.
presents a similar automatic navigation system dase a
rotating laser [1]. The machine vision system uded
navigation shown in Fig. 1 has motivated us to stigaite how
to get high precision on the light spot positionasiwement at
real-time performance for a reasonable low hardwast.

Most of the computations for a machine vision systze

preferaby done on a computational platform closely located t

the image sensor. The smart camera, see Fig. atindes
such a configuration [2][3].
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following steps [4]: Video is acquired from the igeasensor at

Image acquisitionlmage objects are extracted from the pre-

processed video data Segmentationsee Fig. 2B. During

Labelling, pixels belonging to the same image component are

assigned a unique label. Afeature extractionan image
component is described for example in terms oforefgatures
such as area, ellipse-, square- or
Components can also be described in terms of gedyev
tures such as mean gray value or position. Tdasure
information can then be used f&@lassification of image
components. Information about recognised objectsthia
camera’s observation area can then be transmittethea
camera output using typically a very low bandwidth.

Field Programmable Gate Array (FPGA) is a compoiteti
platform that offers massive parallelism, on-chigmories,
arithmetic units and is therefore found to be nwstable for
front end video processing [3][5].
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Fig. 2 A) Smart camera. B) Fundamental steps othina vision.
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However, due to the limited resources, it beconssemtial to
consider hardware costs such as memory storageeswnts,
bit-widths and complexity of arithmetic operationghen
selecting and designing algorithms for implementain real-
time FPGA systems.

When used for image processing, COG is an algorfthm

calculating the mass center of an image objectThg image

o DZX o DZy2
(NE&)2 ’(NUJ)

N is the number in a neighborhoad
and/f(westimates the local mean value of the weight signal

@)

var(c(x,y)) =

of pixels

objects of interests must first be separated frome tgquation (2) is found to be a good variance estmander

background at an image segmentation step beforé@@ can
be applied separately on all objects [4][7]. Thimage
segmentation is at its simplest form a thresholgliag
globally on the grey levels of the image. The pieei of the
calculated COG is dependent on image noise as agethe

selected threshold. This, isecause thresholding is the method o

to exclude pixels with low SNR from the COG caltidg.

We have found several articles on COG [6][8][9][1a]
and several books and articles on image segmemtgt]f7].
But to our knowledge, we have not found any artitiat
combines image segmentation with component labedind
COG that investigates the accuracy and robustnéstheo
calculated object positions and its dependench®BSNR. We
propose in this work an enhanced segmentation meftio
efficient extraction of light spots from a non wnih

the conditions that the neighborhofdhas a mass center that
coincides with the light spot's mass center. Weirdethe
signal-to-noise ratio for an object as,

SNR= Fu 3)

This allow us to rewrite the expression for the C@@Eance
from equation (2) as,

var(c(x.y)) = EEZ >N%

X,y X,yQ

J sse @

The reversed standard deviation of the COG outpnothe
interpreted as the sub-pixel precision of the dwgieed

background to be combined with component labelimgl a position of an object. The reversed standard deviats
COG for high precision measurement of image objegimply developed from equation (4) as,

positions. This enhanced image object position oreasent
algorithm is developed with a low hardware costoicus. We

strongly believe that algorithms for real-time \adgrocessing

and machine vision must be developed in combinatiitim an
analysis of a possible computational hardware qiatf

Il.  CENTEROF GRAVITY

From the definition of COG [6], coordinat€(X, Yy) of a

light spot in a gray-level 2D image can be caladabver a
neighborhood? of pixels,

Dxwxy) D ywx,y)

c(xy)= (e N ) (2)
DWxy) Y W(X,Y)
X,y X,yQ
The  coordinate  weights w(x y)=al(f(xy)-m)

m<min(f(xy) When a>0 or m>max(f(xy)) When
X,y0Q X,y

a<0 are input data to the COG calculation. In thstfoase,
the COG is attracted to the brighter pixels inbeghborhood
or else darker pixels. Since the light spots in swdy are
brighter pixels, we apply the first case by simghlecting
m=0 anda=1.

