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Abstract—Recently, the Spherical Motion Models (SMM’s) have 

been introduced [1]. These new models have been developed for 3D 
local landmark-base Autonomous Navigation (AN). This paper is 
revealing new arguments and experimental results to support the 
SMM’s characteristics. The accuracy and the robustness in 
performing a specific task are the main concerns of the new 
investigations. To analyze their performances of the SMM’s, the 
most powerful tools of estimation theory, the extended Kalman filter 
(EKF) and unscented Kalman filter (UKF), which give the best 
estimations in noisy environments, have been employed. The Monte 
Carlo validation implementations used to test the stability and 
robustness of the models have been employed as well. 
 

Keywords—Autonomous Navigation; Extended Kalman Filter; 
Unscented Kalman Filter; Localization Algorithms 

I. INTRODUCTION 
 LMOST all applications of Autonomous Navigation 
(AN) require a vehicle capable of moving accurately and 

repeatedly to a particular location within its environment 
while executing a specific task including autonomous 
navigation. With the commercial development of Autonomous 
Vehicles AV’s in applications such as surface and 
underground mining , agriculture , and cargo handling , there 
has been a corresponding development of navigation systems 
[3], [4]. Landmark-based navigation systems are widely 
adopted for applications requiring high accuracy and 
adaptability [5], [6], [7].  Landmarks are distinct features that 
an AV can recognize from its sensory input. In general, 
landmarks have a fixed and known position relative to which 
an AV can localize itself.  

Through [1], the 2D reference system motion model which 
corresponds the most with the control and estimation 
technique has been extended to 3D reference system. The 
Spherical Motion Models (SMM’s) have been introduced in 
deterministic and probabilistic forms [1], [2]. It is proven 
already that the SMM’s are highly accurate, robust, and low-
cost models.  

 This paper first, presents minimum necessary to make the   
subject comprehensive and then brings new scientific  
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arguments and experimental results to support the SMM’s 
characteristics. To analyze their performances of the SMM’s, 
the Localization Algorithms (LA’s), using the extended  
Kalman filter (EKF) and unscented Kalman filter (UKF) are 
employed. The Monte Carlo validation implementations 
strategy is used to prove the robustness and stability of 
models.  

II. VIRTUAL VEHICLE  
Given a control protocol independently specifying speeds 

for translation and rotation, it is natural to build a control 
cycle operating in terms of these parameters [6], [7], [8]. This 
may be accomplished by translating the vehicle geometry into 
a virtual vehicle, which operates in terms of rotation and 
translation.  

Consider a differentially steered vehicle having a 
rectangular form as shown in Fig 1. The vehicle is translated 
using two independently controlled power wheels located on 
the axis aligned with the base. The origin of the vehicle 
coordinate system is located midway between the power 
wheels. All vehicle position measurements are specified with 
respect to this reference point. Two large caster wheels are 
mounted in the front of the vehicle to maintain balance. A Self 
Leveled Platform (SLP) is mounted on top of the vehicle. The 
SLP acts as a neck for a Laser Scanner (LS). 

 

 
Fig. 1 Illustration of virtual vehicle 

III. 2D MODELS 
Vehicle kinematics for an AV operating in a planar 

(horizontal) 2D environment will now be examined. 
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A. Kinematics Configuration  
Kinematics is the calculus describing the effect of control  

actions on the configuration of a vehicle. The configuration of 
a rigid vehicle is commonly described by its two-dimensional 
Cartesian coordinates (x, y) and angular orientationθ  relative 
to an external coordinate frame.  

The kinematic state is summarized by three variables 
( ), ,x y θ , referred to as position. The position of the AV in a 

plane described by the vector: ( ), , Tx y θ .  
The orientation of the AV is called the bearing, or heading 

direction. By convention orientations of 0θ =  and  
/ 2θ π= point in the direction of the x-axis and y-axis, 

respectively. 

