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Abstract—Advances in processors architecture, such as multi-

core, increase the size of complexity of parallel computer systems. 
With multi-core architecture there are different parallel languages 
that can be used to run parallel programs. One of these languages is 
OpenMP which embedded in C/C++ or FORTRAN. Because of this 
new architecture and the complexity, it is very important to evaluate 
the performance of OpenMP constructs, kernels, and application 
program on multi-core systems. Performance is the activity of 
collecting the information about the execution characteristics of a 
program. Performance tools consists of at least three interfacing 
software layers, including instrumentation, measurement, and 
analysis. The instrumentation layer defines the measured 
performance events. The measurement layer determines what 
performance event is actually captured and how it is measured by the 
tool. The analysis layer processes the performance data and 
summarizes it into a form that can be displayed in performance tools. 
In this paper, a number of OpenMP performance tools are surveyed, 
explaining how each is used to collect, analyse, and display data 
collection. 
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I. INTRODUCTION 
HE development in processors architecture, such as multi-
core, contributed to broaden the complexity of parallel 

computer systems[1]. Within the multi-core architecture there 
are varieties of parallel languages that can be utilized to run 
the parallel programs. The OpenMP is one of the most 
important libraries that could be applied successfully to run 
the parallel applications. The OpenMP is embedded either in 
C/C++ or FORTRAN. Comparing with other parallel 
languages, OpenMP shows efficacy when it has been used 
with multi-core architecture processors.  

For the last few years, multi-core architectures become 
most globally distributed. In coincidence with development of 
such processors generation, there is a necessity for further 
understanding about the OpenMP nature, performance and 
environment. That will lead to find the proper clues for certain 
problems, such as load balancing, bottleneck, tuning, 
debugging, and performance. Unfortunately no standardized 
performance analysis interface exists for OpenMP yet, making 
OpenMP performance analysis dependant on platform and 
compiler specific mechanism. There are many tools that have 
been recommended to evaluate the OpenMP performance; for 
example, TAU[2], KOJAK[3], ompP[4],…, etc. With these 
tools questions occur regarding how performance 
instrumentation and measurement are collected and how 
performance data is analyzed and mapped to the language-
level parallel abstractions. 

This paper is a survey for OpenMP performance tools that 
have been used. The reminder of this paper is organized as 

follows: section II contains a description of the OpenMP. 
Section III classifies the performance tools evaluation. Section 
IV presents a detail explanation of different performance tools 
and how they are used to measure the performance of 
OpenMP. Finally, section V presents our discussion and 
conclusion. 

II. OPENMP  
OpenMP[5] is An Application Program Interface (API) that 

may be used to explicitly direct multi-threaded, shared 
memory parallelism. It consists of a set of compiler directives, 
library routines, and environment variables that influence run-
time behavior. The OpenMP Architecture Review Board 
(ARB) published OpenMP 1.0 for FORTRAN in October, 
1997. They released OpenMP for the C/C++ standard in 1998. 
Version 2.0 of the FORTRAN specifications is released in 
2000. Version 2.0 of the C/C++ specifications is being 
released in 2002. Version 2.5 is a combined 
C/C++/FORTRAN specification released in 2005. Version 3.0 
is released in May, 2008. 

 OpenMP uses the fork-and-join parallelism model. In fork-
and-join, parallel threads are created and branched out from a 
master thread to execute an operation and will only remain 
until the operation has finished, then all the threads are 
destroyed, thus leaving only one master thread. Because of 
this parallelism OpenMP has became useful for multi-core 
programs.  OpenMP compiler is not required to check for data 
dependencies, data conflicts, race conditions, or deadlocks, 
which may occur in programs. The user is responsible to 
check that the programs are free from those runtime errors.  

III. PERFORMANCE TOOLS CLASSIFICATION  
Performance tools can be categorized based on the run time 

behavior into two main categories; on-line and off-line (Fig. 
1).  However, based on the capture and analysis approaches 
the tools can be classified into three categories; profiling, 
tracing, and profiling & tracing (Fig. 2). 

 

 

 

 

 

 
 

Fig. 1 On-line and off-line performance analysis tools 
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Fig. 2 Profiling and tracing performance tools 
 
This section describes the performance tools classification 

with details about how it is used to collect, measure, analyse, 
and visualize the performance data. This section is organized 
as follows: subsection 1 describes the on-line and off-line 
performance evaluation. subsection 2 describes the profiling 
and tracing performance evaluation.  

1. On-line and off-line Performance Evaluation 
The main difference between on-line and off-line analysis 

approach is how the data are collected, analyzed, and 
displayed. The On-line analysis tool displays an on-going 
analysis while the program is executing, without producing 
trace files. It consists of two phases. The first phase 
instruments the program to collect information during the 
execution. This information is not collected for later use, but it 
is analyzed as execution progresses. The performance data are 
reduced or filtered in the memory. The performance data can 
be updated and accessed quickly during execution. It also can 
be discarded as they become obsolete. The only purpose of 
filtering/reduction is to reduce the space overhead;  

However, off-line analysis tool display the performance 
data after the execution of captured data has finished. This 
process includes three phases. The first phase instruments the 
program to record the performance data during execution for 
each event. In the second phase, the instrumented version of 
the program is executed, writing this information to trace files. 
After the execution is completed, the final phase is to analyze 
and display the performance data. 

In terms of comparison, the On-line method has an 
advantage over the off-line method that large trace files are 
not generated. Meanwhile, the disadvantage of the on-line 
method is incurring more space overhead during execution, 
not detecting some events data, and discarding some 
information. 

The motivation for on-line performance monitoring are 
many: it is suitable for long-running programs or server 
processes that are not meant to terminate; it does not have to 
contend with a huge volume of performance data as in event-
tracing as performance analysis occurs concurrently with 
program execution; and it highlights the performance data for 
the current execution state of the application which can be 
related to other system parameters (e.g., disk activity, CPU 
and memory utilization, load on the system, and network 
contention). Examples of on-line performance evaluation tools 

include the program monitor used by TAU [2] for on-line-
monitoring of profile data. 

Off-line tools do not analyze or display the performance 
data while it is collected. They store the data for later analysis. 
Off-line tools help the user characterize the behavior of the 
application by analyzing the results of performance data after 
the application terminates. 

