
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

223

Performance Tools

TAU.
PAPI.

On-line Off-line

KOJAK.
Sun Perf. analyzer.

A Survey on Performance Tools for OpenMP

Mubrak S. Mohsen, Rosni Abdullah, and Yong M. Teo

Abstract—Advances in processors architecture, such as multi-

core, increase the size of complexity of parallel computer systems.
With multi-core architecture there are different parallel languages
that can be used to run parallel programs. One of these languages is
OpenMP which embedded in C/C++ or FORTRAN. Because of this
new architecture and the complexity, it is very important to evaluate
the performance of OpenMP constructs, kernels, and application
program on multi-core systems. Performance is the activity of
collecting the information about the execution characteristics of a
program. Performance tools consists of at least three interfacing
software layers, including instrumentation, measurement, and
analysis. The instrumentation layer defines the measured
performance events. The measurement layer determines what
performance event is actually captured and how it is measured by the
tool. The analysis layer processes the performance data and
summarizes it into a form that can be displayed in performance tools.
In this paper, a number of OpenMP performance tools are surveyed,
explaining how each is used to collect, analyse, and display data
collection.

Keywords—Parallel performance tools, OpenMP, multi-core.

I. INTRODUCTION
HE development in processors architecture, such as multi-
core, contributed to broaden the complexity of parallel

computer systems[1]. Within the multi-core architecture there
are varieties of parallel languages that can be utilized to run
the parallel programs. The OpenMP is one of the most
important libraries that could be applied successfully to run
the parallel applications. The OpenMP is embedded either in
C/C++ or FORTRAN. Comparing with other parallel
languages, OpenMP shows efficacy when it has been used
with multi-core architecture processors.

For the last few years, multi-core architectures become
most globally distributed. In coincidence with development of
such processors generation, there is a necessity for further
understanding about the OpenMP nature, performance and
environment. That will lead to find the proper clues for certain
problems, such as load balancing, bottleneck, tuning,
debugging, and performance. Unfortunately no standardized
performance analysis interface exists for OpenMP yet, making
OpenMP performance analysis dependant on platform and
compiler specific mechanism. There are many tools that have
been recommended to evaluate the OpenMP performance; for
example, TAU[2], KOJAK[3], ompP[4],…, etc. With these
tools questions occur regarding how performance
instrumentation and measurement are collected and how
performance data is analyzed and mapped to the language-
level parallel abstractions.

This paper is a survey for OpenMP performance tools that
have been used. The reminder of this paper is organized as

follows: section II contains a description of the OpenMP.
Section III classifies the performance tools evaluation. Section
IV presents a detail explanation of different performance tools
and how they are used to measure the performance of
OpenMP. Finally, section V presents our discussion and
conclusion.

II. OPENMP
OpenMP[5] is An Application Program Interface (API) that

may be used to explicitly direct multi-threaded, shared
memory parallelism. It consists of a set of compiler directives,
library routines, and environment variables that influence run-
time behavior. The OpenMP Architecture Review Board
(ARB) published OpenMP 1.0 for FORTRAN in October,
1997. They released OpenMP for the C/C++ standard in 1998.
Version 2.0 of the FORTRAN specifications is released in
2000. Version 2.0 of the C/C++ specifications is being
released in 2002. Version 2.5 is a combined
C/C++/FORTRAN specification released in 2005. Version 3.0
is released in May, 2008.

 OpenMP uses the fork-and-join parallelism model. In fork-
and-join, parallel threads are created and branched out from a
master thread to execute an operation and will only remain
until the operation has finished, then all the threads are
destroyed, thus leaving only one master thread. Because of
this parallelism OpenMP has became useful for multi-core
programs. OpenMP compiler is not required to check for data
dependencies, data conflicts, race conditions, or deadlocks,
which may occur in programs. The user is responsible to
check that the programs are free from those runtime errors.

III. PERFORMANCE TOOLS CLASSIFICATION
Performance tools can be categorized based on the run time

behavior into two main categories; on-line and off-line (Fig.
1). However, based on the capture and analysis approaches
the tools can be classified into three categories; profiling,
tracing, and profiling & tracing (Fig. 2).

Fig. 1 On-line and off-line performance analysis tools

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

224

Performance Tools

Profiling Tracing Profiling
& Tracing

KOJAK
Sun Perf. Anal.
COPPER

Fig. 2 Profiling and tracing performance tools

This section describes the performance tools classification

with details about how it is used to collect, measure, analyse,
and visualize the performance data. This section is organized
as follows: subsection 1 describes the on-line and off-line
performance evaluation. subsection 2 describes the profiling
and tracing performance evaluation.

1. On-line and off-line Performance Evaluation
The main difference between on-line and off-line analysis

approach is how the data are collected, analyzed, and
displayed. The On-line analysis tool displays an on-going
analysis while the program is executing, without producing
trace files. It consists of two phases. The first phase
instruments the program to collect information during the
execution. This information is not collected for later use, but it
is analyzed as execution progresses. The performance data are
reduced or filtered in the memory. The performance data can
be updated and accessed quickly during execution. It also can
be discarded as they become obsolete. The only purpose of
filtering/reduction is to reduce the space overhead;

However, off-line analysis tool display the performance
data after the execution of captured data has finished. This
process includes three phases. The first phase instruments the
program to record the performance data during execution for
each event. In the second phase, the instrumented version of
the program is executed, writing this information to trace files.
After the execution is completed, the final phase is to analyze
and display the performance data.

In terms of comparison, the On-line method has an
advantage over the off-line method that large trace files are
not generated. Meanwhile, the disadvantage of the on-line
method is incurring more space overhead during execution,
not detecting some events data, and discarding some
information.

The motivation for on-line performance monitoring are
many: it is suitable for long-running programs or server
processes that are not meant to terminate; it does not have to
contend with a huge volume of performance data as in event-
tracing as performance analysis occurs concurrently with
program execution; and it highlights the performance data for
the current execution state of the application which can be
related to other system parameters (e.g., disk activity, CPU
and memory utilization, load on the system, and network
contention). Examples of on-line performance evaluation tools

include the program monitor used by TAU [2] for on-line-
monitoring of profile data.

Off-line tools do not analyze or display the performance
data while it is collected. They store the data for later analysis.
Off-line tools help the user characterize the behavior of the
application by analyzing the results of performance data after
the application terminates.