B. Model Process  
The models are developed based on six constraints [12]: (1) 

The AV can be adequately represented as a two-dimensional 
vehicle whose motion is restricted to a plane. (2) It is assumed 
that the ground plane is inertial so the motion and rotation of 
the Earth may be neglected. (3) The vehicle body is rigid, so 
the effects of deflections caused by the suspension and the 
steering linkage are ignored. (4) The vehicle obeys the rolling 
constraint that all points on the vehicle rotate with the same 
angular speed about the Instantaneous Center of Rotation (C). 
(5) There is no motion along the transversal direction and the 
direction normal to the path surface. (6) It is assumed that 
there is no slip between the tires and the ground 

Given these constraints, as the vehicle negotiates a turn, this 
motion can be described as a pure rotation with respect to C. 
Since the vehicle body is rigid, the motion of each wheel is a 
pure rotation with respect to the C. Given the “no slip” 
condition, the steer angle of each wheel is orientated along the 
tangent of its arc, as shown in Fig. 2. 

 
Fig. 2 Illustration of the model process of an AV 

 

For modeling purposes, the constraints also make it possible 
to combine the effects of the pairs of wheels on their common 
axis and replace them by a single virtual wheel placed on the 
center of the axle. This reduces the number of degrees of 

freedom from four (drive speed and steer angle of the two 
wheels) to two (steer velocity vS  and the forward speed v f ) 
 of the virtual wheel, or their displacement equivalents:  
translational ( Dt ) and circular displacement ( tα ). 

C. Velocity Motion Model  
The velocity motion model assumes that the AV can be 

controlled through two velocities: a translation forward 
velocity v f  and a rotational steer velocity vS . Denote the 

translation velocity at time t by 
tfv  and the rotational velocity 

by 
tsv . The control tu at time t is: ( )t t

T

t f Su v v= . 

By definition, positive rotation velocities 
tSv  introduce a 

counterclockwise rotation (left turn), and positive translation 
velocities 

tfv  correspond to forward motion. 

1) Direct Integration Velocity Motion Model 
 

Denoting the position of the AV at a moment of time t as 
( )T

t t t tX x y θ= , as shown in Fig. 3, 

 
Fig. 3 Illustration of the position of an AV at a moment of time t 

 
 the kinematics equations can be written as [3], [11]: 
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This model, called often the 2D Initial Velocity (IV) model, 
is perfect when 0T → , which is actually a significant 
approximation for autonomous navigation applications. 

In this practical implementation, the navigation algorithm 
improves localization accuracy by integrating odometry data 
with laser scanner data for a 2D environment, and odometry-
inertial data with a laser scanner data for a 3D environment. 
The rotational speed of the laser scanner is 1/ 6 167s ms≅  for 
a full rotation of 360 degrees, while the odometry 
measurements are available every 100ms [7]. The 
accelerometer readings are available with a frequency 
typically of 100 Hz (10ms) [7]. Sonar data is acquired at a rate 
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of about 60 ms per range measure [8]. Motor control loops 
operate at hundreds of nano-seconds, while device controllers 
can operate at a rate of tens of ms, and some higher 
performance servo controllers operate at a rate of hundreds of 
ms [7], [8]. It is known that when using the kinematics 
models, measurements should be fused prior to the time 
update for better accuracy performance. Since T is not 
sufficiently small, a different model is needed to remove 
modeling approximations. 

 
2) Circular Velocity Motion Model 

Let ( )t t

T

t f Su v v= denote the control over the entire 

sampling time interval (t-1, t]. Both velocities have fixed 
values for entire sampling time interval (t-1, t], then the AV 

moves on a circle with radius t

t

f
t

S

v
R v=  around an 

instantaneous center of rotation, ( ),C CC x y . The form of tR  
encompasses the case where the AV does not turn at all (i.e., 

0vS = ), in which case the AV moves on a straight line. A 
straight line corresponds to a circle with infinite radius. 

Considering ( )1 1 1 1
T

t t t tX x y θ− − − −= as initial position of 
the AV, after a time of motion t TΔ = , the AV will be at 

( )T
t t t tX x y θ= as shown in Fig. 4. 
 