We can describe the approximate variance of the CO

based on the assumption of an input image withtizédnoise
having zero mean and variang@|6],

1 =
std(c(x,y))

BNR  (5)

1 1
Z XZ Z y2
X,y X,yQ

Thus, according to equation (5) we can expect that
standard deviation of the calculated position difjht spot is
reversely proportional to the light spot's SNR. Bug can also
conclude that the same standard deviation will peddent
on the neighborhoog of pixels. This neighborhood of pixels
is determined by theegmentatioras depicted in Fig. 2B.

The simplest method for segmentation is to apply a
threshold on the pixel gray values. This threshd#termines
which pixels are to enter into the neighborhd&adFor bright
image components such as light spots on a darkgbaekd
and using smaller threshold, more pixels will eritgo the
neighborhood).

Il IMAGE SEGMENTATION BY THRESHOLDING

Thresholding plays an important role in segmentbgects
from background in image processing due to its itinki
properties and simplicity of implementation. Fothaeshold
v, this operation can be formalized into,

1if f(xy)>T,
B(x V) = Y
() {O others

B(x,y) is the resulting binary image arfi¢k,y) is the input
gray level image. In this section, we will discudifferent

(6)
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methods for selecting the threshd‘l,g. We will also show how Filter Amplitude Characteristic
preprocessing can be applied to suppress the ndftuef a T
non homogeneous image background as well as hohawe

improved this preprocessing compared to referefitdture. 1 -7
At the end of this section, based on existing wer,propose
an FPGA based hardware architecture to be usetidamage
segmentation.
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A. Optimized global threshold using Otsu’s criterion

Otsu’s criterion [7] selects a global threshdlguch that it 0.2
maximizes the in between variance of classes bgigntp
objects and background. If the image has objectis agual
intensity and a distinct background such that isage
histogram becomes bimodal, we can get an optimized
threshold by using Otsu’s method. However, an intsaéng
a non uniform background and multiple light spotghw
different range and illumination intensities, OsiCriterion g 3 Ampl. characteristics for pre-processintgfilof Algorithm 1.
cannot be applied directly with good results.

/
/

===

» O

Normalized frequency [rad/s] - - Normalized frequency [rad/s]

Since the image background is suppressed at stépel,

B. Variable- or dynamic thresho@ng global thresholdl used at step 2 could possibly be optimized
We know the local standard deviatieg denotes the local using Otsu's criterion [7]. However the global wtts

contrast and the local mean,, denotes the local averagerequired for this operation will have a high hardevaost

intensity. By comparing the pixel intensity withsitocal sgqciated with it. A much simpler computation fué global
average intensity, we can segment it even if trekdg@und is 1 asholdT is

non uniform [4][7]. If the local contrast is alsorsidered, it is
namedVariable thresholding7] and the local threshold, T= PDmax( f(X, y)) (8)

can be determined by the following formula, ) o
P is another global threshold specified in percemtafjthe

TXy =ao, + brn(y. (7) ~maximum pixel value for a whole video frame (imagewas

experimentally selected #©=0.10 for all experiments in this
The non negative constan& and b are selected on work.

experimental basis. .
Dynamic thresholdingis described in [4] is very similar to C- ImPproved preprocessing

equation (7) but the threshold is now definedgsm,,+ Di. Equation (5) estimates the stability of the COGpatiunder

In this case the thresholding is based on a gloloazero the influence of noise assuming a fixed neighboth@b

constantDgss selected on experimental basis. From this weentered over the image object. However, the tltdsig

conclude thatDynamic thresholdingcan alternatively be Operation is also sensitive to noise which mearat the

described as two subsequent steps: neighborhood? will shrink, grow and alter its shape in a non
deterministic manner. In order to reduce the negesitivity,

1) Image preprocessingCalculate an estimation of thewe suggest that the filter's response to the higiguencies
image background by using the local mean values afigbist be limited. Fig. 4 shows the frequency respaios a
subtract this background from the original imagéisT modified preprocessing filter. This filter was geated by

operation corresponds to a high-boost filter [7]. simply co_nv_ol\_/ing_the fiIt.er mask co_rrespontjing&mplitude
2) Thresholding: Apply a global thresholdT on the characteristic m Fig. .3WI'[h a Gaussian functigry) defined
preprocessed image according to equation (6). for an 11x11 pixel neighbourhoabl
2,.,2
The Image preprocessingn step 1 constitutes one single g(xy) = h(x, y) Oh(x y) = e th,{
convolution operation, suitable for real-time videmcessing. ’ ’ ' 9)

