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Abstract— Recent fifteen years witnessed fast improvements in 

the field of humanoid robotics. The human-like robot structure is 
more suitable to human environment with its supreme obstacle 
avoidance properties when compared with wheeled service robots. 
However, the walking control for bipedal robots is a challenging task 
due to their complex dynamics.  

Stable reference generation plays a very important role in control. 
Linear Inverted Pendulum Model (LIPM) and the Zero Moment 
Point (ZMP) criterion are applied in a number of studies for stable 
walking reference generation of biped walking robots. This paper 
follows this main approach too. 

We propose a natural and continuous ZMP reference trajectory for 
a stable and human-like walk. The ZMP reference trajectories move 
forward under the sole of the support foot when the robot body is 
supported by a single leg. Robot center of mass trajectory is obtained 
from predefined ZMP reference trajectories by a Fourier series 
approximation method. The Gibbs phenomenon problem common 
with Fourier approximations of discontinuous functions is avoided by 
employing continuous ZMP references. Also, these ZMP reference 
trajectories possess pre-assigned single and double support phases, 
which are very useful in experimental tuning work.  

The ZMP based reference generation strategy is tested via three- 
dimensional full-dynamics simulations of a 12-degrees-of-freedom 
biped robot model. Simulation results indicate that the proposed 
reference trajectory generation technique is successful. 
 

Keywords—Biped robot, Linear Inverted Pendulum Model, Zero 
Moment Point, Fourier series approximation.  

I. INTRODUCTION 

The human-like robot structure is suitable for our homes 
and offices due to its supreme obstacle avoidance properties 
when compared with wheeled service robots. Robots in the 
human shape can be accepted as a social being by human 
beings. However, there are many problems which should be 
solved before realizing the daily life human-robot coexistence. 
The bipedal free-fall manipulator is inherently difficult to 
stabilize [1,2]. This makes the walking control a challenging 
task. In biped robot systems, control and gait planning go hand 
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in hand. A stable walking reference generation is essential. 
The ZMP criterion is the most widely accepted and used 

stability measure for the legged locomotion. The criterion 
states that, during the walk, the ZMP should lie within the 
supporting area - often called the support polygon - of the feet 
in contact with the ground [1]. 

The ZMP coordinates are functions of the positions and 
accelerations of the numerous links and the body of the 
humanoid robot. Though they can be computed – even online, 
– it is quite difficult to use these expressions of many variables 
in the design of reference generation and control algorithms. 
The same is true for the complicated dynamics equations of the 
biped robot. This is where an approximate model, rather than a 
detailed one, would be of better use.  

The LIPM [3-5] is such an approximate model of the legged 
robot. It consists of a point mass of constant height and a 
massless rod connecting the point mass with the ground. By 
virtue of this model, a quite simple relation between the ZMP 
and the robot Center of Mass (CoM) coordinates is obtained 
[6-9]. This relation is exploited for ZMP based stable walking 
reference generation in a number of studies. In such works, 
robot CoM trajectory is obtained from predefined stable ZMP 
reference trajectories. The reference trajectories for the leg 
joints are obtained then via inverse kinematics from the robot 
CoM coordinates.  

There is a freedom in choosing the ZMP reference trajectory 
as long as the criterion mentioned above is satisfied. A natural 
choice is to keep it fixed at the center of the foot sole when 
only one foot is supporting the body (single support phase) and 
interpolating between the foot centers when two feet support it 
(double support phase). However, studies have shown that a 
natural, human-like walk can be obtained by ZMP trajectories 
which move forward when the robot body is supported by a 
single leg [10-12].  

In [13], Erbatur and Kurt introduce a forward moving 
discontinuous ZMP reference trajectory for a stable and 
human-like walk and employ Fourier series approximation to 
obtain CoM reference trajectory from this ZMP trajectory. The 
ZMP reference trajectory in the double support phases in [13] 
is obtained indirectly with a smoothing process, which also 
provides smoothing of the Gibbs phenomenon peaks due to 
Fourier approximation. Although the walk period is defined by 
the user, the partition of the period into the single and double 
support phases is due to the smoothing process, and not 
predefined. 

This paper follows the same mechanism as in [13] in using 
Fourier series approximation for the computation of the CoM 
trajectory from a given ZMP reference curve. However, it 
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defines a continuous ZMP reference and the durations of the 
single and double support phases are fully pre-assigned. This 
is quite useful since these parameters play an important role in 
the final parameter tuning in experimental work. The 
naturalness of the walk is preserved, in that the single support 
ZMP reference is forward moving. Further, the continuity of 
the introduced ZMP reference makes the after-Fourier-
approximation smoothing process unnecessary. The proposed 
reference generation method is tested via simulations on the 
full dynamics three-dimensional model of a 12-dof biped 
robot. 