2. Profiling and Tracing Performance Evaluation
Based on the measurement approach, the performance tools

for parallel programs fall into three categories: profiling,
event-tracing and mixed profiling and tracing.

Tracing approach has the advantage that they can capture
all the relevant events describing the runtime behavior of the
application, but the overhead of tracing can be substantial.
Traces scale poorly with increasing runtime, with no obvious
mechanism of throttling the data volume, and without
capturing all function call and return points, the dynamic
program graph can not be generated. Many implementations
of tracing methodologies have been developed, along with a
rich set of data-reduction and visualization tools for example,
KOJAK[3], CATCH[6], TAU[2], and VAMPIR[7]. One
tracing methodology, POMP, was proposed as a standard for
OpenMP performance measurement, but it was not adopted.

On the other hand, statistical profiles have the advantage
that they can scale very nicely to long-running programs,
simply by throttling the profiling rate. By capturing complete
callstacks with each event, the dynamic callgraph behavior
becomes obvious. Capturing callstacks for user-model
OpenMP programs is a challenge. Statistical profiling has one
major disadvantage: it is statistical in nature, and may miss
some rare events; furthermore, if the application behavior is
correlated with the profiling clock, the measurements may be
ambiguous.

Finally, profiling and tracing tools are tried to combine the
advantages of tracing and profiling together.

2.1 Profiling Approach
Profiling shows the summary statistics of performance

metrics that characterize application performance behavior.
Examples of performance metrics are the CPU time associated
with a routine, the count of the secondary data cache misses
associated with a group of statements, the number of times a
routine executes, etc.

Profiling are tried to characterize the behavior of an
application in terms of aggregate performance metrics.
Profiles are typically represented as a list of various metrics
(such as wall-clock time) that are associated with program-
level semantic entities (such as routines or statements in the
program). Time is a common metric used but any
monotonically increasing resource function can be used. The
two main approaches to profiling include sampling-based
profiling and instrumentation-based profiling.

2.1.1 Sampling-based Profiling Approach
Sampling-based profiling periodically records the program

state and, based on measurements made on those states,
estimates the overall performance. Profiling tools use a

PAPI.
ompP.
Intel thread Prof.
POMP

OPARI.
TAU.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

225

hardware interval timer that generates a periodic interrupt after
a certain amount of time elapses. At that interrupt, the process
state is sampled and recorded. Based on the total number of
samples recorded, the interval between the interrupts and the
number of samples recorded when a particular code segment is
executing; statistical techniques are employed to generate an
estimate of the relative distribution of a quantity over the
entire program. Since events that occur between the interrupts
are not seen by the performance tool, the accuracy of this
approach depends on the length of the interval which typically
varies from 1 to 30 milliseconds. Increasing the interval
reduces the fixed measurement overhead of profiling, but
decreases its resolution. As processor speeds continue to
increase, however, sampling based on time can lead to
sampling errors and inaccuracies. An alternative, as
implemented in the unix profiling tool, is sampling based on
the number of elapsed instructions between two interrupts.
This removes the dependency on the clock speed.
Some advantages of the sampling are:

 Profiling is to find hotspots, the module, functions,
lines of source code and assembly instructions that
are consuming the most time

 Low overhead. Overhead incurred by sampling is
typically about one percent

 No need to instrument code. There is no need to
make any changes to code in order to profile with
sampling.

In sampling-based profiling, either the program counter
(thus the currently executing routine) is sampled or the
callstack is sampled. In the first case, the program counter is
translated to the currently executing block of code and the
number of samples associated with that block of code is
incremented. In the second case, the callstack is sampled, and
the time for the block of executing code is incremented. This
allows the computation of both exclusive and inclusive time.
Exclusive time is the time spent executing the given routine
not including time spent on other routines that it called.
Inclusive time includes the contributions from callees
computed by traversing the callstack. Based on the number of
samples taken in a given block, the time spent in the block is
estimated using the sampling frequency and the processor
clock frequency.

Some tools show the caller-callee relationship using call
graphs instead of flat profiles. Based on the number of times a
routine (parent) invokes another routine (child), it divides the
time spent in a routine among its callers in proportion to the
number of times the routine was called by them. It reports this
call-graph information to one level. While this may be
misleading in cases where the different invocations of the
routines perform unequal work, it highlights the importance of
callgraphs.

Other tools use call paths, or sets of stack traces (sequences
of functions that denote a thread’s calling order at a given
instant of time) to present performance in terms of call
sequences between routines.

Although, sampling-based schemes suffer from incomplete
coverage of the application (especially for applications that

have a short life-span), they have a distinct advantage of fixed,
low instrumentation overhead and consequently reduced
measurement perturbation in the program.

Another alternative approach is to use the hardware
performance monitors provided by most modern
microprocessors. Hardware performance monitors can be used
both as interval markers and as sampled data. They are
implemented as on-chip registers that can transparently count
quantities, such as the number of instructions issued, cycles
completed, floating point operations performed, number of
data and instruction cache misses seen. Most microprocessors
provide two or three registers (which implies that two or three
counters can be used simultaneously), a mechanism to read
and reset the registers, and an interrupt capability when a
counter overflows. Tools such as Intel’s VTune[8] use
interrupt intervals based on the number of instructions issued.

2.1.2 Instrumentation-Based Profiling Approach
In order to observe performance, additional instructions or

probes are typically inserted into a program. This process is
called instrumentation. The execution of a program is regarded
as a sequence of significant events. As events execute, they
activate the probes which perform measurements. Thus,
instrumentation exposes key characteristics of an execution.
Performance evaluation tools present this information in the
form of performance metrics. Performance bottleneck
detection tools go one step further and automate the process of
identifying the cause of poor performance.

With instrumentation-based profiling, measurements are
triggered by the execution of instructions added to the code to
track significant events in the program such as the entry or exit
of a routine, the execution of a basic block or statement, and
the send or receipt of a message communication operation.
Typically, such profilers present the cost of executing different
routines in a program. Tools insert instrumentation code
during different phases of compilation and execution.