 
Fig. 4 Illustration of the AV’s circular motion during a sampling time 
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1 1

1

1 1 1

1

[ sin sin( )]

[cos cos( )]

t

t

t

t

t

t

t

f
t t S

S

t t
f

t t t t S
S

t t

S

v
v T

v
x x

v
y y v T

v

v T

θ θ

θ θ
θ θ

− −

−

− − −

−

⎛ ⎞
⎜ ⎟− + +
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= + − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

     (2) 

The equations of this model give good accuracy except for 
the case when 0

tSv →  which is now examined. 

Since 0
tSv → , 0tα →  the distance traveled on circle from 

( )1 1,t tx y− −  to ( ),t tx y  is actually equal to the linear distance 
between these positions, tD ; therefore, as can be seen in Fig. 
4: 
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          (3) 

The model will be a composite of (2) as a general form, and 
(3) for particular cases of very small steering speed values. It 
may be recommended to switch from form (2) to form (3) for 

610tR m≥ . It is easy to prove that form (2) and form (3) are 
equivalent for very small steering speed values. 

a) Real circular velocity motion model 
In reality, vehicle motion is subject to noise [10]. The actual 

velocities differ from the commanded ones (or measured 
ones). This difference will be modeled as a zero-centered 
random variable with finite variance. Assume the actual 
velocities are given by: 
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Here bε  is a zero-mean error variable with a standard 
deviation b. Thus, the true velocity equals the commanded 
velocity plus or minus some small error or noise. The 
parameters 1 4α α÷ are vehicle-specific error parameters. The 

common choice for bε is the normal distribution. 
The assumption of circular motion leads to an important 

degeneracy. In particular, the support of the density  
( )1t t tp X u X − is two dimensional, within a three-dimensional 

embedded position space. Unfortunately, this degeneracy has 
important ramifications when applying a Bayes filter for the 
state estimation. To generalize the model accordingly, it is 
assumed that the vehicle performs a rotation δ%  when it 
arrives at its final position. Thus the final orientation is 
modeled by:  

 

                         1 tt t S tv T Tθ θ δ−= + + %%                             (5) 

with 
5 6f S

t v vα α
δ ε

+
=% , and where 5α  and 6α  are additional 

vehicle-specific parameters that determine the standard 
deviation of additional rotational noise. The probabilistic form 
of the circular velocity motion model is obtained by using (5) 
in (2) and (3) while replacing 

tf
v  with 

tf
v% , and 

tSv with 
tSv% . 

 3) Circular Odometry Motion Model  
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The odometry-based motion model assumes that an AV can 
be controlled through two odometry measurements: the 
translation (D) and rotational displacement (α ). 

Denoting the translation displacement at time t by  tD , and 

the rotational displacement at time t by tα , then we have the 

control as, ( )T
t t tu D α= . By replacing t

t

f
t

S

v
R v=  with 

t
t

t

DR α= , 
tS tv T α=  and 

tf tv T D=  in (2) and (3) the 

odometry form of the motion model is obtained. In reality, 
vehicle motion and its measurements are subject to noise. The 
true measurements equal the measurements plus or minus a 
small error or noise. Using the same procedure as in section 
III, 2, a, it is easy to find the probabilistic form of the circular 
odometry motion model. 
4) The effect of using Inertial Velocity Motion Model 

As it is mentioned earlier, denoting the control 

( )t t

T

t f Su v v=  over the entire sampling time interval 

( ]1,t t T− = , both velocities will have fixed values for entire 
sampling time interval (t-1, t], then the AV moves on a circle 

with radius t

t

f
t

S

v
R v=  around an instantaneous center of 

rotation ( ),C x yC C . The result will be a linear displacement 
D v Tt f=  and an angular displacement  

t
v Tt Sα =  . Using 

the IV model under these circumstances as it is shown in Fig. 
5 instead of arriving in location ( , )x yt t  , the AV will arrive 

in location ,x yt t⎛ ⎞
⎜ ⎟
⎝ ⎠

• •  or if the argument of sine and cosine in 

(1) is just 1tθ − , the AV will arrive in ,x yt t⎛ ⎞
⎜ ⎟
⎝ ⎠

∗ ∗ [3], [11]. Hence 

the IV model is not a correct description of control actions on 
the configuration of a vehicle. 