2. Profiling and Tracing Performance Evaluation 
Based on the measurement approach, the performance tools 

for parallel programs fall into three categories: profiling, 
event-tracing and mixed profiling and tracing.  

Tracing approach has the advantage that they can capture 
all the relevant events describing the runtime behavior of the 
application, but the overhead of tracing can be substantial. 
Traces scale poorly with increasing runtime, with no obvious 
mechanism of throttling the data volume, and without 
capturing all function call and return points, the dynamic 
program graph can not be generated. Many implementations 
of tracing methodologies have been developed, along with a 
rich set of data-reduction and visualization tools for example, 
KOJAK[3], CATCH[6], TAU[2], and VAMPIR[7]. One 
tracing methodology, POMP, was proposed as a standard for 
OpenMP performance measurement, but it was not adopted.  

On the other hand, statistical profiles have the advantage 
that they can scale very nicely to long-running programs, 
simply by throttling the profiling rate. By capturing complete 
callstacks with each event, the dynamic callgraph behavior 
becomes obvious. Capturing callstacks for user-model 
OpenMP programs is a challenge. Statistical profiling has one 
major disadvantage: it is statistical in nature, and may miss 
some rare events; furthermore, if the application behavior is 
correlated with the profiling clock, the measurements may be 
ambiguous.  

Finally, profiling and tracing tools are tried to combine the 
advantages of tracing and profiling together. 

2.1 Profiling Approach 
Profiling shows the summary statistics of performance 

metrics that characterize application performance behavior. 
Examples of performance metrics are the CPU time associated 
with a routine, the count of the secondary data cache misses 
associated with a group of statements, the number of times a 
routine executes, etc. 

Profiling are tried to characterize the behavior of an 
application in terms of aggregate performance metrics. 
Profiles are typically represented as a list of various metrics 
(such as wall-clock time) that are associated with program-
level semantic entities (such as routines or statements in the 
program). Time is a common metric used but any 
monotonically increasing resource function can be used. The 
two main approaches to profiling include sampling-based 
profiling and instrumentation-based profiling. 

2.1.1 Sampling-based Profiling Approach 
Sampling-based profiling periodically records the program 

state and, based on measurements made on those states, 
estimates the overall performance. Profiling tools use a 
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hardware interval timer that generates a periodic interrupt after 
a certain amount of time elapses. At that interrupt, the process 
state is sampled and recorded. Based on the total number of 
samples recorded, the interval between the interrupts and the 
number of samples recorded when a particular code segment is 
executing; statistical techniques are employed to generate an 
estimate of the relative distribution of a quantity over the 
entire program. Since events that occur between the interrupts 
are not seen by the performance tool, the accuracy of this 
approach depends on the length of the interval which typically 
varies from 1 to 30 milliseconds. Increasing the interval 
reduces the fixed measurement overhead of profiling, but 
decreases its resolution. As processor speeds continue to 
increase, however, sampling based on time can lead to 
sampling errors and inaccuracies. An alternative, as 
implemented in the unix profiling tool, is sampling based on 
the number of elapsed instructions between two interrupts. 
This removes the dependency on the clock speed.  
Some advantages of the sampling are: 

 Profiling is to find hotspots, the module, functions, 
lines of source code and assembly instructions that 
are consuming the most time  

 Low overhead. Overhead incurred by sampling is 
typically about one percent 

 No need to instrument code. There is no need to 
make any changes to code in order to profile with 
sampling. 

In sampling-based profiling, either the program counter 
(thus the currently executing routine) is sampled or the 
callstack is sampled. In the first case, the program counter is 
translated to the currently executing block of code and the 
number of samples associated with that block of code is 
incremented. In the second case, the callstack is sampled, and 
the time for the block of executing code is incremented. This 
allows the computation of both exclusive and inclusive time. 
Exclusive time is the time spent executing the given routine 
not including time spent on other routines that it called. 
Inclusive time includes the contributions from callees 
computed by traversing the callstack. Based on the number of 
samples taken in a given block, the time spent in the block is 
estimated using the sampling frequency and the processor 
clock frequency. 

Some tools show the caller-callee relationship using call 
graphs instead of flat profiles. Based on the number of times a 
routine (parent) invokes another routine (child), it divides the 
time spent in a routine among its callers in proportion to the 
number of times the routine was called by them. It reports this 
call-graph information to one level. While this may be 
misleading in cases where the different invocations of the 
routines perform unequal work, it highlights the importance of 
callgraphs.  

Other tools use call paths, or sets of stack traces (sequences 
of functions that denote a thread’s calling order at a given 
instant of time) to present performance in terms of call 
sequences between routines.  

Although, sampling-based schemes suffer from incomplete 
coverage of the application (especially for applications that 

have a short life-span), they have a distinct advantage of fixed, 
low instrumentation overhead and consequently reduced 
measurement perturbation in the program. 

Another alternative approach is to use the hardware 
performance monitors provided by most modern 
microprocessors. Hardware performance monitors can be used 
both as interval markers and as sampled data. They are 
implemented as on-chip registers that can transparently count 
quantities, such as the number of instructions issued, cycles 
completed, floating point operations performed, number of 
data and instruction cache misses seen. Most microprocessors 
provide two or three registers (which implies that two or three 
counters can be used simultaneously), a mechanism to read 
and reset the registers, and an interrupt capability when a 
counter overflows. Tools such as Intel’s VTune[8] use 
interrupt intervals based on the number of instructions issued.  

2.1.2 Instrumentation-Based Profiling Approach 
In order to observe performance, additional instructions or 

probes are typically inserted into a program. This process is 
called instrumentation. The execution of a program is regarded 
as a sequence of significant events. As events execute, they 
activate the probes which perform measurements. Thus, 
instrumentation exposes key characteristics of an execution. 
Performance evaluation tools present this information in the 
form of performance metrics. Performance bottleneck 
detection tools go one step further and automate the process of 
identifying the cause of poor performance. 

