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Abstract—A robust still image face localization algorithm 
capable of operating in an unconstrained visual environment is 
proposed. First, construction of a robust skin classifier within a 
shifted HSV color space is described. Then various filtering 
operations are performed to better isolate face candidates and 
mitigate the effect of substantial non-skin regions. Finally, a novel 
Bhattacharyya-based face detection algorithm is used to compare 
candidate regions of interest with a unique illumination-dependent 
face model probability distribution function approximation. 
Experimental results show a 90% face detection success rate despite 
the demands of the visually noisy environment. 
 

Keywords—Audio-visual speech recognition, Bhattacharyya 
coefficient, face detection,  

I. INTRODUCTION 
UTOMATIC speech recognition (ASR) is a well-
researched field of study aimed at augmenting the man-

machine-interface through interpretation of the spoken words. 
Examples of ASR include automated telephone directories, 
voice-activated cell phone commands, and speech-based in-
car music and control systems. Traditional ASR system 
utilizes audio-only information and its performance degrades 
when employed in noisy environments such as moving 
vehicles. In fact, even in controlled environment, state-of-the-
art ASR systems still underperform human’s ability by over an 
order of magnitude [1]. It has been determined that human 
speech perception is bimodal in nature – that is, both audio 
and visual information are analyzed for speech perception. 
The latter information is more heavily valued by hearing 
impaired or normal humans when in noisy environments. 
Recognizing the benefit of visual speech, audio-visual 
automatic speech recognition (AVASR) system aims at 
improving the performance of speech recognition by 
combining both audio and visual speech data. 

While previous research demonstrated that the visual 
modality is a viable tool for identifying speech [1,2], the 
visual information has yet to become utilized in mainstream 
ASR. Despite years of research attention, there has been 
limited success in creating a robust visual front end in an 
unconstrained imagery. This paper addresses one essential 
first step – accurately and reliably locate the face in a moving  
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car. Accurate face localization plays a critical role in 
successful lip localization and subsequent interpretation of the 
spoken words through extracted lip parameters.  The relatively 
small size and constantly changing shape of lips does not 
realistically allow for feasible direct lip detection.  Coupled 
with the difficulties introduced by an unconstrained 
operational environment, a robust, computationally efficient 
face detection algorithm is desirable to precede lip localization 
itself. 

Generally, the in-car audio-visual environment can be 
considered as a worst-case scenario for AVASR.  Background 
noise and mechanical vibrations from traveling vehicles 
severely decreases operational signal-to-noise ratios for audio 
processing.  Several products such as Ford Motor Company’s 
Sync® and BMW’s high-end Voice Command System use 
strictly audio information to recognize user requests.  
However these systems notably suffer from user voice 
dependence and background noise such as open windows or 
ambient noise from highway speeds.  Likewise, the visual 
environment inside a car is also challenging, imposing rapidly 
changing lighting conditions, moving faces within the vehicle, 
and constantly changing background clutter.  

In this work, training and test datasets are drawn from the 
AVICAR database [3].  This database contains audio-visual 
recordings of 50 male and 50 female participants with varying 
ethnicities, constantly changing lighting conditions and 
cluttered background within a moving automobile.  Datasets 
were created by extracting still images from the video files, 
which utilizes a wavelet-based, lossy audio-video interlaced 
(AVI) encoding scheme.  Video and image resolution for this 
database is 240-by-360 pixels, height-by-width. 

The human face is one of the most variable and common 
objects that humans interact with on a daily basis.  
Viola/Jones’s face detector proposed in 2001 [4] is very 
popular. However, the detector runs directly on an entire 
image without taking advantage of the inherent color 
information of the face that could drastically reduce the search 
area. Many other facial recognition methods exist under 
controlled conditions including optimal lighting and camera 
angle, ample resolution and processing power [5-7]. While the 
results are commendable, the extensive calculations demanded 
by these methods are significant.  Moreover, a majority of the 
existing techniques assume ample resolution and controlled 
lighting conditions, which is not feasible for a real world lip 
reading system. Within the visual unconstrained environment, 
AVASR systems must compete with constantly changing 

Face Localization Using Illumination-dependent 
Face Model for Visual Speech Recognition  

Robert E. Hursig, Jane X. Zhang 

A



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1998

 

 

lighting conditions and background clutter as well as subject 
movement in three dimensions.  