 

 
Fig. 5 Illustration of the effect of using IV motion model 

 
 

IV. 3D MODELS 
Vehicle kinematics for a AV operating in a 3D environment 

will now be examined.  
A. Kinematics Configuration  

The same “virtual vehicle” used for 2D models will be used 
in developing a 3D model. Having an external coordinate 
frame (x, y, z) relative to it, each position in space at a certain 
moment t in time can be represented by its three-dimensional 
Cartesian coordinate (x, y, z) and the spherical parameters  
representation ( ), , Rθ γ . 

The position of the vehicle is described by the vector: 
( ), , , , Tx y z θ γ . The orientation of the SGV is described by θ  
andγ . By definition, an AV with orientation / 2θ π= , 

/ 2γ π=  points in the direction of x-axis, an orientation of 
θ π= , / 2γ π=  points in the direction of y-axis, and an 
orientation of 0θ = , γ π=  points in the direction of the z 
axis, where 0 2θ π≤ ≤  and 0 2γ π≤ ≤ . 
B. Model Process 

The models are developed based on the same constraints 
used for a 2D environment except the first one. As the vehicle 
negotiates a turn at a specific moment t of time, this motion 
can be described as a pure rotation with respect to the C. If tβ  
(the angle between the circular motion plane and the 
horizontal plane) is not zero, the circular motion becomes a 
spatial motion on a circle lying on a sphere with radius tR . 
Since the vehicle body is rigid, the motion of each wheel is a 
pure rotation with respect to C. Given the “no slip” condition, 
the steer angle of each wheel is orientated along the tangent of 
its arc as shown in Fig. 6.  
   The constraints reduce the number of degrees of freedom to 
two: The steer velocity Sv  and the forward speed fv for the 
virtual wheel or their displacement equivalents: translation Dt  
and circular displacement tα . Two more rotational motions 
will be used to represent the motion in 3D: one in the 
horizontal plane and another in the vertical plane, described 
by the horizontal steering velocity Sv θ or horizontal circular 
displacement θΔ  and vertical steering velocity Sv γ  or vertical 
circular displacement γΔ . These motions can be sensed and 
measured by inertial sensors. 
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Fig. 6 Illustration of the spherical motion of an AV in 3D environment over a 

sampling time period 

C. Kinematics Equations 

Let  ( )1 1 1 1 1 1
T

t t t t t tX x y z θ γ− − − − − −=  be the initial 
position of the AV. It moves keeping the velocities constant at 

tf
v  and 

tSv  over a sampling interval of time 1t tt t t T−Δ = − = , 

arriving at ( )T
t t t t t tX x y z θ γ=  . The AV moves on a 

circle with radius t

t

ft
t

t S

vDR vα= =  around C. If there is 

a slope of 0tβ ≠ , the circle C is part of a sphere with radius 

tR , as shown in Fig. 6. 
 The 3D kinematics’ equations may be found by first 

decoupling the motion into two motions: one in the vertical 
plane (from 1 1 1, ,t t tx y z− − −  to 1 1 1, ,t t tx y z∗ ∗ ∗

− − − ), and one in the 
horizontal plane (from 1 1 1, ,t t tx y z∗ ∗ ∗

− − −  to , ,t t tx y z ) and then 
using the same methodology as for 2D models.  

Note, in the 2D model that the orientation of the AV is 
defined as the angle between the heading direction and the x-
axis. It is also the angle between tR  and the extension of y-
axis if the origin of the reference system is translated to C. 
Thus, the position of the AV at time t is given by the 
equations: 

1 1 1
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For very small variations of steer speed, the position at time 
t is given by the equations: 
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where: 
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t
Dθ , and 

t
Dγ  are the linear translations on the horizontal and 

vertical planes, and  tθΔ  and tγΔ  are the rotational 
translations on the horizontal and vertical planes.   