Table I, shows the comparison of sampling and
instrumentation profiling. Each method has some advantages
than the other does not have. While the sampling does not
incur overhead, it does not track all events in the application.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

226

TABLE I
 SAMPLING AND INSTRUMENTATION COMPARISON

 Sampling Instrumentation

Overhead low High

System-wide
profiling

Yes, profiles all
application, drivers, OS
functions

Just application and
instrumented DLLs

Detect unexpected
events

Yes , can detect other
programs using OS
resources

No

Data collected Counters, processor an OS
state

Call graph , call
times,
critical path

Data granularity Assembly level instr., with
source line

Functions, sometimes
statements

2.2 Event Tracing Approach
While profiling is used to get aggregate summaries of

metrics in a compact form, it can’t highlight the time varying
aspect of the execution. Event tracing is more appropriate to
study the spatial and temporal aspect of performance data.
Event tracing is the activity of capturing an event or an action
that takes place in the program. Event tracing usually results in
a log of the events that characterize the execution. Each event
in the log is an ordered tuple typically containing a time
stamp, a location (e.g., node, thread), an identifier that
specifies the type of event (e.g., routine transition, user-
defined event, message communication, etc.) and event-
specific information. Event tracing is commonly employed in
debugging and performance analysis.

Instrumentation can perturb an application and modify its
behavior. Event tracing is the most invasive form of
instrumentation because the volume of data generated is quite
large and thus it may perturb the application more than other
forms of performance measurement

In a parallel execution, trace information generated on
different processors must be merged. This is usually based on
the time-stamp which can reflect logical time or physical time.
The logical time uses local counters for each process
incremented when a local event takes place. The physical time
uses reference time obtained from a common clock, usually a
globally synchronized real-time clock.

Trace buffers keep the ordered and merged logs. They can
be shared or private. On shared memory multiprocessors,
multiple threads can easily access a shared trace buffer
providing an implicit ordering and merging of trace records
and maximizing the buffer memory utilization. Private buffers
can be used in both shared memory and distributed memory
systems. Since the buffer is private, there is no contention for
it, but the trace buffer memory is not optimally utilized due to
varying rates of event generation in tasks.

In either case, the trace buffer needs to be periodically
flushed to disk. There are two policies used in flushing the
buffer to the disk: Flush one buffer when it fills (FOF) and
Flush All the buffers when One Fills (FAOF).

IV. PERFORMANCE TOOLS
The basic purpose of application performance tools, are to

help the user identify whether or not their application is
running efficiently on the computing resources available. The
benefits of using the tool can be to decrease execution time, to
increase efficiency of resource utilization, or a combination of
the two. Many software tools are provided to measure the
performance. These performance tools typically rely on at
least three layers, which consist of: instrumentation,
measurement, and analysis. The instrumentation layer defines
the measured performance events. The measurement layer
determines what performance event is actually captured and
how it is measured by the tool. The analysis layer processes
the performance data and summarizes it into a form that can
be displayed in performance tools.

We present a survey of various tools that can be used to aid
in performance analysis of OpenMP programs. This section
explains in detail the different software tools according to their
classification. This section is organized as follows: section 1
describes the profiling-based performance tools. Section 2
describes the tracing-based performance tools. Finally, section
3 describes the profiling&tracing based performance tools.

1. Profiling-Based Performance Tools
 This section describes in detail the performance tools that

based on profiling, and shows how they work to measure the
performance. PAPI, POMP, ompP, and Intel Thread Profiler
are designed based on profiling approach.

1.1 Performance Application Programming Interface
(PAPI)

The purpose of the PAPI [9] project is to design, implement
a portable and efficient API to access the hardware
performance monitor counters found on most modern
microprocessors. PAPI provides two interfaces: high level
interface for the acquisition of simple measurements, and low
level interface. The low level interface manages hardware
events in user defined groups called EventSet. The high level
interface simply provides the ability to start, stop and read the
counters for a specified list of events. The different features of
the low-level interface give the designer much more
flexibility.

PAPI also defines a set of hardware performance events.
Both the high and low level interface along with the event
definitions together support standardized control and access to
hardware counters under most hardware architectures

PAPI supports a number of platforms (e.g., Cray T3E, SGI
IRIX, IBM AIX Power, Sun Ultrasparc Solaris, Linux/x86,
Linux/IA-64, HP/Compaq Alpha Tru64 Unix). The
implementation for a given platform attempts to map as many
of the standard PAPI events as possible to the available
platform-specific events. The implementation also attempts to
use available hardware and operating system support. e.g., for
counter multiplexing, interrupt on counter overflow, and
statistical profiling. Multiplexing means PAPI allows more
counter to be counted than can be supported by the hardware.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

227

The dynaprof tool developed as part of the PAPI project
uses dynamic instrumentation to allow the user to either load
an executable or attach to a running executable and then
dynamically insert instrumentation probes [10]. Dynaprof
provides a PAPI probe for collecting hardware counter data
and a wallclock probe for measuring elapsed time, both on a
per-thread basis. Users may optionally write their own probes.
A probe may use whatever output format is appropriate, for
example a real-time data feed to a visualization tool or a static
data file dumped to disk at the end of the run.

The PAPI project has developed two tools that show
graphical display of PAPI performance data [9]. The first tool,
called the perfometer, provides a runtime trace of a chosen
PAPI metric. The second tool, called the profometer, provides
a histogram that relates the occurrences of a chosen PAPI
event to text addresses in the program. PAPI can integrate
with Visual Profiler, SvPablo, and DEEP for collecting data
and graphically viewing the results.

PAPI isn’t developing the capability of relating the
frequency of events to source code locations, so that developer
can’t locate portions of the program that are the source of
performance problems.

1.2 POMP
Different performance monitoring interfaces have been

proposed to the OpenMP Architecture Review Board (ARB)
to include in the specifications of the language. The
POMP[11] interface was proposed and was not supported
because it was highly dependent on source level
instrumentation and the programming model was somewhat
complicated. The primary goal is to define a clear and portable
API for OpenMP that makes execution events visible to
runtime monitoring tools, primarily tools for performance
measurement. POMP is an interface that enables performance
tools to detect OpenMP events. POMP supports measurements
of OpenMP constructs, OpenMP API calls and user
functions/regions. POMP presents a uniform interface for
providing such a mapping between the performance data and
OpenMP events.

The POMP interface for OpenMP provides a performance
API target for source to source instrumentation tools [12]
(e.g., OPARI) allowing for instrumented OpenMP codes that
are portable across compilers and machine platforms. Defined
as a library API, the interface exposes OpenMP execution
events of interest (e.g., sequential, parallel, and
synchronization events) for performance observation, and
passes OpenMP context descriptors to inform the performance
interface library of region-specific information. The OPARI
tool rewrites OpenMP directives in functionally equivalent,
but source instrumented forms, inserting POMP performance
calls where appropriate.

