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Abstract—Exchange algorithm with constraints on magnitude 

and phase error separately in new way is presented in this paper. An 
important feature of the algorithms presented in this paper is that 
they allow for design constraints which often arise in practical filter 
design problems. Meeting required minimum stopband attenuation or 
a maximum deviation from the desired magnitude and phase 
responses in the passbands are common design constraints that can be 
handled by the methods proposed here. This new algorithm may have 
important advantages over existing technique, with respect to the 
speed and stability of convergence, memory requirement and low 
ripples. 

 
Keywords—Least square estimation, Constraints, Exchange 

algorithm.  

I. INTRODUCTION 
IGITAL filters are integral parts of many digital signal 
processing systems, including control systems, systems 

for audio and video processing, communication systems and 
systems for medical applications. Due to the increasing 
number of applications involving digital signal processing and 
digital filtering, the variety of requirements that have to be 
met by digital filters has increased as well. Consequently, 
there is a need for flexible techniques that can design digital 
filters satisfying sophisticated specifications. The design 
specifications are formulated in the frequency domain by 
choosing a complex desired frequency response )( ωjeD  
which prescribes the desired magnitude and phase response. 
The complex function )( ωjeD is defined on Ω  the domain of 
approximation. Which is a subset of the interval [0, 2π ]. In 
most cases the domain Ω  is the union of several disjoint 
frequency bands which are separated by transition bands 
where no desired response is specified. 

Cortezzao and Lightner [3] apply a multiple criterion 
optimization technique to a specification of both gain and 
group delay of FIR filter. But they state that their design 
method requires considerable computing time and is reliable 
only for orders not higher than five for FIR filter. 
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Chen and Parks [12] investigate an approach in which the 
complex valued response is converted into a real-valued 
function which is nearly equivalent to the complex function. 

They also state that their methods has a large computer 
memory requirement and CPU time increases exponentially 
with increasing grid density using a linear programming 
technique the grid density governs the accuracy with which 
the solution approaches the optimum.  

Xiapoping Lai [13] applied PLS algorithm to the 
constrained least square design of FIR filter directly. But there 
was no method for non convex problem.  

The method presented here intends to solve the problem of 
computation time and memory requirement.  

The paper is organized as, after the brief introduction in 
section I, section II gives insight into Least square 
Approximation. Section III deals with the Constrained 
Designing of filter. Design Examples are taken in section IV 
followed by conclusion in section V. Last section shows the 
references. 

II. CONSTRAINED LEAST SQUARE APPROXIMATION 

The union of all passbands is denoted by pΩ : 
 
            { }0)( >Ω∈=Ω ωω jp eD . 

The union of all stopbands is denoted by sΩ : 
          { }0)( =Ω∈=Ω ωω js eD  

 
If the designed filter is to have real valued coefficients, only 

the domain ],0[ π∩Ω  is considered. In this case the 
symmetry )()( * ωω jj eDeD −=  is assumed implicitly. This 
paper focus will be on the design of filters with real-valued 
coefficients. It is, however straightforward to extend the 
proposed methods to the design of filters with complex 
coefficients. 

For formulating the design problems it is useful to define a 
complex error function by: 

 
              )()()( ωωω jj

c eDeHE −=                        (1) 

Where )( ωjeH  is the actual frequency response of the filter. 
Often a, real valued positive weighting function )(ωW is 
used, e.g. by considering a weighted error function 

)()( ωω cEW , in order to give different weights on the 
approximation error in different frequency regions.  
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Considering the design of FIR filters; in this case the 
frequency response is given by 

  

          ∑
−

=

−=
1

0
)()(

N

n

jnj enheH ωω                           (2) 

Where N denotes the length of the impulse response h 
(n).The degree of the FIR filter is N-1. For further discussions 
it will be advantageous to use vector/matrix notation. Define a 
column vector of FIR filter coefficients by: 

 
          TNhhhh )]1(.,..........),........1(),0([ −=   
Let define a column vector of complex exponentials: 
                 

    [ ]TjNjj eeee ωωωω )1(2 .,,.........,,1)( −=                  (3) 
     
With these vectors the frequency response H(ejω) of an FIR 

filter given by (2) can be written as: 
 

        ,)()( heeH Hj ωω =                               (4) 

Where the superscript H  denotes conjugate transposition, 
the notation ),( heH jω  will be used to explicitly express the 
dependence of )( ωjeH on the coefficients h whenever 
necessary. Likewise, the complex error function will be 
written as ),( hEc ω whenever its dependence on the filter 
coefficients is to be emphasized. Note the linear dependence 
of ),( heH jω and of ),( hEc ω on the coefficients h in the FIR 
case. For this reason, FIR filter design problems are much 
simpler to solve. The ability to design long filters is among the 
more significant improvements over previous work.  