Thus, the goal of this work is to develop a robust still image 
face localization algorithm within the unconstrained car 
environment that precedes lip localization. This algorithm is 
designed as a visual front end to the larger AVASR system as 
a whole. This paper is organized as follows: In Section 2, we 
first detail the construction of a robust skin classifier within a 
shifted HSV color space. Section 3 describes various filtering 
operations performed upon the classification to better isolate 
face candidates and mitigate the effect of substantial non-skin 
regions. Section 4 proposes a unique, illumination-dependent 
face model probability density function approximation derived 
through an extensive training set that will serve as the basis 
for face detection. Section 5 describes the Bhattacharyya-
based face detection algorithm itself and results of the larger 
face detection algorithm as a whole as applied to our database. 
Finally, Section 6 offers conclusions and recommendations for 
future improvement.   

II.  SKIN CLASSIFICATION VIA SHSV COLOR SPACE 
In order to efficiently detect skin and faces within an image, 

the respective classifier must be developed within an 
appropriate color space. Proper color space selection has the 
effect of simplifying the classification complexity and 
dimensionality while improving inter-class separation. 
Extensive research has attempted to determine the optimal 
color space for skin detection with mixed findings [8-12]. In 
such studies, Shin et al. determined that most color space 
conversions fail to deliver ample skin detection improvements 
[8], while Jones et al. determined NRGB was the optimal 
color space [9]. Ming-Hsuan et al. and Zhang et al. selected 
perceptual color spaces such as HSV [10,11], and Abdel-
Mottaleb et al. selected TV color spaces such as YIQ [12].  
Based on previous work done by Zhang et al. [11,13] and 
further experimentation, in this work the HSV color space was 
adopted as the optimal skin and face detection color space 
under the discussed operating conditions. 

In [11], it was shown that the HSV color space provides an 
illumination-independent color component as well as a 
separate value component, making it ideal for skin 
classification via simple thresholding. Because of the hue’s 
color wheel effect, the standard hue is shifted to the right by a 
value of 0.2 (72o) to simplify the thresholding operation, 
resulting in a shifted HSV, or sHSV, color space where the 
region of interest (skin color) incurs no discontinuity.   
 In the first stage of skin classification, each pixel in the 
image is examined and classified as one of the two classes: 
Skin or NonSkin. The optimal decision boundary can be 
determined by deploying Bayes’ rule via the following 
equation: 
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where h is the shifted hue component of the sHSV triplet 
for a given pixel. Here, the a priori probabilities for skin and 
non-skin classes within the AVICAR training set were 

estimated (based on manual segmentation of training data) as 
P(Skin)=0.7853 and P(NonSkin) = 0.2147. The class 
conditional densities, P(h|class), were determined by 
approximating hue histograms of manually segmented 
face/non-face images from the same training set [11]. Hence, 
Eq. (1) reduces the implementation of skin classification to a 
simple thresholding operation.  

Fig. 1 illustrates the un-normalized posterior distribution 
respective to the class in question, where shifted hue for skin 
class is approximated by N (0.34, 0.112) shown in red and the 
non-skin class by N (0.55, 0.172) shown in blue. N (µ,σ2) 
denotes the Gaussian distribution with mean µ and variance 
σ2. The green lines represent the decision boundaries that 
separate the skin and non-skin regions.  Between these 
boundaries, from a shifted hue value of 0.052 to 0.325, the 
skin posterior distribution surpasses that of non-skin and will 
classify as a skin pixel. 