With instrumentation-based profiling, measurements are 
triggered by the execution of instructions added to the code to 
track significant events in the program such as the entry or exit 
of a routine, the execution of a basic block or statement, and 
the send or receipt of a message communication operation. 
Typically, such profilers present the cost of executing different 
routines in a program. Tools insert instrumentation code 
during different phases of compilation and execution.  

Table I, shows the comparison of sampling and 
instrumentation profiling. Each method has some advantages 
than the other does not have. While the sampling does not 
incur overhead, it does not track all events in the application. 
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TABLE I 
 SAMPLING AND INSTRUMENTATION COMPARISON  

 Sampling Instrumentation 

Overhead low High 

System-wide 
profiling 

Yes, profiles all 
application, drivers, OS 
functions 

Just application and 
instrumented DLLs 

Detect unexpected 
events 

Yes , can detect other 
programs using OS 
resources 

No 

Data collected Counters, processor an OS 
state 

Call graph , call 
times, 
critical path 

Data granularity Assembly level instr., with 
source line 

Functions, sometimes 
statements 

2.2 Event Tracing Approach 
While profiling is used to get aggregate summaries of 

metrics in a compact form, it can’t highlight the time varying 
aspect of the execution. Event tracing is more appropriate to 
study the spatial and temporal aspect of performance data. 
Event tracing is the activity of capturing an event or an action 
that takes place in the program. Event tracing usually results in 
a log of the events that characterize the execution. Each event 
in the log is an ordered tuple typically containing a time 
stamp, a location (e.g., node, thread), an identifier that 
specifies the type of event (e.g., routine transition, user-
defined event, message communication, etc.) and event-
specific information. Event tracing is commonly employed in 
debugging and performance analysis. 

Instrumentation can perturb an application and modify its 
behavior. Event tracing is the most invasive form of 
instrumentation because the volume of data generated is quite 
large and thus it may perturb the application more than other 
forms of performance measurement 

In a parallel execution, trace information generated on 
different processors must be merged. This is usually based on 
the time-stamp which can reflect logical time or physical time. 
The logical time uses local counters for each process 
incremented when a local event takes place. The physical time 
uses reference time obtained from a common clock, usually a 
globally synchronized real-time clock. 

Trace buffers keep the ordered and merged logs. They can 
be shared or private. On shared memory multiprocessors, 
multiple threads can easily access a shared trace buffer 
providing an implicit ordering and merging of trace records 
and maximizing the buffer memory utilization. Private buffers 
can be used in both shared memory and distributed memory 
systems. Since the buffer is private, there is no contention for 
it, but the trace buffer memory is not optimally utilized due to 
varying rates of event generation in tasks. 

In either case, the trace buffer needs to be periodically 
flushed to disk. There are two policies used in flushing the 
buffer to the disk: Flush one buffer when it fills (FOF) and 
Flush All the buffers when One Fills (FAOF). 

IV. PERFORMANCE TOOLS 
The basic purpose of application performance tools, are to 

help the user identify whether or not their application is 
running efficiently on the computing resources available. The 
benefits of using the tool can be to decrease execution time, to 
increase efficiency of resource utilization, or a combination of 
the two. Many software tools are provided to measure the 
performance. These performance tools typically rely on at 
least three layers, which consist of: instrumentation, 
measurement, and analysis. The instrumentation layer defines 
the measured performance events. The measurement layer 
determines what performance event is actually captured and 
how it is measured by the tool. The analysis layer processes 
the performance data and summarizes it into a form that can 
be displayed in performance tools. 

We present a survey of various tools that can be used to aid 
in performance analysis of OpenMP programs.  This section 
explains in detail the different software tools according to their 
classification. This section is organized as follows: section 1 
describes the profiling-based performance tools. Section 2 
describes the tracing-based performance tools. Finally, section 
3 describes the profiling&tracing based performance tools. 

1. Profiling-Based Performance Tools 
 This section describes in detail the performance tools that 

based on profiling, and shows how they work to measure the 
performance. PAPI, POMP, ompP, and Intel Thread Profiler 
are designed based on profiling approach. 

1.1 Performance Application Programming Interface 
(PAPI) 

The purpose of the PAPI [9] project is to design, implement 
a portable and efficient API to access the hardware 
performance monitor counters found on most modern 
microprocessors. PAPI provides two interfaces: high level 
interface for the acquisition of simple measurements, and low 
level interface. The low level interface manages hardware 
events in user defined groups called EventSet. The high level 
interface simply provides the ability to start, stop and read the 
counters for a specified list of events. The different features of 
the low-level interface give the designer much more 
flexibility. 

PAPI also defines a set of hardware performance events. 
Both the high and low level interface along with the event 
definitions together support standardized control and access to 
hardware counters under most hardware architectures 

PAPI supports a number of platforms (e.g., Cray T3E, SGI 
IRIX, IBM AIX Power, Sun Ultrasparc Solaris, Linux/x86, 
Linux/IA-64, HP/Compaq Alpha Tru64 Unix). The 
implementation for a given platform attempts to map as many 
of the standard PAPI events as possible to the available 
platform-specific events. The implementation also attempts to 
use available hardware and operating system support.  e.g., for 
counter multiplexing, interrupt on counter overflow, and 
statistical profiling. Multiplexing means PAPI allows more 
counter to be counted than can be supported by the hardware. 
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The dynaprof tool developed as part of the PAPI project 
uses dynamic instrumentation to allow the user to either load 
an executable or attach to a running executable and then 
dynamically insert instrumentation probes [10]. Dynaprof 
provides a PAPI probe for collecting hardware counter data 
and a wallclock probe for measuring elapsed time, both on a 
per-thread basis. Users may optionally write their own probes. 
A probe may use whatever output format is appropriate, for 
example a real-time data feed to a visualization tool or a static 
data file dumped to disk at the end of the run.  

The PAPI project has developed two tools that show 
graphical display of PAPI performance data [9]. The first tool, 
called the perfometer, provides a runtime trace of a chosen 
PAPI metric. The second tool, called the profometer, provides 
a histogram that relates the occurrences of a chosen PAPI 
event to text addresses in the program. PAPI can integrate 
with Visual Profiler, SvPablo, and DEEP for collecting data 
and graphically viewing the results. 

PAPI isn’t developing the capability of relating the 
frequency of events to source code locations, so that developer 
can’t locate portions of the program that are the source of 
performance problems. 