> h(u,v)

This is a 2D filter, preferable illustrated in tlieequency
domain. The amplitude characteristic for an 11xikelp filter )
mask is shown in Fig. 3. It is the combination afam value 1"€ parametes was experimentally selected ¢&:1.2. We
and subtraction as described in step 1 resultstiglaboost S€€ in Fig. 4 that the resulting amplitude charéstte now
filter. The stop band for the low frequencies wsilippress the Corresponds to a two dimensional band pass fifer. this

image background while higher frequencies for tialklight simple addition to the preprocessing filter, thgiovement of
spots will pass this filter. the subpixel precision for the calculated light tspositions

will be shown in section V.
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Input

video stream 11x11 convolving
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B=(In>Th)

Fig. 4 Pre-processing filter of Algorithm 2 and 3. Object processing

Component
Labelling

D. Hardware architecture for image segmentation

The improved preprocessing, previously described in
section IlIl.C combines a high-boost filter with esau@sian
smoothening filter in one single convolution opemat For
real-time processing on FPGA, convolving is prdféea
implemented using the hardware architecture showig. 5.
This is a memory hierarchy where data reuse is ogepl.
There are First-In-First-Out (FIFO) registers u$eddelaying
the video data equal to the number of clock cycles -
corresponding to one line of progressive video.SEhEIFO Algorithm 3 video stream
registers are preferably implemented in on-chipckiBAMSs
[12]. Pixel delays are implemented as registerseclto the
data path. The computational logic is preferabpepined such
that a throughput of one pixel per clock cycledhiaved.

Component
Labelling

Output

Output

Fig. 6 Signal flow graph for Algorithm 1 and 2.

11x11 convolving
with low pass filter

Background
subtraction

+

IV. MEASUREMENT OFMAGE OBJECTPOSITIONS .
Preprocessing

In previous section, we proposed a method to bd &me
segmentation of light spots from image backgroundthis
section, we also include image component labelimgl a
computation of light spot’s position by COG.

11x11 convolving
with Gaussian
smoothening filter

A. Three alternative algorithms

We have developed three alternative algorithms fidrich
we will choose the one that gives the best perfoceaThese
algorithms are represented as Signal Flow GraphaG)S Object processing
divided into two main partsPreprocessingand Object
processing See Fig. 6 and Fig. Preprocessingorresponds

Thresholding
B=(In>Th)

Squaring
O=P*P

Component o
for Algorithm 1 in Fig. 6 to the filter illustrateih Fig. 3. Labeling
Line Doy S, e Delay S
10 pixel delay, /
V4 2
A4
Output
Computation kernel for preprocessing Fig. 7 Signal flow graph for Algorithm 3.

The method for segmentation used for Algorithm Liads
the dynamic thresholding as described in [4] areb@nted in
section III.B.

Output pixel
Fig. 5 Hardware architecture for the preprocestltey.
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Fig. 8 A) Neighbourhood of labeled codes. B) Kermad delay line.

Algorithm 2 shown in Fig. 6 and Algorithm 3 shownFig.
7 are both based on the improved dynamic thresigldsing
the preprocessing filter shown in Fig. @bject processing
corresponds for all three algorithms to thresha@dilabeling
and COG calculation. The only difference is thatAtgorithm
3, COG is calculated on the squared pixel data.

B. HW architecture for component labelling and COG

2517-9934
No:4, 2010

Binary pixel

i
’ Gray scale- or colour
stream input !

p6 |P7 ps |P9 pixel stream input

Labeller [—| Codes
O/E
lA l B l EW JoE l
| ——
ﬁ:@ En En
b Data Data
En En table A table B
Table A Table B
COG calculation
’ Resolver ‘
—>| Table ready
Data table
—>| Equivalences

COG data of
labelled objects

Fig. 9 Kernel for labeling and calculation of COG.