Letting tlo and thi be the lower and upper boundaries of the 
classifier, respectively, the theoretical skin classifier is defined 
as 
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where 052.0=lot  and 325.0=hit  

 
Fig. 1. Un-Normalized Posterior Distributions for Skin and Non-Skin 

Classes 
 
When applied to the AVICAR database, the theoretical 

Bayes classifier yielded elevated partial facial skin detection. 
Incomplete facial skin detection is especially detrimental as 
the face detection methodology employed in this work 
benefits from a cohesive (continuous) skin classification mask 
that minimizes background pixel contamination. To promote 
skin region continuity, a hysteresis threshold that uses both 
spatial and hue information is then employed. Hysteresis 
thresholding results in skin classification if it satisfies the hard 
thresholding of Eq. (2) or if the soft thresholding is satisfied 
given at least one of the eight neighboring pixels satisfies Eq. 
(2). Additionally, to increase the skin detection robustness in 
low-light conditions, a minimum value component of 0.2 is set 
for all skin pixels. This is based on the study that more than 
90% of skin pixels exist above illumination value of 0.15 [13]. 
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The classification is applied to a manually classified subset 
of the AVICAR database. The set was constructed by 
selecting 20 male and 20 female candidates from the AVICAR 
database and extracting four separate images from the 
subject’s video, comprising a 160-image training set in total.  
Subjects and images were selected such that the images 
provided a representative training set in regards to skin color 
(ethnicity) and provided a representative sampling of lighting 
conditions throughout the image.  An accuracy of 93.8% is 
reported when the skin classification algorithm is applied to 
the above data set. Classification accuracy here is defined as 
when the number of correctly classified pixels based off of 
manually determined ground truth divided by total image 
pixels count is greater than 75%.  

Fig. 1 contains sample complete and incomplete skin 
classifications, respectively.  Part (b) in each case is the 
original RGB image converted to the sHSV color space, 
where the shifted hue, saturation, and value color components 
are displayed as the red, green, and blue RGB components, 
respectively.  As seen especially within the right half of the 
second subject’s face, low-light conditions tend to distort hue 
information.  Note the substantial increase in the shifted hue 
value (displayed as red) in (b) over the right half of the 
subject’s face.  Similarly, overly bright conditions were also 
seen to distort the hue information and disrupt skin 
classification. 

Nonetheless, over- and underexposure occurred in less than 
5% of all images tested and the resulting 93.8% accuracy of 
the skin classifier remains robust within the visually noisy 
unconstrained environment.  Despite this robustness, the 
complex, cluttered, and ever-changing background 
environment still manages to yield significant false positives 
within each frame.  The following section discusses how each 
classified image is filtered to reduce these false positives and 
better isolate face candidates for subsequent detection. 
 

 

 (a)       (b)         (c) 
Fig. 2: Sample Successful Skin Classification (a) Original RGB 

Image (b) sHSV Image Displayed as RGB (c) Skin Classified Binary 
Image 

III. FILTERING AN D BINARY CLUSTERING 
The unprocessed skin-classified binary images in general 

suffer from two main undesirable effects. Impulse noise exists 
throughout the binary image and larger, false-positive regions 
tend to dominate background (non-skin) regions.  As the skin-
classified binary image will be used to locate the skin 
candidate for face detection, it is critical that these types of 
noise are reduced as much as possible. 

The discussed single-element impulse noise manifests 
itself as false positives within background regions as well as 
false negatives within skin regions, namely within the face. 
Outlined in part within the green bounding boxes, Fig. 3(b) 
illustrates the appearance of impulse noise within skin 
classified region resulting from the original image in (a). 
While median filtering is generally used to combat salt-and-
pepper noise, this method assumes equal undesirability of 
each false classification. Since false positives were deemed 
more detrimental to locating the dominant facial skin region, a 
33rd percentile order-statistic filter of size 3x3 was selected as 
a more appropriate filter than the 50th percentile standard 
median filter.  An extra benefit of this filter is that it better 
separates facial skin regions with skin colored car 
backgrounds. The red bounding box in Fig. 3(b) illustrates 
such a boundary, which is preserved via the 33rd percentile 
filter from (b) to (c).  Had a median filter been applied to this 
image, the segregation would have disappeared and 
complicated face candidate localization and subsequent face 
detection.  This is an important performance increase as the 
cluttered and similarly colored car backgrounds often result in 
false skin detection. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 3. Sample Post-Processing Imagery by Step 
(a) Original Image (b) Skin Classified Binary Image  