The constrained least squares filter design problem can be 
posed as an optimization problem where approximation error 
energy is minimized subject to constraints on error functions 
of interest.[8] Phase errors are used to define error energy the 
resulting objective function is non-convex which may cause 
severe difficulties when solving the design problem and 
prevents the use of simple and efficient algorithms. Moreover 
the minimization of error energy is most important in the 
stopbands of the filter. The use of the complex error for 
defining the error energy leads to a simple and meaningful 
objective function. These considerations lead to two 
constrained least squares design problems those are of 
practical interest and that result in tractable optimization 
problems[10] .This can be formulated by  
 

∫
Ωmin

2),()(min ωωω dhEWimize ch
                   (5) 

Subject to   ),(|),(| ωδω cc hE ≤   ω є ΩB      
Where Ωmin contains the frequency bands where the mean 
squared error is to be minimized. ΩB  contains the frequency 
bands where constraints are to be imposed and ΩP is the 
passband region. The positive function δc(ω),defining the 
constraints are part of the design specifications. Algorithms 
for solving problems eq. (5)  will be presented in section 3. 

 This problem formulation seems more suitable for practical 
applications. Hence after frequency discretization the design 
problem can be formulated as a standard convex quadratic 
programming problem with linear constraints. The motivation 
of the approach in [5] was the minimization of stopband noise 
power subject to constraints on the maximum passband 
deviations. This proved the additional advantage that 
arbitrarily tight error constraints may be formulated and the 
existence of a solution is always guaranteed. The more 
restrictive the constraints the wider become the transition 
widths.   

The magnitude of the complex error function Ec(ω,h) as 
defined by (1) is a convex function with respect to h for all 
frequencies. This is easily shown as follows. Define 
 

      21 )1()( hhh ααα −+=                     (6) 
 
From linearity of Ec(ω,h) with respect to h and from the 
triangular inequality it follows that 
 

|),()1(),(||))(,(| 21 hEhEhE ccc ωαωααω −+=   
        ),()1(),( 21 hEhE cc ωαωα −+≤   (7)                   

                                  ],1,0[∈∀α  
must hold. Inequality equation (7) is the definition of a convex 

function.  

III. CONSTRAINED DESIGN OF LEAST SQUARE FIR FILTER 
Emphasis has been put on the constrained least squares 

problem because it leads to new interesting solutions whereas 
the constrained Chebyshev problem formulation merely 
represents a more practical formulation of the design problem 
than the standard Chebyshev problem formulation.[11] Now 
to solve equation (5) and minimized the error there is a need 
of putting constraints on magnitude and phase error 
separately. It can be done by using two methods for solving 
equation (5). (1) Linear and Quadratic Programming or (2) 
Exchange algorithm. The constraints are put on complex error 
function on both solving methods. 

 
A. Constraints on Magnitude and Phase Errors  using 

Linear and Quadratic Programming Approach 
As shown constraints on the phase error are exactly 

represented by linear inequality constraints if the function 
δφ(ω) constraining the phase response satisfies δφ(ω) ≤ π/2, 

.pΩ∈∀ω  Hence only the nonlinear magnitude constraints 
must be replaced by a finite set of linear constraints. In the 
stopbands the error region is a circle around the origin of the 
complex plane. Consequently all results from the previous 
section still apply to the stopbands. The modifications of the 
passband error region due to magnitude constraint 
linearization are shown in Fig. 1. The dashed arcs show the 
original magnitude constraints. The solid vertical lines 
correspond to linear constraints replacing the original 
magnitude constraints. The constraints denoted by ‘1’ in Fig. 
1 correspond to a feasible region which is the smallest set 
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described by two linear inequality constraints per frequency 
point containing the original feasible set. The constraints 
denoted by ‘2’ correspond to a feasible region being the 
largest set described by two linear inequality constraints per 
frequency point that is contained in the original set. A better 
approximation to the upper magnitude constraint could be 
achieved by using more than one linear upper magnitude 
constraint per frequency point. However this increases the size 
of the resulting optimization problem. Note that improving the 
approximation by using more than one linear constraint per 
frequency point is not possible for the non-convex lower 
magnitude. 
 