1.2 POMP 
Different performance monitoring interfaces have been 

proposed to the OpenMP Architecture Review Board (ARB) 
to include in the specifications of the language. The 
POMP[11] interface was proposed and was not supported 
because it was highly dependent on source level 
instrumentation and the programming model was somewhat 
complicated. The primary goal is to define a clear and portable 
API for OpenMP that makes execution events visible to 
runtime monitoring tools, primarily tools for performance 
measurement. POMP is an interface that enables performance 
tools to detect OpenMP events. POMP supports measurements 
of OpenMP constructs, OpenMP API calls and user 
functions/regions. POMP presents a uniform interface for 
providing such a mapping between the performance data and 
OpenMP events.  

The POMP interface for OpenMP provides a performance 
API target for source to source instrumentation tools [12] 
(e.g., OPARI) allowing for instrumented OpenMP codes that 
are portable across compilers and machine platforms. Defined 
as a library API, the interface exposes OpenMP execution 
events of interest (e.g., sequential, parallel, and 
synchronization events) for performance observation, and 
passes OpenMP context descriptors to inform the performance 
interface library of region-specific information. The OPARI 
tool rewrites OpenMP directives in functionally equivalent, 
but source instrumented forms, inserting POMP performance 
calls where appropriate.  

The advantages of POMP includes the following: the 
interface does not restrict the implementation of OpenMP 
compilers or runtime systems, it is compatible with other 
performance monitoring interfaces such as PMPI, and it 
permits multiple instrumentation methods (e.g. source, 
compiler, or runtime). 

POMP is quite complicated and incur too much overhead 
because of these disadvantage[13]: First, POMP requires that a 
data structure storing source level information and IDs are 
passed as a parameter for each POMP call that can be quite 
expensive in terms of overhead. Second, POMP was designed 
for source level instrumentation. Instrumentation at this level 
can interfere with compiler optimizations. Third, POMP 
requires modification of the code that interferes with the 
execution of the original code.  

1.3   A profiling tool for OpenMP (ompP) 
ompP[4] is a simple text-based profiling tool for OpenMP 

applications written in C/C++ or FORTRAN. ompP supports 
the measurement of hardware performance counters using 
PAPI [9] and supports some advanced features such as 
overhead analysis and detection of common inefficiency 
situations (performance properties). ompP relies on 
OPARI[14] for source-to-source instrumentation. 

ompP is a profiling tool for OpenMP applications designed 
for Unix-like systems. ompP differs from other profiling tools. 
First, ompP is a measurement based profiler and does not use 
program counter sampling. The instrumented application 
invokes ompP monitoring routines that enable a direct 
observation of program execution events (like entering or 
exiting a critical section). An advantage of the direct approach 
is that its results are not subject to sampling inaccuracy and 
hence they can also be used for correctness testing in certain 
contexts. The second difference is in the way of data 
collection and representation. While other profilers work on 
the level of functions, ompP collects and displays performance 
data in the OpenMP user model of the execution. For example, 
the data reported for critical section contains not only the 
execution time but also lists the time to enter and exit the 
critical construct (enterT and exitT, respectively) as well as 
the accumulated time each threads spends inside the critical 
construct (bodyT) and the number of times each thread enters 
the construct (execC).  

Furthermore, ompP supports querying hardware 
performance counters through PAPI and the measured counter 
values appear as additional columns in the profiles. In addition 
to OpenMP constructs that are instrumented automatically 
using OPARI, a user can mark arbitrary source code regions 
such as functions or program phases using a manual 
instrumentation mechanism. Profiling data is reported by 
ompP both as flat profiles as well as callgraph profiles, giving 
inclusive and exclusive times in the latter case. ompP 
performs an overhead analysis where four well-defined 
overhead classes (synchronization, load imbalance, thread 
management, limited parallelism) are quantitatively evaluated. 
ompP also tries to detect common inefficiency situations, such 
as load imbalance in parallel loops, contention for locks and 
critical sections, etc. The profiling report contains a list of the 
discovered instances of these – so called – performance 
properties sorted by their severity (negative impact on 
performance). 

Performance data is collected on a region stack basis. Stack 
of entered OPARI regions is maintained and data is attributed 
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to the stack that leads to a certain region. This region stack is 
currently maintained for POMP regions only, i.e., only 
automatically instrumented OpenMP constructs and user-
instrumented regions are placed on the stack, general functions 
or procedures are not handled unless manually instrumented 
by the user. Hardware counters can be used with ompP, the 
number of hardware counters that can be recorded 
simultaneously by ompP is a compile time constant set to 4 
per default. 

The performance data collected by ompP is kept in memory 
and written to a report file when the program finishes. Two 
formats are specified plaintext ASCII and comma separated 
values (CSV).  

The report shows the different regions view, it shows the 
execution of the application in callgraph or tree, flat region 
profiles, and callgraph region profiles. It also shows the 
overhead analysis which is four OpenMP related categories 
(imbalance, synchronization, limited parallelism, and thread 
management). In additional it shows the performance 
properties which capture the common situation of inefficient 
execution.  

The tool can be used to quickly identify regions of 
inefficient behavior. In fact by analyzing execution counts the 
tool is also useful for correctness debugging in certain cases. 

Another benefit is the immediate availability of the textual 
profiling report after the program run, as no further post-
processing step is required. Furthermore the tool is naturally 
very portable and can be used on virtually any platform 
making it straightforward to compare the performance on a 
number of different platforms. 

The limitation of ompP is no visual representation of 
profiling data. Furthermore, the user-defined functions are not 
instrumented unless the user manually instruments the 
functions. 

ompP support Linux/x86, IA64, ALX, Linux platforms, 
with gcc, intel, IBM PHI compilers. 

1.4 Intel Thread Profiler 
The Thread Profiler[15] is a plug-in to the VTune 

Performance Analyzer[8]. The Thread Profiler supports 
applications threaded with OpenMP, Windows API, or POSIX 
threads (Pthreads). Thread Profiler is used to identify 
bottlenecks that limit the parallel performance of your multi-
threaded application. It used to find the best sections of code 
to optimize for sequential performance and for threaded 
performance and compare scalability across different numbers 
of processors or using different threading methods. It is used 
also to locate synchronization delays, stalled threads, 
excessive blocking time, and ineffective utilization of 
processors. 