The advantages of POMP includes the following: the
interface does not restrict the implementation of OpenMP
compilers or runtime systems, it is compatible with other
performance monitoring interfaces such as PMPI, and it
permits multiple instrumentation methods (e.g. source,
compiler, or runtime).

POMP is quite complicated and incur too much overhead
because of these disadvantage[13]: First, POMP requires that a
data structure storing source level information and IDs are
passed as a parameter for each POMP call that can be quite
expensive in terms of overhead. Second, POMP was designed
for source level instrumentation. Instrumentation at this level
can interfere with compiler optimizations. Third, POMP
requires modification of the code that interferes with the
execution of the original code.

1.3 A profiling tool for OpenMP (ompP)
ompP[4] is a simple text-based profiling tool for OpenMP

applications written in C/C++ or FORTRAN. ompP supports
the measurement of hardware performance counters using
PAPI [9] and supports some advanced features such as
overhead analysis and detection of common inefficiency
situations (performance properties). ompP relies on
OPARI[14] for source-to-source instrumentation.

ompP is a profiling tool for OpenMP applications designed
for Unix-like systems. ompP differs from other profiling tools.
First, ompP is a measurement based profiler and does not use
program counter sampling. The instrumented application
invokes ompP monitoring routines that enable a direct
observation of program execution events (like entering or
exiting a critical section). An advantage of the direct approach
is that its results are not subject to sampling inaccuracy and
hence they can also be used for correctness testing in certain
contexts. The second difference is in the way of data
collection and representation. While other profilers work on
the level of functions, ompP collects and displays performance
data in the OpenMP user model of the execution. For example,
the data reported for critical section contains not only the
execution time but also lists the time to enter and exit the
critical construct (enterT and exitT, respectively) as well as
the accumulated time each threads spends inside the critical
construct (bodyT) and the number of times each thread enters
the construct (execC).

Furthermore, ompP supports querying hardware
performance counters through PAPI and the measured counter
values appear as additional columns in the profiles. In addition
to OpenMP constructs that are instrumented automatically
using OPARI, a user can mark arbitrary source code regions
such as functions or program phases using a manual
instrumentation mechanism. Profiling data is reported by
ompP both as flat profiles as well as callgraph profiles, giving
inclusive and exclusive times in the latter case. ompP
performs an overhead analysis where four well-defined
overhead classes (synchronization, load imbalance, thread
management, limited parallelism) are quantitatively evaluated.
ompP also tries to detect common inefficiency situations, such
as load imbalance in parallel loops, contention for locks and
critical sections, etc. The profiling report contains a list of the
discovered instances of these – so called – performance
properties sorted by their severity (negative impact on
performance).

Performance data is collected on a region stack basis. Stack
of entered OPARI regions is maintained and data is attributed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

228

to the stack that leads to a certain region. This region stack is
currently maintained for POMP regions only, i.e., only
automatically instrumented OpenMP constructs and user-
instrumented regions are placed on the stack, general functions
or procedures are not handled unless manually instrumented
by the user. Hardware counters can be used with ompP, the
number of hardware counters that can be recorded
simultaneously by ompP is a compile time constant set to 4
per default.

The performance data collected by ompP is kept in memory
and written to a report file when the program finishes. Two
formats are specified plaintext ASCII and comma separated
values (CSV).

The report shows the different regions view, it shows the
execution of the application in callgraph or tree, flat region
profiles, and callgraph region profiles. It also shows the
overhead analysis which is four OpenMP related categories
(imbalance, synchronization, limited parallelism, and thread
management). In additional it shows the performance
properties which capture the common situation of inefficient
execution.

The tool can be used to quickly identify regions of
inefficient behavior. In fact by analyzing execution counts the
tool is also useful for correctness debugging in certain cases.

Another benefit is the immediate availability of the textual
profiling report after the program run, as no further post-
processing step is required. Furthermore the tool is naturally
very portable and can be used on virtually any platform
making it straightforward to compare the performance on a
number of different platforms.

The limitation of ompP is no visual representation of
profiling data. Furthermore, the user-defined functions are not
instrumented unless the user manually instruments the
functions.

ompP support Linux/x86, IA64, ALX, Linux platforms,
with gcc, intel, IBM PHI compilers.

1.4 Intel Thread Profiler
The Thread Profiler[15] is a plug-in to the VTune

Performance Analyzer[8]. The Thread Profiler supports
applications threaded with OpenMP, Windows API, or POSIX
threads (Pthreads). Thread Profiler is used to identify
bottlenecks that limit the parallel performance of your multi-
threaded application. It used to find the best sections of code
to optimize for sequential performance and for threaded
performance and compare scalability across different numbers
of processors or using different threading methods. It is used
also to locate synchronization delays, stalled threads,
excessive blocking time, and ineffective utilization of
processors.

The Thread Profiler enables to create activities in the
VTune Performance Environment. Activities are at the core of
the data-collection process in the VTune analyzer. Within an
Activity, user can specify the types of performance data wish
to collect. For each type of performance data, user needs to
configure the appropriate data collector and define the
application/module profiles. These profiles contain

information about the application to execute and the modules
to analyze. Running an activity is analogous to running an
experiment. When the user’s activity is run, the data collectors
collect performance data and save it in the Activity results.
The result can be viewed later, without having to rerun the
activity. User can also drag and drop different activity results
into a view to compare data from different experiments.

In addition to sampling, the tool also provides call graph
monitoring. The gathered data can be visualized, and the tool
also provides code tuning advice. VTune is a Windows tool
with limited Linux support. Also a commercial license is
required.
When using Thread Profiler to analyze applications on
systems with more than 32 processors, the overhead may
become excessive. Intel Thread Profiler supports analysis of
code using one of the following collection modes:
Instrumented and OpenMP-specific.

By using one or a combination of Binary Instrumentation
and Source Instrumentation to prepare the application for data
collection with the Intel(R) Thread Profiler, depending on the
needs of the program.