 
Fig. 1 Replacing nonlinear magnitude constraints (dashed arcs) by 

linear constraints (solid vertical lines).1: new feasible region is larger 
than the original feasible region. 2: new feasible region is smaller 

than the original feasible region 
  

Constraint. Choosing the linear constraints denoted by ‘1’ in 
Fig. 1 results in the following maximum violations of the 
original passband magnitude constraints if δφ(ω) < π / 2 holds 

    [ ]
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Where Δu(ω) and Δl(ω) are the maximum violations of the 
upper and lower magnitude constraints respectively. It is 
straightforward to show that Δl(ω) ≤ Δu(ω), .pΩ∈∀ω if 0 < 
δφ(ω) < π/2, .pΩ∈∀ω  holds . From (9) it is clear that the 
violations Δu(ω) and Δl(ω) consist only of mixed and higher 
order terms of the specified functions δm(ω) and δφ(ω). Hence 

for small δm(ω) and δφ(ω) the errors introduced by using 
linearized magnitude constraints are small as well. If the linear 
constraints denoted by ‘2’ in Fig.1 are used no violations with 
respect to the original feasible region occur. Using the 
linearized passband magnitude constraints shown in Fig. 1 
linear and quadratic programming problem formulation can be 
done with approximating the constrained least squares 
problems (5). If the new feasible region is to completely 
contain the original feasible region (constraints denoted by ‘1’ 
in Fig. 1. define positive functions U(ω) and L(ω) according 
to: 
 
 ).()()( ωδω ω

m
jeDU +=    B

p Ω∩Ω∈ω  

             )(ωδ m                       B
s Ω∩Ω∈ω  

 
).(cos)]()([)( ωδωδω φ

ω
m

jeDL −= B
p Ω∩Ω∈ω          (9) 

If no constraint violations with respect to the original feasible 
region are tolerated (constraints denoted by ‘2’ in Fig. 1 then 
U(ω) and L(ω)  must be chosen according to;  
 

)(cos)]()([)( ωδωδω φ
ω

m
jeDU +=  B

p Ω∩Ω∈ω  

)2/cos()( pm πωδ          B
s Ω∩Ω∈ω  

 
).()()( ωδω ω

m
jeDL −=       B

p Ω∩Ω∈ω          (10) 

The quadratic programming problem approximating the 

constrained least squares problem reads  

 

∫
Ω min

2|),(|)(min ωωω dhEWimize ch
      subject to 

[ ] ),(),(Re )( ωωφω UeheH djj ≤−    B
p Ω∩Ω∈ω  

[ ] ),(),(Re )( ωωφω LeheH djj ≥−     B
p Ω∩Ω∈ω                 (11) 

[ ] ],),(Re[)(tan),(Im )()( ωφω
φ

ωφω ωδ dd jjjj eheHeheH −− ≤  

                              B
p Ω∩Ω∈ω  

 
[ ] ],),(Re[)(tan),(Im )()( ωφω

φ
ωφω ωδ dd jjjj eheHeheH −− −≥  

                              B
p Ω∩Ω∈ω  

[ ] ),(),(Re ωαω UeheH Kjj ≤           B
s Ω∩Ω∈ω  

Where Ωp and Ωs  are passbands and stopbands respectively, 
ΩB is the union of all bands where constraints are to be 
imposed and Ωmin is the union of all bands where the objective 
function (maximum error or error energy) is to be minimized. 
Note that ΩB is assumed to be represented by a discrete set of 
grid points.  The remaining constraints in (11) are arranged as 
follows: upper and lower passband magnitude constraints 
upper and lower phase constraints and stopband constraints. 
Note that the phase constraints in equation (11) are only valid 
if δφ(ω) < π/2 holds. The results obtained by using problem 
formulation (11) will only be satisfactory if the phase 
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constraint function δφ (ω) (in radians) is not considerably 
larger than the magnitude constraint function δm (ω). 
Otherwise the deviations of the linearized magnitude 
constraints from the original magnitude constraints will be 
large. 
 