This final calculation of COG will require access the
resolved equivalence table. This division is precedy
accumulation of numerators and denominatoriBaia table A
or B. Accumulation of data and final calculation of CQ&5
thus frame interleaved.

Based on previous research, we propose the folgpwin

hardware architecture as suitable for implementatiof
component labelling and COG calculation on FPGA.[13

A neighbourhood of labels that can be used for detand
8-connectivity labelling is shown in Fig. 8A. A dgl line of
one FIFO-buffer and two registers holds the rewarsiata
dependency arising from the neighbourhood of presho
labelled pixels, see Fig. 8B. Pixels are assigmdxls atP5
based on the neighbouring labeldPié to P9. We assume that
the latency of the labelling is exactly one clogkcle. The

length of the FIFO buffer i8i° — 2 numbers of elements where

N® equals the length of one image row [13]. The kefae
labelling and COG calculation (feature extractidm)further
described in Fig. 9.

The Labeller assigns label codes. Label pdi#sB) are sent

to the Equivalence tablewhenever neighbouring labels are

found equal and must be merged. Label mergingrgeeted to
either Table Aor B dependent on odd or even frant@/K).
Resolving of linked lists of labels is thus frameerleaved
with labelling and label merging.

In parallel with assigning label codes for connddi@age
components, data is accumulated in data table B.oFhis
accumulation corresponds in the case of COG calonldao
the numerators and denominators for
components, see equation (1). WhenResolvers ready, the
division of numerator and denominator accordingduoation
(1) is done.

each connected

V. EXPERIMENTAL SETUP
The experiments carried out to analyze the perfoomaf
Algorithm 1 to 3 are described in this section.
A. Image acquisition

A board was used as a laminate for the assembl90of
infrared Light Emitting Diodes (IR-LED). Se Fig. AD

A)

Pixel intensity

Fig. 10 A) Camera setup for image acquisition oL €D light spots.
B) Intensity mesh plot of threghli spots.
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Fig. 11 Synthetic background added to original iemaflight spots.

A camera equipped with an optical IR band passrfilias set
up in front of this board using a rigid tripod. Thi filter

matches the optical wavelength of the LEDs such tha
influence from visible stray light was suppressadseries of
images having the same condition for lightening ergosure
were acquired. A mesh plot of the intensity forrfout of 90
LEDs is shown in Fig. 10B.

B. Simulations
A simulation script was written in Matlab to redtet250

C. Signal-to-Noise-Ratio
First, we calculate the mean power framgx,y) from N
number of frames,

l N
P(xy)=—=> f2(xy). (10)
N t=1
A mean value fram#(x,y) is also calculated from the same N
number of frames,

N
M(%Y) == f,(x) (12)
N t=1
The mean power fram®(x,y) and the mean value frame
M(x,y) is then used to calculate a frame of standardatienis
S(x,y) for all pixels. This is a pixel wise measure oE th
temporal noise, estimated from N number of frames.

S(x y) =+/P(x y) ~M2(x y)

Let the mean value frami(x,y) be a measure of the signal
and the standard deviati®@{x,y)a measure of the noise. Then
the Signal-to-Noise-Ratio for a single light spottetted
within a neighborhood becomes,

D MZ(xy)
X, yoQ .
D SE(xY)

X,yoQ

(12)

SNR= (13)

The SNR was calculated at simulation accordingjtaéon
(13) for all 90 light spots.

VI. RESULTS

This section presents the simulation result froralyging
subpixel precision versus SNR for the 90 LEDs ihated in
Fig. 10A. Positions of LED light spots where caéted using
Algorithm 1 to 3, described in section IV. SNR veadculated

images previously acquired and stored in a date. filfor each light spot according to equation (13).