Intel Thread Profiler is very useful for analyzing
bottlenecks in threaded code. Thread Profiler quickly
pinpoints problem areas and shows the reasons for the
slowdown, to restructure the code for better threaded
performance. Intel Thread Profiler shows the timeline to
understanding what threads are doing and how they interact. It
Pinpoints the exact location of performance issues in call
stacks and source code to aid analysis. It measures the number
of cores that are effectively utilized by the application to
determine actual parallel performance. It is analysis the
OpenMP and estimate of the performance potential of
different designs. It’s used critical path analysis to help focus
on more significant performance issues.

The latest release supports C++ applications developed
using the Microsoft Windows compilers in Microsoft Visual
Studio 2005 and 2008. It supports the latest multi-core
processors on the new Intel Core 2 Duo and Intel Core 2 Quad
processors.

Intel profile display the Critical Path View which illustrates
some of the basic techniques of concurrency level and thread
interactions. Intel profile also displays the profile view of the
selected critical path data loaded. The Profile View allows
user to group, filter and sort the data in order to get a better
understanding about the performance of the threads within the
application.

It also shows Timeline View. The Timeline View is able to
display the motion (how the critical path passed from one
thread to another) of the critical path across threads. Keeping
track of these transitions, however, is an expensive operation
and will increase memory usage and cause a noticeable slow
down in execution time within Thread Profiler.

Intel profiler can display Source Views. This display allows
the programmer to judge how those objects could be used
more effectively.

Intel Thread Profiler monitors execution of applications to
detect threading performance issues, including thread

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

229

overhead and synchronization impact. Intel Thread Profiler
provides results in graphical displays to help quickly pinpoint
the locations in code that directly affect execution time where
fewer than the optimal number of threads were executing,
identify synchronization objects that may be impacting thread
execution, and ascertain load balance issues between threads.

2. Tracing-Based Performance Tools
This section describes in detail the performance tools that

based on event tracing, and shows how they work to measure
the performance. KOJAK, Sun Performance Analyser, and
Copper are designed based on event trace approach.

2.1 Kit for Objective Judgement and Knowledge-based
Detection of Performance Bottlenecks (KOJAK)

The KOJAK project [3] is a tool used to measure the
performance analysis environment for parallel programs.

Fig. 3 Kojak Architecture [3]

An overview about the architecture of the Kojak prototype

and its components are given in Fig. 3. The analysis process is
composed of two parts: a semi-automatic multi-level
instrumentation of the user application followed by an
automatic analysis of the generated performance data. The
first subprocess is called semi-automatic because it requires
the user to slightly modify the makefile and execute the
application manually.

To begin the process, the user supplies the application’s
source code, written in C, C++, or Fortran, to OPARI [14],
which performs automatic instrumentation of OpenMP
constructs and redirection of OpenMP-library calls to
instrumented wrapper functions on the source-code level
based on the POMP API. Instrumentation of user functions is
done either on the source-code level using TAU or using a
compiler-supplied profiling interface. Instrumentation for MPI
events is accomplished using a PMPI wrapper library, which
generates MPI-specific events by intercepting calls to MPI
functions. All MPI, OpenMP, and user-function
instrumentation call the EPILOG (Event Processing,
Investigating and LOGging) run-time library, which provides
mechanisms for buffering and trace-file creation. At the end of
the instrumentation process the user has a fully instrumented
executable.

Running this executable generates a trace file in the
EPILOG format. After program termination, the trace file is
fed into the EXPERT (Extensible Performance Tool) analyzer.
The analyzer uses EARL (Event Analysis and Recognition
Language) to provide a high-level view of the raw trace file.
We call this view the enhanced event model, and it is where
the actual analysis takes place. The analyzer generates an
analysis report, which serves as input for the EXPERT
presenter. In addition, it is possible to convert EPILOG traces
to VTF3 format and analyze them manually with the VAMPIR
event trace analysis tool (version 3.X or later only).

KOJAK support Linux on IA32, IA64, X86_64/EMT6,
Cray XT3 platform with GNU, Intel, PGI, Sun, and IBM
compilers.

2.2 Sun Performance Analyzer
The Sun Performance Analyzer[16] supports OpenMP, MPI

and hybrid MPI/OpenMP. Special efforts have been made to
allow for the analysis of OpenMP programs. At runtime, the
performance data collection module communicates with the
OpenMP runtime library in order to obtain specific
information about the state of all OpenMP threads.

The latest Sun Studio release supports the SPARC and x86
families of processor architectures: UltraSPARC, SPARC64,
AMD64, Pentium, and Xeon EM64T. The Performance
Analyzer displays the raw data in a graphical format as a
function of time.

The tool consists of collector and analyzer. The Collector
tool collects performance data using a statistical method called
profiling and by tracing function’s calls. The data can include
call stacks, microstate accounting information, thread
synchronization delay data, hardware counter overflow data,
Message Passing Interface (MPI) function call data, memory
allocation data, and summary information for the operating
system and the process. The Collector can collect all kinds of
data for C, C++ and FORTRAN programs, and it can collect
profiling data for applications written in the Java
programming language. It can collect data for dynamically
generated functions and for descendant processes. The
Collector collects three different kinds of data: profiling data,
tracing data and global data. Both profiling data and tracing
data contain information about specific events, and both types
of data are converted into performance metrics. Global data is
not converted into metrics, but is used to provide markers that
can be used to divide the program execution into time
segments. The global data gives an overview of the program
execution during that time segment. Metrics are assigned to
program instructions using the call stack that is recorded with
the event-specific data. If the information is available, each
instruction is mapped to a line of source code and the metrics
assigned to that instruction are also assigned to the line of
source code.

The Performance Analyzer reads the event data that is
collected by the Collector and converts it into performance
metrics. The metrics are computed for various elements in the
structure of the target program. The Performance Analyzer
processes the data and displays various metrics of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

230

performance at the level of the program, the functions, the
source lines, and the instructions. Then, it displays the data in
tabular and graphical displays.

2.3 COPPER
COPPER [17] is integration of OpenUH compiler and

KOJAK [3] for collaborative application tuning. The process
starts with the instrumentation of OpenMP constructs on the
source-code level using a preprocessor called OPARI [14]. In
the next step, the application is compiled by OpenUH and, at
the same time, the compiler inserts instrumentation into the
user code to generate traces for KOJAK. After application
termination, KOJAK analyzes the resulting trace file and
provides higher-level feedback that is returned to OpenUH’s
feedback optimization module.