(c) 33rd Percentile Filtered (d) Application of Opening Operation 
 

Larger regions of false classification can also be 
problematic when attempting to locate a face within a frame. 
Fig.3(c) outlines such falsely classified skin clusters within 
the red bounding boxes. To minimize the effect of these larger 
elements in the background, the binary morphological 
operations opening is utilized.  Notice the elimination of the 
leftmost background cluster in (c) and the reduction in size of 
the rightmost cluster which was at least the size of the 
structuring element. Since one face is assumed in each image, 
the largest skin cluster is selected as the region of interest, 
shown as the green bounding box in (d), via the connected 
component labeling. This cluster will now be the input to the 
face detection algorithm. Note this assumption could be easily 
extended to multiple candidates per image if desired for future 
work. 
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IV. FACE MODEL JOINT HISTOGRAM ESTIMATION 
A critical component of face detection is modeling the 
variable human face such that a given algorithm provides 
accurate, repeatable, and reliable results.  For this reason, 
selection of a proper feature set and development of an 
extensive, representative training set is critical for successful 
face detection algorithms.  Building upon previous work [13], 
a joint shifted hue and saturation feature space was selected as 
the basis for face detection since it captures skin color 
information as well as the variation in saturation incurred 
around facial features such as eyes, nose, and mouth. With the 
feature space selected, another design decision was to 
approximate the joint probability density function as a 
histogram which quantizes the discussed two-dimensional 
feature space into a finite number of bins.  A histogram is a 
nonparametric density estimation method which yields 
memory efficient and intuitive results.  Moreover, quantizing 
the model and candidate’s density functions achieves two 
important goals.  First, the histogram approach reduces the 
computational complexity of PDF estimation and subsequent 
comparison.  Furthermore, histogram approximation maintains 
a scale- and rotation-invariant comparison environment.   In 
addition, the Epanechnikov kernel weights a pixels 
contribution to the estimated PDF per its spatial location. 
 

A. Forming the Face Model Joint Density Estimator 
While previous work based on the same AVICAR database 

employed three face models extracted directly from arbitrarily 
chosen images containing light-, medium-, and dark-skinned 
individuals [13], it is the goal of this work to consolidate the 
face model into a single, cohesive, and more representative 
model.  It is observed that while illumination content remains 
relatively constant within any given image, the average 
illumination within a given ROI directly impacts the 
distribution of the face within the joint shifted hue and 
saturation feature space, which will be shown below.  Hence, 
average intensity was chosen as an easily calculable metric 
which represents the face’s ambient lighting conditions.  For 
the sake of consistency, the illumination space was also 
quantized into a discrete number of bins and the 
Epanechnikov kernel will weight a pixel’s contribution to the 
average illumination. Borrowing from previous work, the 
histogram bin count for each feature component, h and s, and 
the average intensity information, Iavg, will be segmented into 
16 discrete bins uniformly spread about the respective spaces.  
This value minimizes storage requirements while mitigating 
the risk of overfitting the actual distribution.   

To construct the face model joint density estimators, a 
training set containing 150 images from five individuals of 
varying skin tone taken under a range of ambient lighting 
conditions was established. These subjects were centered in 
front of a video camera utilizing the same AVI compression 
and comparable resolution employed by the AVICAR 
database.  Subjects were instructed to maintain a neutral, 
expressionless face while a series of images were taken under 
lighting conditions ranging from bright to dark. Care was 
taken to ensure that across each subject average illumination 