The rest of the paper is organized as follows. The ZMP 
based reference generation for bipedal walk and created CoM 
reference trajectories are presented in the next section. The 
control structure used in the simulations is briefed in Section 
III. Section IV is devoted to simulation results with the 
generated reference trajectories. A conclusion is presented 
lastly. 

II. ZMP BASED REFERENCE GENERATION 
The sketch in Fig. 1 shows the typical biped robot 

with 6-DOF legs for which the reference generation and 
control algorithms presented below can be applied.  
 
 

 
Fig. 1 Typical biped robot kinematic arrangement. In single support 

phases, it behaves as an inverted pendulum. 
 
 
 

 
 
 

Fig. 2 The linear inverted pendulum model 

Instead of using this complex full dynamics models, the 
simple linear inverted pendulum model is more suitable for 
controller synthesis. A point mass is assigned to the CoM of 
the robot and it represents the body (trunk) of the robot. The 
point mass is linked to a stable (not sliding) contact point on 
the ground via a massless rod, which is idealized model of a 
supporting leg. In the same manner, the swing leg is assumed 
to be massless too. With the assumption of a fixed height for 
the robot CoM a linear system which is uncoupled in the x  
and y  directions is obtained. The system described above is 

shown in Fig. 2 T
zyx cccc )(=  is the coordinates of the 

point mass in this figure.  
Stability of the walk is the most desired feature of a 

reference trajectory. The ZMP criterion is the most widely 
accepted and used stability criterion in biped robotics. The 
ZMP is defined as the point on the yx −  plane which no 
horizontal torque components exist on it for the model in Fig. 
2. For the point mass structure shown in this figure, the 
expressions for the ZMP coordinates xp  and yp  are [14]: 

x
c

xx c
g
zcp &&−=  (1) 

y
c

yy c
g
zcp &&−=  (2) 

cz  is the height of the plane where the motion of the point 
mass is constrained and g  is the gravity constant.  

The ZMP and the CoM can be related to each other with 
the equations (1) and (2). A suitable ZMP trajectory can be 
generated without difficulty for reference generation purposes. 
As the only stability constraint, the ZMP should always lie in 
the supporting polygon defined by the foot or feet touching the 
ground. The ZMP location is generally chosen as the middle 
point of the supporting foot sole. In [14], the reference ZMP 
trajectory shown in Fig. 3 is created with this idea. A  is the 
distance between the foot centers in the y  direction, B  is the 
step size and T  is the half of the walking period in this figure. 
It can be observed that from the same figure, firstly, step 
locations are determined. The step location selections can be 
based on the size of the robot and the task performed by the 
robot. This selection of support foot locations and the half 
period T  defines the staircase-like xp  and the square-wave 
structured yp  curves. 

However, in [14], the naturalness of the walk is not 
considered. As mentioned above, in that work ZMP stays at a 
fixed point under the foot sole, although investigations in [10-
12] show that the human ZMP moves forward under the foot 
sole. Fig. 3 also shows that the transition from left single 
support phase to the right single support phase is 
instantaneous, there exists no double support phase.  

In order to address the naturalness issue, the xp  
reference curve shown in Fig. 4 is employed in [13]. In this 
figure, forward moving ZMP can be seen at the top. b  defines 
the range of the ZMP motion under the sole in Fig. 4 and a 
symmetric trajectory centered at the foot frame center is 
assumed. 
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a) 
 

b) 
 

c) 
 

Fig. 3 Fixed ZMP references. 
a) ref

y
ref
x pp −  Relation on the yx −  plane 

b) ref
xp , the x -axis ZMP reference 

c) ref
yp , the y -axis ZMP reference 

 
 

 

a) 
 

b) 
 

c) 
 

Fig. 4 Forward moving ZMP reference 
a) ref

y
ref
x pp −  Relation on the yx −  plane 

b) ref
xp , a natural x -axis ZMP reference. 

Note the difference of the x -reference with 
the one shown in Fig. 3. 

c) ref
yp , the y -axis ZMP reference. 

a) 
 

 
b) 
 

 
c) 
 

Fig. 5 Forward moving ZMP references with 
pre-assigned double support phases. 

a) ref
y

ref
x pp −  Relation on the yx −  plane 

b) ref
xp , the x -axis ZMP reference 

c) ref
yp , the y -axis ZMP reference 

 

Having defined the curves, and hence the mathematical 
functions for )(tprefx  and )(tprefy , and the next step is 

obtaining CoM reference trajectories from )(tprefx  and 

)(tprefy . Position control schemes for the robot joints with 
joint references obtained by inverse kinematics from the CoM 
locations can be obtained once the CoM trajectory is 
computed. The computation of CoM trajectory from the given 
ZMP trajectory can be carried out in a number of ways [6, 14]. 