The Thread Profiler enables to create activities in the 
VTune Performance Environment. Activities are at the core of 
the data-collection process in the VTune analyzer. Within an 
Activity, user can specify the types of performance data wish 
to collect. For each type of performance data, user needs to 
configure the appropriate data collector and define the 
application/module profiles. These profiles contain 

information about the application to execute and the modules 
to analyze. Running an activity is analogous to running an 
experiment. When the user’s activity is run, the data collectors 
collect performance data and save it in the Activity results. 
The result can be viewed later, without having to rerun the 
activity. User can also drag and drop different activity results 
into a view to compare data from different experiments. 

In addition to sampling, the tool also provides call graph 
monitoring. The gathered data can be visualized, and the tool 
also provides code tuning advice. VTune is a Windows tool 
with limited Linux support. Also a commercial license is 
required. 
When using Thread Profiler to analyze applications on 
systems with more than 32 processors, the overhead may 
become excessive. Intel Thread Profiler supports analysis of 
code using one of the following collection modes: 
Instrumented and OpenMP-specific. 

By using one or a combination of Binary Instrumentation  
and Source Instrumentation to prepare the application for data 
collection with the Intel(R) Thread Profiler, depending on the 
needs of the program. 

Intel Thread Profiler is very useful for analyzing 
bottlenecks in threaded code. Thread Profiler quickly 
pinpoints problem areas and shows the reasons for the 
slowdown, to restructure the code for better threaded 
performance. Intel Thread Profiler shows the timeline to 
understanding what threads are doing and how they interact. It 
Pinpoints the exact location of performance issues in call 
stacks and source code to aid analysis. It measures the number 
of cores that are effectively utilized by the application to 
determine actual parallel performance. It is analysis the 
OpenMP and estimate of the performance potential of 
different designs. It’s used critical path analysis to help focus 
on more significant performance issues. 

The latest release supports C++ applications developed 
using the Microsoft Windows compilers in Microsoft Visual 
Studio 2005 and 2008. It supports the latest multi-core 
processors on the new Intel Core 2 Duo and Intel Core 2 Quad 
processors. 

Intel profile display the Critical Path View which illustrates 
some of the basic techniques of concurrency level and thread 
interactions. Intel profile also displays the profile view of the 
selected critical path data loaded. The Profile View allows 
user to group, filter and sort the data in order to get a better 
understanding about the performance of the threads within the 
application. 

It also shows Timeline View. The Timeline View is able to 
display the motion (how the critical path passed from one 
thread to another) of the critical path across threads. Keeping 
track of these transitions, however, is an expensive operation 
and will increase memory usage and cause a noticeable slow 
down in execution time within Thread Profiler. 

Intel profiler can display Source Views. This display allows 
the programmer to judge how those objects could be used 
more effectively. 

Intel Thread Profiler monitors execution of applications to 
detect threading performance issues, including thread 
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overhead and synchronization impact. Intel Thread Profiler 
provides results in graphical displays to help quickly pinpoint 
the locations in code that directly affect execution time where 
fewer than the optimal number of threads were executing, 
identify synchronization objects that may be impacting thread 
execution, and ascertain load balance issues between threads. 

2. Tracing-Based Performance Tools 
This section describes in detail the performance tools that 

based on event tracing, and shows how they work to measure 
the performance. KOJAK, Sun Performance Analyser, and 
Copper are designed based on event trace approach. 

2.1 Kit for Objective Judgement and Knowledge-based 
Detection of Performance Bottlenecks (KOJAK) 

The KOJAK project [3] is a tool used to measure the 
performance analysis environment for parallel programs. 

 

 
Fig. 3 Kojak Architecture [3] 

 
An overview about the architecture of the Kojak prototype 

and its components are given in Fig. 3. The analysis process is 
composed of two parts: a semi-automatic multi-level 
instrumentation of the user application followed by an 
automatic analysis of the generated performance data. The 
first subprocess is called semi-automatic because it requires 
the user to slightly modify the makefile and execute the 
application manually.  

To begin the process, the user supplies the application’s 
source code, written in C, C++, or Fortran, to OPARI [14], 
which performs automatic instrumentation of OpenMP 
constructs and redirection of OpenMP-library calls to 
instrumented wrapper functions on the source-code level 
based on the POMP API. Instrumentation of user functions is 
done either on the source-code level using TAU or using a 
compiler-supplied profiling interface. Instrumentation for MPI 
events is accomplished using a PMPI wrapper library, which 
generates MPI-specific events by intercepting calls to MPI 
functions. All MPI, OpenMP, and user-function 
instrumentation call the EPILOG (Event Processing, 
Investigating and LOGging) run-time library, which provides 
mechanisms for buffering and trace-file creation. At the end of 
the instrumentation process the user has a fully instrumented 
executable.  

Running this executable generates a trace file in the 
EPILOG format. After program termination, the trace file is 
fed into the EXPERT (Extensible Performance Tool) analyzer. 
The analyzer uses EARL (Event Analysis and Recognition 
Language) to provide a high-level view of the raw trace file. 
We call this view the enhanced event model, and it is where 
the actual analysis takes place. The analyzer generates an 
analysis report, which serves as input for the EXPERT 
presenter. In addition, it is possible to convert EPILOG traces 
to VTF3 format and analyze them manually with the VAMPIR 
event trace analysis tool (version 3.X or later only).  

KOJAK support Linux on IA32, IA64, X86_64/EMT6, 
Cray XT3 platform with GNU, Intel, PGI, Sun, and IBM 
compilers. 

2.2 Sun Performance Analyzer  
The Sun Performance Analyzer[16] supports OpenMP, MPI 

and hybrid MPI/OpenMP. Special efforts have been made to 
allow for the analysis of OpenMP programs. At runtime, the 
performance data collection module communicates with the 
OpenMP runtime library in order to obtain specific 
information about the state of all OpenMP threads.   

The latest Sun Studio release supports the SPARC and x86 
families of processor architectures: UltraSPARC, SPARC64, 
AMD64, Pentium, and Xeon EM64T. The Performance 
Analyzer displays the raw data in a graphical format as a 
function of time. 