levels remained within 1/30 of each of the 30 values 
uniformly spread over the range [0,1]. For each image within 
the training set, the kernel-weighted intensity and the joint 
PDF histogram were calculated for each image after 
conversion to the sHSV color space. Selected results obtained 
by one of the five subjects are detailed in Fig. 4. It can be seen 
that changes in average illumination directly impact the 
distribution of the largely unimodal (singly peaked) shifted 
hue and saturation joint PDF.  Furthermore, it can be seen 
across all PDF histograms that a majority of the hue content is 
contained within three or four histogram bins across all 
illumination values.  However, saturation content varies from 
more tightly concentrated at low values under high 
illumination to roughly three times more spread about the 
saturation axis under low illumination.  Differences in the 
PDF histograms between light and dark skin tones were slight, 
involving a positive one-bin shift of the general unimodal 
distribution along the hue axis.  Moreover, at high 
illumination levels spreading about the hue axis occurred 
largely due to overexposure at the imaging device itself.  
Hence, the decision was made to replicate this dependence in 
the final face model. 

Hence the entire 150-image training database was utilized 
to construct a joint shifted hue and saturation histogram-
estimated PDF for each discrete ROI average illumination bin. 
The resulting face model PDF histogram approximation across 
each illumination level is displayed in Fig. 5.  Here the value 
of Ibin refers to the illumination component value which 
corresponds to the center (midpoint) of the discrete 
illumination bin, i.  This face model histogram set Qi will be 
stored in memory to be accessed by the face detection 
algorithm discussed in Section 5 to follow. 
 

 

(a) Original Images from Subject 1 Training Set 

 
(b) sHSV Converted Image Displayed as RGB 

 

(c) Corresponding Joint sHue and Saturation Histogram 
Fig. 4. Face Model Illumination Dependence Training Set. 

B. Forming the Face Candidate Joint Density Estimators 
With the face model density estimate in place, the face 

candidate density joint PDF must be constructed so that it can 
be compared with the model distribution.  Derivation of the 
candidate’s histogram approximated joint PDF is 
straightforward as it only entails the histogram associated with 
one ROI and its corresponding average illumination value.  To 
complete this task, the face candidate which results from the 
face candidate localization algorithm (see Section 3) is 
converted to the original coordinate and resolution space.  
Next, the converted sHSV ROI will be kernel weighted and 
the histogram estimation process will take place. This face 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

2001

 

 

candidate joint density estimate, Pi, will be compared with the 
face model histogram of the same illumination level, Qi, via 
the face detection algorithm outlined in the next section. 

 
Fig. 5. Joint sHue and Saturation Histogram-Estimated PDF’s over 

Average Illumination Bin Number 

V.  FACE DETECTION AND TEST RESULTS 
With a face model and candidate distributions in hand, 

candidate ROI’s output from the skin detection and filtering 
algorithm can now be processed for the presence of a face.  
The face detection algorithm implemented in this work utilizes 
the Bhattacharyya coefficient as a means to measure the 
similarity between the generated face model joint histogram 
and that of a candidate ROI.  An important advantage of the 
Bhattacharyya coefficient calculation is that it does not require 
statistical measures from each distribution, significantly 
reducing computation time and complexity. 

Remapping the definition of the Bhattacharyya to two 
dimensions, the Bhattacharyya coefficient can be defined as 

1 1
( , ) ( , ) ( , )

m n

h s
P h s Q h sρ

= =

= ⋅∑∑P Q        (3) 

where ρ(P, Q) is the Bhattacharyya coefficient between the m-
by-n bin candidate histogram P and m-by-n bin model 
histogram Q, and P (h,s) and Q (h,s) are the density of the 
candidate and model histograms, respectively, at bin location 
[h, s].  When both distributions are equal, the Bhattacharyya 
coefficient equals unity, meaning a perfect match. Conversely, 
lower valued coefficients indicate a poor match between the 
two distributions. Hence, a Bhattacharyya coefficient face 
detection scheme will be implemented such that sufficiently 
high ρ values will result in face classification of the candidate 
ROI.  Based on iterative analysis over a training set of 160 
images, Bhattacharyya coefficient of 0.5 was selected as the 
threshold to minimize false negative and false positive error 
rates.  