[14], for the reference ZMP trajectories in Fig. 3, 
propose an approximate solution with the use of Fourier series 

representation to obtain CoM references for reference 
generation.  

Taking an approach similar to the one in [14], [13] 
develops an approximate solution for the xc  and yc  
references corresponding to the moving ZMP references in 
Fig.4. In this process Fourier series approximations of the 
ZMP references )(tprefx  and )(tprefy  and of the CoM reference 
are obtained. Note that, although the ZMP reference in the x -
direction in Fig. 4 is forward moving and hence natural as 
desired, it is not continuous. So is the ZMP reference of Fig. 4 
in the y -direction. The y -direction reference is in the form of 
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as square wave as in Fig. 3. This discontinuous function 
corresponds to an instantaneous switching of the support foot, 
from right to left and from left to right foot, without an 
intermediate double support phase. Apart from the difficulties 
in the realization of such an instantaneous switching there is 
one more reason why such reference is undesirable: Natural, 
human-like motion will be lost with such a ZMP reference 
trajectory. Humans walk with a double support phase of 
nonzero duration. In [13], smooth transition between single 
support phases with a double support phase is achieved by an 
additional smoothing action based on Lanczos sigma factors 
smoothing. Lanczos sigma factor smoothing is a technique in 
which the so called Gibbs Phenomenon – peaks of Fourier 
series approximations at the discontinuities of the original 
function is cured by introducing weighting coefficients 
multiplying Fourier series coefficients. There weighting 
coefficients are called Lanczos sigma factors. This method of 
smoothing achieves two objectives at once: i) Suppressing the 
Gibbs phenomenon, ii) Introducing a double support phase. 
Different levels of smoothing can be achieved by modifying 
the Lanczos sigma factors. Also at the same time different 
double support periods can be obtained. This mechanism, 
however, introduces some shortcomings too: Gibbs 
suppression and double support period determination are 
coupled processes. Walk pattern design may impose a short 
double support phase (as in the case of humans), whereas this, 
due to the coupling between this period and Gibbs suppression 
level, would lead to ZMP reference curves with pronounced 
oscillations at the foot switching times. Furthermore, our 
simulation studies and experimental work with a number of 
reference generation techniques [15-17] suggest that having 
the single and double support periods a freely and directly 
adjustable parameters plays a vital role in final tuning of 
walking pattern. With this motivation, in this paper, a new 
ZMP reference trajectory is introduced. This trajectory, as in 
[33], has forward moving x -direction components for the 
naturalness of the walk. However, it is continuous and includes 
double support phases in its original description. The solution 
for the CoM trajectory from the given ZMP trajectory follows 
the same lines as in [13]. However, thanks to continuity of the 
ZMP reference signal, the Gibbs phenomenon is not observed 
and there is no need for smoothing. Also, the double and single 
support phase durations are freely selectable parameters of the 
reference generation algorithm. The newly introduced ZMP 
reference trajectory is presented in Fig. 5. It is a modified 
version of the trajectory in Fig. 4. The double support phase is 
introduced by using the parameter τ  in this figure. A linear 
interpolation interval is inserted around multiples of the half 
walking period T . The durations of the intervals are equal to 

τ2  and they correspond to double support periods. Hence the 
double support period is freely adjustable with the parameter 
τ . 

The mathematical description of the )(tprefx  in Fig. 5 is 
given by 

ref
x

ref
x pTt

T
Bp ′+−= )

2
(  (3) 

where ref
xp′  is periodic with period T . ref

xp′  can be expressed 
as a combination of three line segments on [ 0 ,T ]. 
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Note that δ  is the magnitude of peak difference between 
ref
xp  and the non-periodic component )

2
( Tt

T
B

−  of ref
xp . δ  

can be computed form Fig. 6 geometrically. 
)(tprefy  is Fig. 5 is expressed as 
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where )(⋅u represents the unit step function. 