The tool consists of collector and analyzer. The Collector 
tool collects performance data using a statistical method called 
profiling and by tracing function’s calls. The data can include 
call stacks, microstate accounting information, thread 
synchronization delay data, hardware counter overflow data, 
Message Passing Interface (MPI) function call data, memory 
allocation data, and summary information for the operating 
system and the process. The Collector can collect all kinds of 
data for C, C++ and FORTRAN programs, and it can collect 
profiling data for applications written in the Java 
programming language. It can collect data for dynamically 
generated functions and for descendant processes. The 
Collector collects three different kinds of data: profiling data, 
tracing data and global data. Both profiling data and tracing 
data contain information about specific events, and both types 
of data are converted into performance metrics. Global data is 
not converted into metrics, but is used to provide markers that 
can be used to divide the program execution into time 
segments. The global data gives an overview of the program 
execution during that time segment. Metrics are assigned to 
program instructions using the call stack that is recorded with 
the event-specific data. If the information is available, each 
instruction is mapped to a line of source code and the metrics 
assigned to that instruction are also assigned to the line of 
source code. 

The Performance Analyzer reads the event data that is 
collected by the Collector and converts it into performance 
metrics. The metrics are computed for various elements in the 
structure of the target program. The Performance Analyzer 
processes the data and displays various metrics of 
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performance at the level of the program, the functions, the 
source lines, and the instructions. Then, it displays the data in 
tabular and graphical displays. 

2.3 COPPER 
COPPER [17] is integration of OpenUH compiler and 

KOJAK [3] for collaborative application tuning. The process 
starts with the instrumentation of OpenMP constructs on the 
source-code level using a preprocessor called OPARI [14]. In 
the next step, the application is compiled by OpenUH and, at 
the same time, the compiler inserts instrumentation into the 
user code to generate traces for KOJAK. After application 
termination, KOJAK analyzes the resulting trace file and 
provides higher-level feedback that is returned to OpenUH’s 
feedback optimization module. 

In the COPPER environment as in Fig. 4, user regions are 
automatically instrumented by the OpenUH compiler. The 
OpenUH compiler supports the instrumentation of function, 
loop, conditional branch, and compare and goto program units. 
OPARI performs automatic instrumentation of OpenMP 
constructs according to the POMP profiling interface for 
OpenMP. 

At runtime, the instrumented executable generates a single 
trace file that can be searched off-line for inefficiency patterns 
using the EXPERT analyzer[18]. 

 

 
Fig. 4 COPPER architecture [17] 

 
When reading a parallel program containing OpenMP 

directives, KOJAK automatically invokes OPARI to insert 
POMP performance calls where appropriate. As a final step of 
the instrumentation, KOJAK links the application with a 
library implementing the POMP API to generate appropriate 
events and write them to the trace buffer. Thus, with the help 
of the PMPI library and the OpenUH user-region 
instrumentation, their approach provides a fully automatic 
solution to the instrumentation of OpenMP and mixed-mode 
MPI/OpenMP applications. 

The analysis process transforms the traces into a compact 
XML representation that maps higher-level performance 
problems onto the call tree and the hierarchy of system 
resources, such as nodes, processes, and threads. The XML 
file can be viewed in the CUBE performance browser or, 

alternatively, automatically processed by third-party tools 
using the CUBE API. 

3. Profiling &Tracing Based Tools 
This section describes in detail the performance tools that 

based on profiling and tracing. It shows how these tools work 
to measure the performance. OPARI, and TAU are designed 
based on profiling and tracing approaches. 

3.1 OpenMP Pragma and Region Instrumentor (OPARI) 
OPARI[14] is a source-to-source translation tool which 

automatically adds all necessary calls to the POMP runtime 
measurement library which allows collecting runtime 
performance data of Fortran, C, or C++ OpenMP applications. 
It is based on the idea of OpenMP pragma/directive rewriting. 

OPARI [14] is a source-to-source translator based on a very 
fuzzy parser, and not a full compiler, which performs the 
OpenMP directive and API call transformations. The basic 
idea behind OPARI  is to define a standard API to a 
performance measurement library that can be used to 
instrument a user’s OpenMP application program for 
monitoring OpenMP events based on OpenMP directive 
rewriting [19]. This instrumentation could be done by a 
source-to-source translation tool prior to the actual 
compilation or within an OpenMP compilation system. 
Performance tool developers then only need to implement the 
functions of this interface to enable their tool to measure and 
analyze OpenMP programs. Different measurement modes 
(profiling and tracing) can easily be accommodated in this 
way.  

The instrumentation is based on transformations of 
OpenMP construct, OpenMP run-time library routine, and 
used function. The transformations apply for both Fortran77 
and Fortran90 OpenMP 2.0 directives and C/C++ OpenMP 1.0 
pragmas and it does not support the instrumentation of user 
functions yet. 

For each instrumented OpenMP construct OPARI creates a 
region descriptor structure that contains information such as 
the name of the construct, the source file, begin and end line 
numbers. 

To integrate performance tools with the proposed OpenMP 
performance interface, two issues must be addressed. First, the 
OpenMP program must be instrumented with the appropriate 
performance calls. Second, a performance library must be 
developed to implement the OpenMP performance API for the 
particular performance tool. EXPERT and TAU have been 
integrated with the proposed OpenMP performance interface. 
The benefits of the proposed performance interface are 
several. First, it gives a performance API target for source-to-
source instrumentation tools (e.g., OPARI), allowing for 
instrumented OpenMP codes that are portable across 
compilers and machine platforms. Second, the performance 
library interface provides a target for tool developers to port 
performance measurement systems. This enables multiple 
performance tools to be used in OpenMP performance 
analysis. Third, the API also offers a target for OpenMP 
compilers to generate pomp calls that can both access internal, 
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compiler-specific performance libraries and external 
performance packages. Finally, if the OpenMP community 
could adopt an OpenMP performance interface such as the one 
we proposed, it would significantly improve the integration 
and compatibility between compilers and performance tools, 
and, perhaps more importantly, the portability of performance 
analysis techniques. 