To test the performance of the face detection algorithm, 
another 160-image test set was created from the AVICAR 
database, not containing any image found in the face-model or 
skin classification training sets. The performance of the face 
detector using this test set illustrates the success of the 
algorithm in response to variation in the subject’s skin tone as 
well as any lighting or background changes over time.  
TABLE 1 details the true positive and false negative detection 
rates for both the complete test set and the subset for which 
the face candidate was successfully localized.  Note that of the 
160 images tested 147 incurred successful face localization. 

As can be seen, the face detection algorithm achieved an 
overall accuracy of 90% across the test set images.  The 
accuracy of the algorithm improves by 5% when the face itself 
is successfully bounded as a result of the face localization 
algorithm.  Sample positive (Face) and negative (NonFace) 
classifications are contained within Fig.6 (a) and (b), 
respectively.  

 

  

  
 (a) (b)  

Fig.6. Sample (a) Positive Face and (b) Negative Face Detections 
 

Significant sources of negative face detections involve 
changes in lighting conditions, specifically in dark 
environments.  Ninety-percent of false negative classifications 
resulted from average candidate illumination values less than 
0.5, or illumination level 8.  Additionally, shifts in light 
chromaticity (color) away from “pure” white light 
significantly altered facial candidate’s spectral content within 
the shifted hue and saturation feature space.  Time of day and 
reflective surfaces around the car are two of many factors 
which have the ability to change the spectral content of 
ambient (visible) light.  Illustration of this effect can be shown 
via the contrast in ambient lighting between Fig.7 (a) and (b).  
From the relatively white ambient lighting conditions in (a) to 
the less luminous and yellow-colored light in (b) a noticeable 
positive, 2-bin hue shift occurs in the candidate’s peak 
histogram density consistent with this change in lighting 
conditions.  Note that the green bounding box and text in 
Fig.7 (a) indicates a positive face detection with a 
Bhattacharyya coefficient of 0.878, while the red bounding 
box and text in (b) indicates a negative face detection with a 
coefficient of 0.422. 
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TABLE I 

 FACE DETECTION RESULTS 
*Refer to Section III for definition 
 

  
 

        
(a)      (b) 

Fig.7. Effect of Ambient Light Chromaticity on Face Detection 
Original RGB Image, Face Candidate ROI,  and Model-Candidate 

Histogram Pair for (a) Face Detection Success and (b) Face 
Detection Failure with Same Subject 

VI. CONCLUSION AND FUTURE WORK 
Relative to previous work, positive face detection rates rose 

from 75% to 90% [13]. Among many techniques considered, 
the unique illumination-dependent face model and the 
adjusted skin classifier via filtering are considered successful 
and critical to the stated performance increase in face 
detection.  

Despite the stated performance increases, common sources 
of error throughout the testing process highlight important 
system limitations of this face localization algorithm.  Among 
these issues are limited image resolution, skin-colored car 
environments, and overly bright and dark operating conditions 
without sufficient image dynamic range.  To mitigate the 
effects of dark lighting conditions or colored ambient lighting, 
techniques that improve color constancy should be considered. 
Color constancy is the ability to measure color of objects 
without the influence of the color of the light source. To solve 
the problem one estimates the color of the light source and 
remove it. Some techniques one might consider include Max-
RGB and Grey-world [14,15]. In addition, the temporal 
element of a video sequence can also be incorporated into the 
face localization and/or the face model itself.  Through 
tracking algorithms and periodic candidate and model updates, 
the face classification accuracy of 90% could potentially be 
increased further.  Nonetheless, the performance of the skin 

classifier, filtering, face candidate localization, and face 
classifier algorithms yielded commendable results in the 
unconstrained car environment captured within the AVICAR 
database. 
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Face 
Detectio
n  

Successful 
Localization Set* Complete Test Set 

Instances Percentage Instances Percentage 

True 
Positive  139 94.6% 144 90.0% 

False 
Negative 8 5.45% 16 10.0% 

Total 
Images 147  160  