It is easy to observe that for 1 / 2tγ π− =  and 0tγΔ =  
( 0

t
Dγ = ), then (6) and (7) of the 3D model are equivalent 

with (2) and (3) of the 2D model, where 
t tD Dθ = . 

 
D. 3D Spherical Odometry-Inertial Motion Model  

The odometry-inertial motion model assumes that the AV 
can be controlled through the odometry measurements of the 
linear translation D , rotational translation α  , and the gyro 
measurements of the rotational displacements θΔ  and γΔ . 
Denote at a certain time t the translation displacement by tD  
and the rotational displacements by tα , tθΔ  and tγΔ . The 

spherical motion has the radius t
t

t

D
R

α
=  and the control 

( )T
t t t t tu D α θ γ= Δ Δ . Assume that the AV has to travel 

from position ( )1 1 1 1 1 1
T

t t t t t tX x y z θ γ− − − − − −=  to 

( )T
t t t t t tX x y z θ γ=  during the sampling time T, 

and at moment t the sensors reading provide tD , tα , tθΔ  and 

tγΔ . Replacing tR∗  by 1sin( )t
t t t

t

D
R γ γ

α
∗

−= + Δ , 
tS tv Tθ θ= Δ  

and 
tS tv Tγ γ= Δ  in  (6) and (8), the  spherical odometry-

inertial motion model version is: 
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 Using the same procedure for (7) and (8), the form of 
spherical odometry-inertial motion model for very small 
variations of steer speed can be derived: 
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(10) 
Where: 1 1[] [sin sin( )]

tt t Sv Tγγ γ− −= − + . 

E. 3D Spherical Velocity Motion Model      
The velocity motion model assumes that the AV can be 

controlled through four velocities: translation velocity fv and 

three rotational velocities Sv , Sv θ , and Sv γ . Denote the 

translation velocity at time t by 
tf

v , and the rotational 

velocities by 
tSv ,

tSv θ  and 
tSv γ . The spherical motion has the 

radius at time t, t

t

f
t

S

v
R v=  and the control 

( )t t t t

T

t f S S Su v v v vθ γ= .  By definition, the positive 

rotational velocities 
tSv , 

tSv θ , and 
tSv γ introduce 

counterclockwise rotation (left turns), and the positive linear 
translation velocity 

tf
v  corresponds to forward motion. 

Replacing tR∗  by 1sin( )t

t

t

f
t t S

S

v
R v T

v γγ∗
−= + , 

tt Sv TθθΔ =  

and 
tt Sv TγγΔ =  in (6) and (7), there is going to be the 

spherical velocity motion model forms. 
 Using the same methodology described in section III, 2, a, 

the probabilistic forms of the 3D spherical motion models may 
be determinate. 

V. AV LOCALIZATION 
Mobile vehicle localization is the problem of determining 

the position of the AV relative to a given map of the 
environment. It is often called position estimation [1], [10]. 
A. Localization Algorithm 

This algorithm requires a Gaussian estimate of the AV 
position at time t-1 as its input, with mean 1tμ −  and 

covariance 1t −∑ . It also requires a control tu , a map m and a 

set of features measurement, { }1 2, ,...t t tZ Z Z=  at time t. The 

output is a new revised tμ  and t∑ . 
1) EKF Localization for Odometry-Inertial Motion Model  

The Prediction Step (or control update step) modifies the 
belief in accordance to an action. The EKF localization 
algorithm uses the probabilistic form of the spherical 
odometry-inertial motion model, maintaining a local posterior 
estimate of the state represented by 1tμ −  and covariance 1t−Σ . 
The motion is generated by the motion control, 

( )T
t t t t tu D α θ γ= Δ Δ  with additional Gaussian noise. 

To linearize the motion model, the model is decoupled into a 
noise-free component and a random noise component as in 
equation: 

{
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                                                 + (0, )tN R                                  (11) 
The EKF linearization approximates the function g  

through a Taylor expansion that constructs a linear 
approximation to a function g  from value and its slope.  