OPARI has the following small limitations[20],[21]: It does 
not support the instrumentation of user functions yet. It 
requires some directives to be added for well-written code for 
example at the end of loop or Structured block or if-then-else. 
Depend on the programming language. OPARI as describe 
in[21] lacks the directives, and uses a different way of passing 
parameters to the API routines, and the API prescribes the 
layout of the instrumentation library data structures, thus 
constraining the implementers. OPARI makes implicit barriers 
explicit. Unfortunately, this method cannot be used for 
measuring the barrier waiting time at the end of PARALLEL 
directives because they do not allow a NOWAIT clause. 
Therefore, OPARI adds an explicit barrier with corresponding 
performance interface calls here. For OPARI, this means that 
actually two barriers get called. But the second (implicit) 
barrier should execute and succeed immediately because the 
threads of the OpenMP team are already synchronized by the 
first barrier. The OpenMP standard (unfortunately) allows 
compilers to ignore NOWAITs, which means that in this case 
OPARI inserts an extra barrier and the POMP functions get 
invoked on this extra (and not the real) barrier. OPARI can’t 
instrument the internal synchronization inside!$OMP 
WORKSHARE as required by the OpenMP standard. 

3.2 Tuning and Analysis Utilities (TAU) 
TAU [2] has the ability to instrument at multiple stages of 

code transformation. It allows for routine, basic-block and 
statement-level timers to generate profiles as well as event-
traces. For profiling, it allows a user to choose from 
measurement options that range from wallclock time, CPU 
time and process virtual time to hardware performance 
counters. 

The TAU performance system [2] is designed as a tool 
framework, whereby tool components and modules are 
integrated and coordinate their operation using well- defined 
interfaces and data formats. The TAU framework architecture 
is organized into three layers: instrumentation, measurement, 
and analysis. 

The instrumentation mechanisms in TAU support several 
types of performance events, including events defined by code 
location (e.g. routines or blocks), library interface events, 
system events, and arbitrary user-defined events. TAU is also 
aware of events associated with message passing and multi-
threading parallel execution. The instrumentation layer is used 
to define events for performance experiments. Thus, one 
output of instrumentation is information about the events for a 
performance experiment. This information will be used by 
other tools. 

TAU’s measurement system is organized into four parts. 
First, the event creation and management part determines how 

events are processed. Two types of events are supported: 
entry/exit events and atomic events. In addition, TAU 
provides the mapping of performance measurements for “low-
level” events to high-level execution entities. Second, the 
performance measurement part supports two measurement 
forms: profiling and tracing. Third, the performance data 
sources part defines what performance data is measurable and 
can be used in profiling or tracing. TAU supports different 
timing sources, choice of hardware counters through the PAPI 
[22] or PCL interfaces, and access to system performance 
data. Finally, the OS and runtime system part provide the 
coupling between TAU’s measurement system and the 
underlying parallel system platform.  

TAU comes with both text-based and graphical tools to 
visualize the performance profiles. ParaProf is TAU’s parallel 
profile analysis and visualization tool. Also distributed with 
TAU is the PerfDMF tool providing multi-experiment parallel 
profile management. Given the wealth of third-party trace 
analysis and visualization tools, TAU does not implement its 
own. However, trace translation tools are implemented to 
enable use of Vampir, Jumpshot, and Paraver. It is also 
possible to generate EPILOG[2] trace files for use with the 
Expert analysis tool. All TAU profile and trace data formats 
are open. The framework approach to TAU’s architecture 
design guarantees the most flexibility in configuring TAU 
capabilities to the requirements of the parallel performance 
experimentation and problem solving the user demands.  

TAU provides a tau2vtf program to convert TAU traces to 
VTF3 format. In addition, TAU offers tau2epilog, tau2slog2, 
and tauconvert programs to convert to EPILOG, SLOG2, and 
Paraver formats, respectively. For convenience, the TAU 
tracing systems also allows traces files to be output directly in 
VTF3 and EPILOG formats. 

TAU also supports OpenMP instrumentation using a 
preprocessor tool called OPARI [19]. OPARI inserts POMP 
annotations and rewrites OpenMP directives in the source 
code. TAU’s POMP library tracks the time spent in OpenMP 
routines based on each region in the source code. 

The TAU project has used PDT to implement a source-to-
source instrumentor (tau instrumentor). TAU can use OPARI 
for automatic instrumentation of OpenMP constructs. OPARI 
may be used in conjunction with PDT for comprehensive 
automatic instrumentation of OpenMP and mixed mode 
parallel programs. 

TAU can use DyninstAPI[23] to construct calls to the TAU 
measurement library and then insert these calls into the 
executable code. TAU can use PAPI to generate profiles based 
on hardware counter data. TAU has filtering and feedback 
mechanisms for reducing instrumentation overhead. TAU 
supports parallel profiling which support flat profiling, 
callpath profiling, calldepth profiling and phase profiling. On 
other hand TAU also supports parallel tracing. 

TAU suffers no limitations in the ability to make low-
overhead performance measurement. However, a significant 
amount of performance data can be generated for large 
processor runs. The TAU Para-Prof tool provide the user with 
means to navigate through the profile dataset 
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V. DISCUSSION AND CONCLUSION 
Typically, the comparison among the performance tools can 

be summarized according to the following aspects:  
• The version: it describes the tool version. 
• The platform: it describes the hardware architecture. 
• The operation system: it describes the OS supported by 

the tools. 
• The parallel language: it describes the parallel language 

supported by the tool. 
• The compiler: it describes the compiler used by the 

tool. 
• The instrumentation: it describes the instrumentation 

type. 
• The measurement; that describes the usage of 

measurement approach. 
• the analysis; that specifies how the measured data are 

analyzed and processed;  

• The presentation; that defines how the gathered 
performance data is displayed to the user. 

 
Table II, III show the comparison of the tools which are 

related to the performance OpenMP. Unfortunately, none of these 
tools has been used to measure the performance of OpenMP on 
windows multi-core platform.  Only Intel Thread profiler has 
been used to analyse the performance of OpenMP on multi-
core architecture. 

Our research is to understand the performance of the 
OpenMP application when run on windows multi-core. It is 
recommended that further tools should be designed to better 
understand the system and the user function behavior, as well 
as OpenMP directives. 