B. Constraints on Magnitude and Phase using Exchange 
Approach 

In the passbands the linearization errors depend on second 
and higher order terms involving the constraint functions δm 
(ω) and δφ(ω).Hence these errors are small if δm(ω) and δφ(ω) 
are small. However especially in situations where δφ(ω)/rad 
>> δm(ω) holds in parts of the passbands the linearization 
errors may become quite large. Exchange algorithms can solve 
optimization problems with an arbitrarily large or even infinite 
number of constraints. During the iteration process a set of 
constraints containing those constraints that will be active at 
the optimum solution is identified. The solution of the last sub 
problem subject to these constraints equals the solution of the 
original problem. The efficiency of these methods strongly 
depends on the efficiency of the algorithms used for solving 
the sub problems. Hence it is desirable to solve sub problems 
with linear constraints since there exist fast algorithms for 
linearly constrained problems. The amount of memory 
required by exchange algorithms is independent of the total 
number of constraints. Hence the first drawback of the 
standard quadratic programming formulation is eliminated. 
Also the linearization errors can be eliminated. We have to 
distinguish between problems with convex and non-convex 
feasible regions. Since any convex feasible region can be 
represented by an infinite number of linear constraints such 
problems can directly be handled by exchange algorithms that 
solve a sequence of linearly constrained sub problems. These 
algorithms can be viewed as generalizations of cutting plane 
methods for convex programming problems. Linearization of 
nonlinear constraints is no longer necessary. The only 
requirement for algorithms based on cutting plane methods to 
be applicable is the convexity of the feasible region is satisfied 
for upper bounds on the magnitude response and for phase 
constraints if  δφ(ω) ≤ π/2 holds. Only lower bounds on the 
magnitude response as used in the passbands result in a non-
convex feasible region . Hence for exchange algorithms based 
on cutting plane methods to be applicable the lower bounds on 
the magnitude error have to be replaced by constraints such 
that the feasible region is convex. Non-convex feasible 
regions cannot be represented by an infinite number of linear 
constraints and exchange algorithms based on cutting plane 
methods cannot be applied.  

An exchange algorithm that exactly solves the non-convex 
constrained least squares problem with magnitude and phase 
constraints is presented.  The algorithms used in literature so 
far solve a constrained optimization problem in every iteration 
step where the set of constraints is composed of a part of the 
constraints used in the previous iteration step and new 
constraints determined by evaluating the original semi-infinite 
constraints at the current solution. Reusing a part of the old 
constraints is crucial for convergence. A nonlinear semi-
infinite constraint can be written in the form 
 

,0),( ≤hc ω       BΩ∈∀ω                       (12) 
 
Each constraint used in a certain iteration step is derived from 
a first order Taylor expansion of c(ω,h) about some coefficient 
vector hi evaluated at some frequency point ω:  
 

,0),()(),( ≤∇−+ i
T

ii hchhhc ωω               (13) 
 
Where ),( hc ω∇ is the gradient vector of c(,h) with respect 
to h. If c(ω,h)- and hence also the set defined by (3.22)- is 
convex, the inequality  

),(),()(),( hchchhhc i
T

ii ωωω ≤∇−+   BΩ∈∀ω      (14) 
is satisfied for any hi. Constraints from previous iteration steps 
may become unnecessary and could be thrown away but they 
will never cut away parts of the original feasible region. 
However if c(ω,h) is not convex the feasible set defined by 
(12) is non-convex in general and linear constraints as 
formulated  might cut away parts of the original feasible 
region because (14) is not satisfied in general. Hence old 
constraints must be removed because they might cut away the 
part of the feasible region that contains the optimum solution. 
Instead of reusing old constraints some other constraints 
related to these old constraints must be used. The exchange 
algorithm presented in Section (III b) reuses the active 
constraints of the previous iteration step. A logical extension 
is to formulate new constraints at the frequency points 
corresponding to active constraints of the previous iteration 
step. These constraints are used instead of the old active 
constraints. Hence in every iteration step all constraints are 
formulated anew and the propagation of old constraints 
cutting away parts of the feasible region are prevented. 
   Note that all these considerations only apply to non-convex 
constraint functions. In the problem under consideration only 
the exchange rule for the lower bounds on the magnitude 
response must be adapted. The exchange rule for upper 
magnitude bounds and for phase constraints remains 
unchanged. The modified exchange algorithm for exactly 
solving the constrained least squares problem with magnitude 
and phase constraints works as follows: 
 
Algorihm:  
 

1) k = 0  Solve the unconstrained quadratic 
minimization problem for h(0). 