Algorithms 1 to 3, see Fig. 6 and Fig. 7, were mtideled

Fig. 12 and Fig. 13 show the simulation results for

using Matlab. The acquired images were then used Aforithm 1 and 2. Fig. 14 and Fig. 15 show the uation

simulation stimuli in order to analyze the subpipeécision
versus SNR for the 90 light spots under the infigeof image
noise.

results for Algorithm 3 with and without the syntice
background added.
Fig. 12 to Fig. 14 all show 90 values correspondmghe

In addition, we also wanted to efficiently verifiyet ability 90 LEDs in the experimental setup as illustrate&ig 10. In
of the image segmentation to suppress the influesfc@ addition to the 90 values there is also a lineeditto data
background shade. For this purpose we created #edin having least square error. The parameters for thess are
background shown in Fig. 11. This background wasnth shown in Table | for all the diagrams. The firsturon in
added to all images to allow for a simple comparigith the  Table | shows the line intersection with the vetiaxis at

results using no synthetic background. Subpixelcipten SNR=11. The second column shows the line slope.
versus SNR is expected to be unaffected by thishstio

background.

The plotting of subpixel precision versus SNR reggliia
method to calculate the SNR for each light spohiwia series
of images.

VII.

Algorithm 2 in comparison with Algorithm 1 showsalt
160 percent improvement of subpixel precision atRSML
and according to Table I. Algorithm 2 also has a@bb0
percent stronger slope.

ANALYSIS
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Fig. 12 Sub-pixel precision vs SNR for Algorithrwith data offset. ~ Fig- 14 Sub-pixel precision vs SNR for Algorithnwéh data offset.

Subpixel precision in Column dimension versus SNR Subpixel precision in Column dimension versus SNR
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Fig. 13 Sub-pixel precision vs SNR for Algorithm2iwdata offset.  Fig. 15 Sub-pixel precision vs SNR for Alg. 3 withalata offset.

This improved performance is obviously due to thanges TABLE |

we made to the preprocessing filter described atice 111.C. PARAMETERS FOR LEAST SQUARE FITTED LINES

However, the correlation between SNR and subpiretipion Intersection with vertical axisat ¢

- i ; i - SNR=11 ope

is weaker for Algorithm 2 when comparing Fig. 1A drg. N 50 0
. . orithm B .

13. Erom e_quatlon (5) based on an estimator of G‘/@ﬁh_nce Algomhm > 237 661

published in [6] we expect a linear dependency utfpsxel Algorithm 3 26.6 6.18

precision versus SNR for the light spots. Thisneation is  Algorithm 3 26.7 6.14

without synthetic

based on that a light spot is always centered mvithi background added

neighborhood. However, this can never be the case wQen
grows and shrinks as a result of image noise ahsatation.
Equation (5) shows that subpixel precision is alspendent
onQ.

The only difference between Algorithm 2 and Alglnit 3
is that the latter computes COG based on squaragdeirdata.
See Fig. 6 and Fig. 7. This difference obviouslypiiaves the
correlation when comparing Fig. 13 and Fig. 14.

The improvement of subpixel precision at SNR=1118¢5
percent if compared with Algorithm 1. When makirgst
improvement by firstly squaring data, we thinkstimportant
to also scale and truncate data for preserved fipeiht
precision. Otherwise the storage requirement far tata
tables shown in Fig. 9 will explode in size. Remembthat
these data tables are used to accumulate the nomseend
denominators according to equation (1). Exactly flesvfixed
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point precision will affect the hardware implemeita and
subpixel precision is beyond the scope of this paped needs
further investigation.

We can conclude that when Algorithm 3 is simulatéth
input images having a synthetic background addedodr it
does not cause any detectable difference in subpigeision.
We take this as a proof that the segmentationyresdts as
dynamic and transparent to reasonable backgrowadesh

In addition to the results generated from simutaishown
in section VI, we have also analyzed and suggessedware
architectures for FPGA-based real-time computatidvie
strongly believe that algorithms developed for niaehvision
having real-time constraints must also be acconggawith a
primary solution for hardware implementation. This,
because hardware resources are always limited arttiink it
is beneficial to have the computational platform rirind
already at algorithm development.

VIII.

Algorithm 3 has an improved method for segmentatbn
image components in comparison with state of thelyaramic
thresholding. These improvements are as high aspg@éent
for the subpixel precision at SNR=11 and 40 perdenthe
slope. This means that any improvements of SNRitlier
navigation system that we target caused by longposire
times or more intensive illumination will pay offetter in
terms of improved subpixel precision when Algoritt8nis
used instead of Algorithm 1.

CONCLUSIONS
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