Defining cn zg≡ω , we can rewrite (1) and (2) for 
the reference variables as follows. 

ref
xn

ref
xn

ref
x pcc 22 ωω −=&&  (8) 

ref
yn

ref
yn

ref
y pcc 22 ωω −=&&  (9) 

Note that the y -direction ZMP reference )(tprefy  is a 
periodic function with the period T2 . It is reasonable to 
assume that )(tc refy is a periodic function too and that it has the 
same period. Hence, it can be approximated by a Fourier series 

 

 
Fig. 6 The parameter δ  
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By (9) and (10), ref
yp  can be expressed as 
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Noting that this expression in the form of a Fourier series 
for )(tprefy , and since )(tprefy  is an odd function, we can 

conclude that the coefficients 2/0a  and 

))()(1( 2222 Tka nk ωπ+ for L,3,2,1=k  are zero. In order to 

compute the coefficients ))()(1( 2222 Tkb nk ωπ+ we can 
employ the Fourier integral: 
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As a result, after some arithmetical steps (omitted here due 
to space considerations), the Fourier coefficients kb of 

)(tcrefy in (10) can be obtained as 
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for L,3,2,1=k . (13) 
The second step is finding the Fourier series coefficients 

for ref
xc  in Fig. 5 is not a periodic function. It cannot be 

expressed as a Fourier series. However, as expressed above, 
this function is composed of the periodic function ref

xp′  and 

the non-periodic function ( )
2

( Tt
T
B

− ). The periodic part of 

)(tprefx  are shown in Fig. 7. It is again a reasonable 

assumption that ref
xc  has a periodic part and a non-periodic 

part too. Further, if we suppose that the two non-periodic parts 
(of )(tprefx  and ref

xc ) are non-equal, then the difference 

)(tprefx - ref
xc  will be non-periodic. This is not expected in a 

continuous walk as the one described in Fig. 5.  
Therefore we conclude that the non-periodic parts of 

the two functions are equal. Note that, as shown in Fig. 5, the 
period of the periodic part of )(tprefx  is T and we can make 

the same statement for the period of the periodic part of ref
xc . 

Finally, ref
xc  can be expressed as 
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Fig. 7 )(' tp refx , the periodic part of the x -direction ZMP reference 

)(tprefx  
 
Recalling (8), with (14) the expression for )(tprefx  with a 

Fourier series is 
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Therefore the Fourier coefficients of )(tp ref
x′ , the periodic 

part of )(tprefx , are 2/0α , )1( 2222 Tk nk ωπα +  and 

)1( 2222 Tk nk ωπβ +  for . L 3, 2, ,1=k  The Fourier 

coefficients 2/0α , 22221( Tk nk ωπα +  of )(tp ref
x′  shown in 

Fig. 7 are zero because this is an odd function. The 
coefficients for ))()(1( 2222 Tk nk ωπβ +  can be found by 
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L ,3 ,2 ,1for =k . (17) 
The curves obtained for ref

xc and ref
yc are shown in Fig. 8 

together with the corresponding original ZMP references (as 
defined in Fig. 5). The infinite sums in (10) and (14) are 
approximated by finite sums of N  terms ( 24=N ).In Fig 8, 
the following parameter values are used: 1.0=A  m, 1.0=B  
m, 04.0=b , 1=T  s and 2.0=τ s. 

In addition to the CoM references, foot position reference 
trajectories have to be designed too: Inverse kinematics then 
can be employed to find the reference positions of the leg 
joints which bridge the CoM and the feet. The x  and z -
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direction components of the foot trajectories used in this paper 
are shown in Fig. 9. These curves are smooth combinations of 
sinusoidal and constant segments. sh  is the step height 
parameter. dT  and sT  represent the double and single support 
times, respectively. B  is the step size from Fig.5. The 
y direction trajectories are constant at A−  and A  for the right 
and left feet, respectively, where A  is half of the foot to foot 
y direction distance also shown in Fig. 5. The foot orientation 
references used in inverse kinematics are fixed and they are 
computed for feet parallel to the robot body. 

III. CONTROL ALGORITHM 
The control algorithm is a simple one based on independent 

joint PID position controllers. The joint position references are 
generated through inverse kinematics from CoM and swing 
foot references defined in world frame coordinates. The PID 
controller gains are obtained via trial and error. 

 

 
 

 
Fig. 8 x  and y -direction CoM references together with the 

corresponding original ZMP references  

 
 

 
Fig.9 x  and z -direction foot references in as expressed in the world 
frame. Solid curves belong to the right foot, dashed curves indicate 

left foot trajectories. 
 

 
 

Fig. 10 A snapshot from the animation window. 
 

The controller structured this way, except for the servo 
control loops, is an open-loop one. However, it achieves 
walking when stable reference trajectories (like the ones 
obtained in the previous section) are employed. 