In the COPPER environment as in Fig. 4, user regions are
automatically instrumented by the OpenUH compiler. The
OpenUH compiler supports the instrumentation of function,
loop, conditional branch, and compare and goto program units.
OPARI performs automatic instrumentation of OpenMP
constructs according to the POMP profiling interface for
OpenMP.

At runtime, the instrumented executable generates a single
trace file that can be searched off-line for inefficiency patterns
using the EXPERT analyzer[18].

Fig. 4 COPPER architecture [17]

When reading a parallel program containing OpenMP

directives, KOJAK automatically invokes OPARI to insert
POMP performance calls where appropriate. As a final step of
the instrumentation, KOJAK links the application with a
library implementing the POMP API to generate appropriate
events and write them to the trace buffer. Thus, with the help
of the PMPI library and the OpenUH user-region
instrumentation, their approach provides a fully automatic
solution to the instrumentation of OpenMP and mixed-mode
MPI/OpenMP applications.

The analysis process transforms the traces into a compact
XML representation that maps higher-level performance
problems onto the call tree and the hierarchy of system
resources, such as nodes, processes, and threads. The XML
file can be viewed in the CUBE performance browser or,

alternatively, automatically processed by third-party tools
using the CUBE API.

3. Profiling &Tracing Based Tools
This section describes in detail the performance tools that

based on profiling and tracing. It shows how these tools work
to measure the performance. OPARI, and TAU are designed
based on profiling and tracing approaches.

3.1 OpenMP Pragma and Region Instrumentor (OPARI)
OPARI[14] is a source-to-source translation tool which

automatically adds all necessary calls to the POMP runtime
measurement library which allows collecting runtime
performance data of Fortran, C, or C++ OpenMP applications.
It is based on the idea of OpenMP pragma/directive rewriting.

OPARI [14] is a source-to-source translator based on a very
fuzzy parser, and not a full compiler, which performs the
OpenMP directive and API call transformations. The basic
idea behind OPARI is to define a standard API to a
performance measurement library that can be used to
instrument a user’s OpenMP application program for
monitoring OpenMP events based on OpenMP directive
rewriting [19]. This instrumentation could be done by a
source-to-source translation tool prior to the actual
compilation or within an OpenMP compilation system.
Performance tool developers then only need to implement the
functions of this interface to enable their tool to measure and
analyze OpenMP programs. Different measurement modes
(profiling and tracing) can easily be accommodated in this
way.

The instrumentation is based on transformations of
OpenMP construct, OpenMP run-time library routine, and
used function. The transformations apply for both Fortran77
and Fortran90 OpenMP 2.0 directives and C/C++ OpenMP 1.0
pragmas and it does not support the instrumentation of user
functions yet.

For each instrumented OpenMP construct OPARI creates a
region descriptor structure that contains information such as
the name of the construct, the source file, begin and end line
numbers.

To integrate performance tools with the proposed OpenMP
performance interface, two issues must be addressed. First, the
OpenMP program must be instrumented with the appropriate
performance calls. Second, a performance library must be
developed to implement the OpenMP performance API for the
particular performance tool. EXPERT and TAU have been
integrated with the proposed OpenMP performance interface.
The benefits of the proposed performance interface are
several. First, it gives a performance API target for source-to-
source instrumentation tools (e.g., OPARI), allowing for
instrumented OpenMP codes that are portable across
compilers and machine platforms. Second, the performance
library interface provides a target for tool developers to port
performance measurement systems. This enables multiple
performance tools to be used in OpenMP performance
analysis. Third, the API also offers a target for OpenMP
compilers to generate pomp calls that can both access internal,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

231

compiler-specific performance libraries and external
performance packages. Finally, if the OpenMP community
could adopt an OpenMP performance interface such as the one
we proposed, it would significantly improve the integration
and compatibility between compilers and performance tools,
and, perhaps more importantly, the portability of performance
analysis techniques.

OPARI has the following small limitations[20],[21]: It does
not support the instrumentation of user functions yet. It
requires some directives to be added for well-written code for
example at the end of loop or Structured block or if-then-else.
Depend on the programming language. OPARI as describe
in[21] lacks the directives, and uses a different way of passing
parameters to the API routines, and the API prescribes the
layout of the instrumentation library data structures, thus
constraining the implementers. OPARI makes implicit barriers
explicit. Unfortunately, this method cannot be used for
measuring the barrier waiting time at the end of PARALLEL
directives because they do not allow a NOWAIT clause.
Therefore, OPARI adds an explicit barrier with corresponding
performance interface calls here. For OPARI, this means that
actually two barriers get called. But the second (implicit)
barrier should execute and succeed immediately because the
threads of the OpenMP team are already synchronized by the
first barrier. The OpenMP standard (unfortunately) allows
compilers to ignore NOWAITs, which means that in this case
OPARI inserts an extra barrier and the POMP functions get
invoked on this extra (and not the real) barrier. OPARI can’t
instrument the internal synchronization inside!$OMP
WORKSHARE as required by the OpenMP standard.

3.2 Tuning and Analysis Utilities (TAU)
TAU [2] has the ability to instrument at multiple stages of

code transformation. It allows for routine, basic-block and
statement-level timers to generate profiles as well as event-
traces. For profiling, it allows a user to choose from
measurement options that range from wallclock time, CPU
time and process virtual time to hardware performance
counters.

The TAU performance system [2] is designed as a tool
framework, whereby tool components and modules are
integrated and coordinate their operation using well- defined
interfaces and data formats. The TAU framework architecture
is organized into three layers: instrumentation, measurement,
and analysis.

The instrumentation mechanisms in TAU support several
types of performance events, including events defined by code
location (e.g. routines or blocks), library interface events,
system events, and arbitrary user-defined events. TAU is also
aware of events associated with message passing and multi-
threading parallel execution. The instrumentation layer is used
to define events for performance experiments. Thus, one
output of instrumentation is information about the events for a
performance experiment. This information will be used by
other tools.

TAU’s measurement system is organized into four parts.
First, the event creation and management part determines how

events are processed. Two types of events are supported:
entry/exit events and atomic events. In addition, TAU
provides the mapping of performance measurements for “low-
level” events to high-level execution entities. Second, the
performance measurement part supports two measurement
forms: profiling and tracing. Third, the performance data
sources part defines what performance data is measurable and
can be used in profiling or tracing. TAU supports different
timing sources, choice of hardware counters through the PAPI
[22] or PCL interfaces, and access to system performance
data. Finally, the OS and runtime system part provide the
coupling between TAU’s measurement system and the
underlying parallel system platform.