 

 
TABLE II 

 SOFTWARE TOOLS COMPARISON 

 

 PAPI OPARI TAU 

Version PAPI 3.6.2 OPARI 1.1 TAU 2.17.3 

Platform 
Intel Pentium, IA-64, AMD Athlon, 
IBM POWER series,Cray T3E, SGI,   

Sun Ultrasparc, Compaq Alpha 

SGI, Altix, Ultrasparc II, Itanium 2, 
Pentium3, Pentium 4 and IBM platforms. 

 

SGI Power Challenge and Origin 2K, 
IBM 

SP2, Intel Teraflop, Cray T3E, HP 9000, 
Sun, Compaq Alpha Linux cluster, Intel 

Linux cluster 

Operating Systems Linux, True64, Unicos, AIX, Irix, 
Solaris Linux LINUX , windows, Solaris, SGI, IBM,  

and MacOS X, IRIX [tau web] 

Parallel language C and fortran, can support OpenMP OpenMP  application by C/C++  and fortran For parallel programs (MPI,OpenMP) 
written in Fortran, C, C++, Java, Python. 

Compiler GCC 

OPARI was tested with KAI's KCC version 
3.4 and 4.0, GNU's g++ version 2.95.3 and 
later, IBM xlC 5.x, SUN CC 6.1, and SGI 

7.3.1., PGI 

KAI, PGI, GNU, Fujitsu, Sun, Microsoft, 
SGI, Cray 

 

Instrumentation System performance counters 

Automatically source-to-source translator 
based on fuzzy parser. 

Rewriting OpenMP directive (directive 
transformations). 

Tau insert probes at several level of 
program transformation process in the 

source, preprocessor, compiler, wrapper 
library, binary, interpreter, component, 

virtual machine, and multi-level 
instrumentation 

Measurement 
System 

Hardware sampling profile for system 
behavior. 

Profiling and tracing by integrated with 
other tools  (64) 

Both profiling and tracing. 
Hardware counter. 

 

Analysis 
System On-line Integrated with other tools TAU and 

EXPERT 

Online analysis. 
Using a set of anayliss tools (ParaProf, 

PerfDMF). 

Visualization 

Perfometer,profometer, 
it is integrated with other 

tools(vprof,SvPablo, DEEP,TAU, 
VAMPIR,KAPPro). 

No visual representation but integrated into 
TAU and  EXPERT. 

TAU trace can be convert to 
VTF3,EPILOG, SLOG2, AND Paraver 
formats to used with other visualization 

tools. 
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TABLE II 
SOFTWARE TOOLS COMPARISON 

 

 

 ompP Kojak Sun Performance Analyzer Intel thread profiler 

Version 0.6.7 2.2b3 12 3.1 

Platform Linux/x86, IA64, 
ALX, Linux 

Linux IA-32, IA-64, 
EM64T/x86_64,IBM Power3 / 

Power4 based clusters ,SGI Mips 
based clusters (O2k, O3k) ,SGI IA-

64 based clusters (Altix) ,SUN 
Solaris Sparc and x86 based 

clusters,DEC/HP Alpha based 
clusters, Cray T3E, XD1 and 

X1,IBM BG/L,NEC SX, Hitachi SR-
8000 

The SPARC® and x86 families of 
processor architectures: 

UltraSPARC, SPARC64, AMD64, 
Pentium, and Xeon EM64T 

 

Support for the latest multi-core 
processors on the new Intel Core 

2 Duo and Intel Core 2 Quad 
processors. 

 

Operating Systems Unix like OS., 
Linux, AIX Linux, Linux, Solaris 

Windows Vista, Windows XP 
Professional, Windows Server 

2003, or Windows XP 
Professional x64 Edition or 

newer 

Parallel language 
OpenMP written 

in C/C++ or 
FORTRAN. 

MPI, OpenMP, SHMEM, and 
combinations thereof 

written by C, C++, or Fortran, 

MPI, OpenMP, hybrid 
MPI/OpenMP written by c/c++ or 

fortran 

OpenMP, Windows API, or 
POSIX threads (Pthreads). 

Compiler 

Linux, Solaris, 
AIX and Intel, 
Pathscale, PGI, 
IBM, gcc, SUN 
studio compilers 

GNU, SUN,PGI Intel compilers, 
openUH 

Sun Studio compiler 
 

Intel C++ Compiler 8.1 for 
Windows or higher, Intel Fortran 

Compiler 8.1 for Windows. 

Instrumentation 
System 

relies on OPARI 
for source-to-

source 
instrumentation, 

PAPI for  
hardwar 

counter,profiling 

using OPARI  to performs automatic 
source-code level instrumentation 

using TAU to perform  source-code 
or using a compiler-supplied 

profiling interface. 
Using PMPI wrapper library, which 

generates MPI-specific events by 
intercepting calls to MPI functions. 

No instrumentation. 
Using .it used sun‘s collector which 
communicate between the collector 

and the per 

plug-in to Vtune 
time-based  and event-base 
hardware counter samples. 

Binary instrumentation 
And source instrumentation. 

 

Measurement 
System 

Profile only count 
and time for 
instrumented 

OpenMP 
constructs. 

Hardware counter 
can be used. 

Event trace 

Perform statistical profiling of a 
wide range of performance data 
and tracing of functions calls, 
global data of system routines. 

Hardware counters 

time-based  and event-base 
hardware counter sample 

Analysis 
System Off-line 

Off-line analysis 
Using EXPERT analyzer. 

Trace file can convert into VTF3 
format and analyze them manually 
with VAMPIR event trace analysis 

tools. 

Off-line analysis Off-line analysis 

Visualization 

Only two formats 
of output are 

specified 
plaintext ASCII 

and comma 
separated values 
(CSV). It shows 

the call graph 
region profiles 

Using CUBE 
Also can export to Vampir’s VT3 

format 
Using EPILOG for Event Processing 

Using EARLfor Event Analysis 
Using EARL to provide a high-level 

view of the raw trace file. 

displays the raw data in a graphical 
format as a function of time/ plain 

text, call tree 

It display the Critical Path View, 
and timeline,display the source 

code view 
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