IV. SIMULATION RESULTS 
The biped model used in this paper consists of two 6-DOF 

legs and a trunk connecting them (Fig. 1). Three joint axes are 
positioned at the hip. Two joints are at the ankle and one at the 
knee. Link sizes and the masses of the biped are given in Table 
I. 

Simulation studies are carried out with this robot model, with 
references generated in Section II and control mechanism 
discussed in Section III. A view of the animation window is 
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shown in Fig. 10. The full-dyamics 3D simulation scheme is 
similar to the one in [18]. The ground contact is modeled by an 
adaptive penalty based method. The details of the simulation 
algorithm and contact modeling can be found in [19]. 
Parameters used for reference generation are presented in 
Table II.  

TABLE I  

MASSES AND DIMENSIONS OF THE ROBOT LINKS 

A. Link Dimensions (LxWxH) [m] Mass [kg] 

Trunk 0.2 x 0.4 x 0.5 50 
Thigh 0.27 x 0.1 x 0.1 12 

Calf 0.22 x 0.0
5 x 0.1 0.5 

Foot 0.25 x 0.1
2 x 0.1 5.5 

 
TABLE II 

REFERENCE GENERATION PARAMETERS 

Parameter Value 
Step height sh  0.01 m 

Step period T2  3 s 
Single support period sT  0.6 s 

Double support period dT  0.9 

Foot to foot y-direction distance A2  0.24 m 
Step size B  0.1 m 
ZMP motion under the support foot b2  0.08 m 

 

 
 

 
 

Fig. 11 CoM (solid) and reference CoM (dashed) trajectories in 
the moving single support ZMP case. 

 
 

 
Fig. 12 CoM (solid) and reference CoM (dashed) trajectories in 

the fixed single support ZMP case. 
 

For comparison purposes, simulations with fixed support 
foot ZMP references are carried out too. 

Fig. 11 shows the experimental result obtained with 
forward moving ZMP references generated in this paper. As 
can be seen the x -direction reference CoM reference is 
tracked accurately. y -direction CoM reference tracking errors 
at the peaks are more pronounced. This is mainly due to the 
difference of the LIPM and the robot parameter in Table I. The 
legs are 15 kg, far from being “massless”. Also no closed loop 
trajectory compensation technique is applied in this paper 
since our objective is to evaluate the reference generation 
method. Fig. 11 shows a successful work of 5 steps. 

The CoM tracking with fixed x -direction single support 
ZMP references are shown in Fig. 12. This figure is obtained 
with the same reference generation and control routines. The 
differences from the previous simulation are the following. 
The parameter b  of Table II is modified to zero. The double 
support period is taken as 0.0001 seconds (We did not make it 
equal to zero since this would cause a division by zero in 
equation 5.). The walk period T2 is kept however equal by 
increasing the single support duration to 1.4999 seconds. Note 
that these choices define a walk with the kind of ZMP 
references shown in Fig. 4. Actually, we can state that the 
reference trajectories in figures 4 and 5 are special cases of the 
newly proposed trajectory in Fig. 6. A trajectory like in Fig. 5 
can be obtained by changing the double support period to a 
small value, keeping T2  constant in Table II with no 
modification of the parameter b . 

The CoM trajectory performance in Fig. 12 in the y -
direction is similar to that of Fig. 11. Only a slightly better 
tracking performance is observed in Fig. 11 in this direction. 
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More significant differences, however, are observed in the x -
direction plots in the two figures. The CoM behavior with the 
fixed single support ZMP references is oscillatory. This is 
because of the repeated acceleration and deceleration patterns 
in the CoM reference trajectory in Fig. 12. This is a difficult to 
follow reference when compared with the CoM reference in 
Fig. 11. this also justifies that a more natural walk is obtained 
by moving ZMP references. The observations are in parallel 
with [10-13].  

V. CONCLUSION 
In this paper, a forward moving continuous Zero Moment 
Point based reference trajectory generation is presented for a 
stable and human-like walk of the bipedal humanoid robots. 
The relation between the Zero Moment Point and the robot 
Center of Mass coordinates is obtained via the Linear Inverted 
Pendulum Model. In order to obtain the Center of Mass 
reference trajectory, ZMP reference trajectories are 
approximated with Fourier series approximation. Continuous 
nature of the ZMP reference trajectories provides non-
oscillatory references, so that the smoothing with Lanczos 
sigma factors are not necessary unlike it is the case in [33]. 
Another contribution in this paper is that the single support 
and double support phase durations are introduced as 
predefined separate parameters to be able to adjust them in the 
final parameter tuning of the generated references. Simulation 
results show that the generated stable human-like ZMP 
reference trajectories successfully enables a stable bipedal 
walk without a fall with a step size of 10 cm. 
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