TAU comes with both text-based and graphical tools to
visualize the performance profiles. ParaProf is TAU’s parallel
profile analysis and visualization tool. Also distributed with
TAU is the PerfDMF tool providing multi-experiment parallel
profile management. Given the wealth of third-party trace
analysis and visualization tools, TAU does not implement its
own. However, trace translation tools are implemented to
enable use of Vampir, Jumpshot, and Paraver. It is also
possible to generate EPILOG[2] trace files for use with the
Expert analysis tool. All TAU profile and trace data formats
are open. The framework approach to TAU’s architecture
design guarantees the most flexibility in configuring TAU
capabilities to the requirements of the parallel performance
experimentation and problem solving the user demands.

TAU provides a tau2vtf program to convert TAU traces to
VTF3 format. In addition, TAU offers tau2epilog, tau2slog2,
and tauconvert programs to convert to EPILOG, SLOG2, and
Paraver formats, respectively. For convenience, the TAU
tracing systems also allows traces files to be output directly in
VTF3 and EPILOG formats.

TAU also supports OpenMP instrumentation using a
preprocessor tool called OPARI [19]. OPARI inserts POMP
annotations and rewrites OpenMP directives in the source
code. TAU’s POMP library tracks the time spent in OpenMP
routines based on each region in the source code.

The TAU project has used PDT to implement a source-to-
source instrumentor (tau instrumentor). TAU can use OPARI
for automatic instrumentation of OpenMP constructs. OPARI
may be used in conjunction with PDT for comprehensive
automatic instrumentation of OpenMP and mixed mode
parallel programs.

TAU can use DyninstAPI[23] to construct calls to the TAU
measurement library and then insert these calls into the
executable code. TAU can use PAPI to generate profiles based
on hardware counter data. TAU has filtering and feedback
mechanisms for reducing instrumentation overhead. TAU
supports parallel profiling which support flat profiling,
callpath profiling, calldepth profiling and phase profiling. On
other hand TAU also supports parallel tracing.

TAU suffers no limitations in the ability to make low-
overhead performance measurement. However, a significant
amount of performance data can be generated for large
processor runs. The TAU Para-Prof tool provide the user with
means to navigate through the profile dataset

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

232

V. DISCUSSION AND CONCLUSION
Typically, the comparison among the performance tools can

be summarized according to the following aspects:
• The version: it describes the tool version.
• The platform: it describes the hardware architecture.
• The operation system: it describes the OS supported by

the tools.
• The parallel language: it describes the parallel language

supported by the tool.
• The compiler: it describes the compiler used by the

tool.
• The instrumentation: it describes the instrumentation

type.
• The measurement; that describes the usage of

measurement approach.
• the analysis; that specifies how the measured data are

analyzed and processed;

• The presentation; that defines how the gathered
performance data is displayed to the user.

Table II, III show the comparison of the tools which are

related to the performance OpenMP. Unfortunately, none of these
tools has been used to measure the performance of OpenMP on
windows multi-core platform. Only Intel Thread profiler has
been used to analyse the performance of OpenMP on multi-
core architecture.

Our research is to understand the performance of the
OpenMP application when run on windows multi-core. It is
recommended that further tools should be designed to better
understand the system and the user function behavior, as well
as OpenMP directives.

TABLE II

 SOFTWARE TOOLS COMPARISON

 PAPI OPARI TAU

Version PAPI 3.6.2 OPARI 1.1 TAU 2.17.3

Platform
Intel Pentium, IA-64, AMD Athlon,
IBM POWER series,Cray T3E, SGI,

Sun Ultrasparc, Compaq Alpha

SGI, Altix, Ultrasparc II, Itanium 2,
Pentium3, Pentium 4 and IBM platforms.

SGI Power Challenge and Origin 2K,
IBM

SP2, Intel Teraflop, Cray T3E, HP 9000,
Sun, Compaq Alpha Linux cluster, Intel

Linux cluster

Operating Systems Linux, True64, Unicos, AIX, Irix,
Solaris Linux LINUX , windows, Solaris, SGI, IBM,

and MacOS X, IRIX [tau web]

Parallel language C and fortran, can support OpenMP OpenMP application by C/C++ and fortran For parallel programs (MPI,OpenMP)
written in Fortran, C, C++, Java, Python.

Compiler GCC

OPARI was tested with KAI's KCC version
3.4 and 4.0, GNU's g++ version 2.95.3 and
later, IBM xlC 5.x, SUN CC 6.1, and SGI

7.3.1., PGI

KAI, PGI, GNU, Fujitsu, Sun, Microsoft,
SGI, Cray

Instrumentation System performance counters

Automatically source-to-source translator
based on fuzzy parser.

Rewriting OpenMP directive (directive
transformations).

Tau insert probes at several level of
program transformation process in the

source, preprocessor, compiler, wrapper
library, binary, interpreter, component,

virtual machine, and multi-level
instrumentation

Measurement
System

Hardware sampling profile for system
behavior.

Profiling and tracing by integrated with
other tools (64)

Both profiling and tracing.
Hardware counter.

Analysis
System On-line Integrated with other tools TAU and

EXPERT

Online analysis.
Using a set of anayliss tools (ParaProf,

PerfDMF).

Visualization

Perfometer,profometer,
it is integrated with other

tools(vprof,SvPablo, DEEP,TAU,
VAMPIR,KAPPro).

No visual representation but integrated into
TAU and EXPERT.

TAU trace can be convert to
VTF3,EPILOG, SLOG2, AND Paraver
formats to used with other visualization

tools.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

233

TABLE II
SOFTWARE TOOLS COMPARISON

 ompP Kojak Sun Performance Analyzer Intel thread profiler

Version 0.6.7 2.2b3 12 3.1

Platform Linux/x86, IA64,
ALX, Linux

Linux IA-32, IA-64,
EM64T/x86_64,IBM Power3 /

Power4 based clusters ,SGI Mips
based clusters (O2k, O3k) ,SGI IA-

64 based clusters (Altix) ,SUN
Solaris Sparc and x86 based

clusters,DEC/HP Alpha based
clusters, Cray T3E, XD1 and

X1,IBM BG/L,NEC SX, Hitachi SR-
8000

The SPARC® and x86 families of
processor architectures:

UltraSPARC, SPARC64, AMD64,
Pentium, and Xeon EM64T

Support for the latest multi-core
processors on the new Intel Core

2 Duo and Intel Core 2 Quad
processors.

Operating Systems Unix like OS.,
Linux, AIX Linux, Linux, Solaris

Windows Vista, Windows XP
Professional, Windows Server

2003, or Windows XP
Professional x64 Edition or

newer

Parallel language
OpenMP written

in C/C++ or
FORTRAN.