2) Determine the local maxima of  
),(),( )( ωδω m

k
m hE −  BΩ∈ω  and of 

),(),( )( ωδω φφ −khE   B
p Ω∩Ω∈ω and the local 

minima of   ),(),( )( ωδω m
k

m hE +   B
p Ω∩Ω∈ω  

, and of ),(),( )( ωδω φφ +khE  B
p Ω∩Ω∈ω  .  If   

),(|),(| )( ωδω m
k

m hE ≤  BΩ∈ω  and 

),(),( )( ωδω φφ ≤khE  B
p Ω∩Ω∈ω ,is  satisfied 

up to some specified tolerance, stop Otherwise go to 
3.       
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Determine the sets of frequencies at  which local maxima or 

minima of the functions considered in step 1 violate the 

respective constraints 

3) Formulate a new set of constraints for the next 
iteration step:  
a) Reuse the current active upper magnitude bounds 
and active phase constraints. 
b) Impose new magnitude constraints at passband                                                        
frequencies corresponding to active lower magnitude 
bounds in the current iteration step. 
c) Impose new magnitude and phase constraints at 
the respective sets of  frequencies determined in step 
2.    Formulate new magnitude constraints using a 
first order Taylor series of Em(ω,h)  about the current 
solution h(k): 

       [ ] |,)(|),(Re),( )( ωωφωω jjj
m eDeheHhE d −≈ −  

4) k: k+1,Compute h(k) by solving the quadratic  

        programming problem subject to the                                                               

        constraints determined in step 4. Go to 2. 

The algorithm presented in this section solves an 
unconstrained least squares problem as an initial problem and 
then adds all constraints that are necessary to compute the 
optimum solution to the semi-infinite programming problem. 
This greatly reduces memory requirements and computational 
effort. 
 

IV. DESIGN EXAMPLE 
We design a chirp-lowpass filter according to the following 

specification: 
   ,)( )(ωφω djj eeD =       pωω ≤≤0                    (15)  

                             0=                πωω ≤≤s  

 With the desired phase response )(ωφd  given by  

2

2
118

2
1)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−
−=

p
d

N
ω

πωωφ         pωω ≤≤0         (16) 

Where ωp and ωs are the passband and stopband edges 
respectively and N is the filter length. The desired phase 
response )(ωφd  corresponds to a linearly ascending desired 
group delay response. Its minimum and maximum values are 
given by: 
               ,8

2
1)0(

p
d

N
ω

πτ −
−

=  

              ,8
2

1)(
p

pd
N

ω
πωτ +

−
=  

Choosing πωπω 225.0,2.0 == sp and N=201.     With 

these choices the desired group delay linearly ascends from 60 
samples to 140 samples in the passband. The constraints are 

chosen in such a way that the maximum passband magnitude 
error is less than 0.007 and the minimum stopband attenuation 
is 45 dB. The passband phase error constraint is chosen as 
0.007 radians. The filter is designed by independently 
constraining magnitude and phase errors. The constraint 
functions are chosen as  

,007.0)()( == ωδωδφ m pωω ≤≤0 , and 

,10)( 20/45−=ωδm πωω ≤≤s  
 

 
Fig. 2 Magnitude Response of filter without exchange algorithm with 

constraints on magnitude and phase of errors 
 

 
Fig. 3 Phase Error of  Filter without exchange algorithm with 

constraints on magnitude and phase of errors 

 
Fig. 4 Frequency Response using exchange algorithm 
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Fig. 5 Frequency response of filter with using 

 

V.  CONCLUSION 
The two drawbacks of constraints on magnitude and phase 

error without exchange algorithm first is the large number of 
constraints resulting in a high computational effort and in high 
memory requirements. The second drawback is the fact that 
replacing the nonlinear magnitude constraints by linear 
constraints introduces errors. 

The stopband error energy is smaller for the filter designed 
with independent magnitude and phase constraints in 
exchange algorithm than simple constraints on magnitude and 
phase error. 

Introduced exchange algorithms with constraints on 
magnitude and phase of error solve a sequence of small sub-
problems in order to compute the optimum solution to the 
constrained filter design problem. This greatly reduces the 
computational effort and the memory requirements compared 
to the linear and quadratic programming approach with 
constraints on magnitude and phase of error. The errors 
resulting from this approximation are small as long as the 
phase constraint function is small. It can eliminate linearize 
error.  Along with the above qualities it also makes ripples to 
die out.  
. 
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