MPI, OpenMP, SHMEM, and
combinations thereof

written by C, C++, or Fortran,

MPI, OpenMP, hybrid
MPI/OpenMP written by c/c++ or

fortran

OpenMP, Windows API, or
POSIX threads (Pthreads).

Compiler

Linux, Solaris,
AIX and Intel,
Pathscale, PGI,
IBM, gcc, SUN
studio compilers

GNU, SUN,PGI Intel compilers,
openUH

Sun Studio compiler

Intel C++ Compiler 8.1 for
Windows or higher, Intel Fortran

Compiler 8.1 for Windows.

Instrumentation
System

relies on OPARI
for source-to-

source
instrumentation,

PAPI for
hardwar

counter,profiling

using OPARI to performs automatic
source-code level instrumentation

using TAU to perform source-code
or using a compiler-supplied

profiling interface.
Using PMPI wrapper library, which

generates MPI-specific events by
intercepting calls to MPI functions.

No instrumentation.
Using .it used sun‘s collector which
communicate between the collector

and the per

plug-in to Vtune
time-based and event-base
hardware counter samples.

Binary instrumentation
And source instrumentation.

Measurement
System

Profile only count
and time for
instrumented

OpenMP
constructs.

Hardware counter
can be used.

Event trace

Perform statistical profiling of a
wide range of performance data
and tracing of functions calls,
global data of system routines.

Hardware counters

time-based and event-base
hardware counter sample

Analysis
System Off-line

Off-line analysis
Using EXPERT analyzer.

Trace file can convert into VTF3
format and analyze them manually
with VAMPIR event trace analysis

tools.

Off-line analysis Off-line analysis

Visualization

Only two formats
of output are

specified
plaintext ASCII

and comma
separated values
(CSV). It shows

the call graph
region profiles

Using CUBE
Also can export to Vampir’s VT3

format
Using EPILOG for Event Processing

Using EARLfor Event Analysis
Using EARL to provide a high-level

view of the raw trace file.

displays the raw data in a graphical
format as a function of time/ plain

text, call tree

It display the Critical Path View,
and timeline,display the source

code view

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

234

REFERENCES
[1] Graham, S.L., M. Snir., and C.A., Getting up to Speed: the Future of

Supercomputing. National Academies Press, 2004.
[2] Shende, S.S. and A.D. Malony, The TAU parallel performance system.

International Journal of High Performance Computing Applications,
2006. 20(2): p. 287-311.

[3] Mohr, B. and F. Wolf, KOJAK – A Tool Set for Automatic Performance
Analysis of Parallel Programs, in Euro-Par 2003 Parallel Processing.
2003. p. 1301-1304.

[4] Fürlinger, K. and M. Gerndt, ompP: A Profiling Tool for OpenMP, in
OpenMP Shared Memory Parallel Programming. 2008. p. 15-23.

[5] Board, A.R. openMP. 2008 [cited; Available from:
http://www.openmp.org/.

[6] Luiz, D. and W. Felix, CATCH - A Call-Graph Based Automatic Tool
for Capture of Hardware Performance Metrics for MPI and OpenMP
Applications, in Proceedings of the 8th International Euro-Par
Conference on Parallel Processing. 2002, Springer-Verlag.

[7] Nagel, W.E., et al., VAMPIR:Visualization and analysis of MPI
resources. SUPERCOMPUTER, 1996. 12(1): p. 69–80.

[8] Intel. Intel VTune Performance Analyzer. 2007 [cited; Available from:
http://www.intel.com/cd/software/products/asmo-na/eng/219898.htm.

[9] Browne, S., et al., A portable programming interface for performance
evaluation on modern processors. International Journal of High
Performance Computing Applications, 2000. 14(3): p. 189-204.

[10] P. Mucci, Dynaprof 0.8 user's guide. Technical report. Nov. 2002.
[11] Mohr, B., et al. A Performance monitoring Interface for OpenMP. in

Proc. of 4th european Workshop on OpenMP(EWOMP). 2002.
Rome,Italy.

[12] Sameer Shende, et al., Integrated Tool Capabilities for Performance
Instrumentation and Measurement.

[13] Bui, V., PerfOMP A Runtime Performance event Monitoring Interface
for OPENMP. 2007.

[14] Mohr, B., et al., Toward a Performance Tool Interface for OpenMP: An
approch based on directive rewriting. In Proceeding of the Third
workshop on OpenMP, September, 2001.

[15] Intel Thread Profiler. 2007 [cited; Available from:
http://www.intel.com/cd/software/products/asmo-
na/eng/threading/286749.htm.

[16] SUN, M.I. Sun Collector and Performance Analyzer. [cited; Available
from: http://developers.sun.com/sunstudio/index.jsp.

[17] Hernandez, O., et al., Performance Instrumentation and Compiler
Optimizations for MPI/OpenMP Applications, in OpenMP Shared
Memory Parallel Programming. 2008. p. 267-278.

[18] Wolf, F. and B. Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. in Parallel, Distributed and Network-Based
Processing, 2003. Proceedings. Eleventh Euromicro Conference on.
2003.

[19] Bernd, M., et al., Design and Prototype of a Performance Tool Interface
for OpenMP. J. Supercomput., 2002. 23(1): p. 105-128.

[20] Pallas, G., Public OpenMP Instrumentation Interface Specification,
I.S.T.I. PROGRAMME, Editor.

[21] Luiz, D., M. Bernd, and S. Seetharam. An Implementation of the POMP
Performance Monitoring Interface for OpenMP Based on Dynamic
Probes. in Proceedings of the fifth European Workshop on OpenMP.
2003.

[22] University of Tennessee, PAPI User’s Guide, 3.5.0 edition.
[23] Bryan, B. and K.H. Jeffrey, An API for Runtime Code Patching. Int. J.

High Perform. Comput. Appl., 2000. 14(4): p. 317-329.