1 1 1 1 1

:

( , ) ( , ) '( , ) ( )
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t t t t t t t t

G

g u X g u g u Xμ μ μ− − − − −

=

≈ + − =
14243

 

                          1 1 1( , ) ( )t t t t tg u G Xμ μ− − −= + −                   (12) 
The remaining steps are identical to the general EKF 

localization algorithm [1], [5]. 
2) UKF Localization for Odometry-Inertial Motion Model 

UKF localization is a feature-based vehicle localization 
algorithm using the unscented Kalman filter. The key idea is 
to augment the state with additional components representing 
control and measurement noise. The dimension L of the 
augmented state is 5+4+7=16. Since zero-mean Gaussian 
noise is assumed, the mean 1

a
tμ −  of the augmented state 

estimate is given by the mean of the position estimate, 1tμ − , 
and zero vectors for the control and measurement noise. The 
covariance, 1

a
t−Σ , of the augmented state estimate is given by 
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combining the position covariance, 1t−Σ , the control 

covariance, tM , and the measurement covariance tQ . In this 

case, 1
a
t−X  contains 2L+1=33 sigma points, each having 

components in state, control, and measurement space:  

                     ( )1 1

Ta X T uT zT
t t t t− −=X X X X                      (13) 

 Mixed time indices were chosen to make clear that 1
X
t−X  

refers to 1tX − , while the control  and measurement 

components refer to tu  and tz , respectively. The position 

components 1
X
t−X  of these sigma points are then passed 

through the motion model function g, using the control with 
the added control noise component ,

u
i tX of each sigma point 

as in (14).  
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The remaining updated steps are identical to the general UKF 
algorithm [1], [5]. 

VI. EXPERIMENTAL RESULTS 
A. Performances Comparative between the Circular Odometry 
Motion Model and Inertial Motion Model. 

The implementation uses real input data of a path with a 
length of approximately 1.2 Km. The real input data has been 
collected from the Meadow Brook Hall and Smart Zone area 
of Oakland University, Michigan USA, as shown in Fig. 7. 

 

  
Fig.. 7 Comparative implementation of Odometry motion models     

(Circular/Inertial) using EKF for a real path data input (2D) 
 

In the first implementation, the EKF has been used to 
compare the performance of the circular odometry motion 
model and the direct integration (inertial) odometry motion 
model. For the circular odometry motion model, the small 
steering speed form is used. It provides a numerical evaluation 
of the mean error for both models as well. The implementation 
results are for an initial noise of 10 % in longitudinal 
translation and 9 % in rotation translation. The results are in 
Table I.  The results from Table 1 reveal that for a single run 
of the algorithm, the circular model provides a better accuracy 
of 21 cm. For 50 runs with additional incremental noise, there 
is a better accuracy of 93.59 cm. At 300 runs, the 
improvement in accuracy is 1.0313 m and for 400 runs it is 
1.0371 m. The improvement is significant when the accuracy 
matters. 

 

TABLE I 
MONTE CARLO VALIDATION (CIRCULAR/INS) 

Monte Carlo 
Iterations # 

Position mean error in meters. 

EKF+Circular Odometry 
Motion Model 

EKF+Direct Integration 
Motion Model  

1 22.42 22.63 
50 23.766 24.7019 

300 25.0217 26.0530 
400 25.1974 26.2345 

 

B. Performance Analysis of Spherical Motion Model 
To evaluate the performance of SMM’s, the Matlab 

simulations of the EKF localization and UKF localization 
algorithms in a 3D environment have been performed. The 
Spherical Odometry-Inertial for a low steer speed model has 
been used. Results of the implementation of the EKF 
localization algorithm, and the results of the UKF localization 
algorithm implementation are shown in Fig. 8. The 
implementation uses the same real input data of a path used 
for 2D implementations. 
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Fig. 8 3D EKF and UKF implementation of Odometry motion 

models 
 

This figure shows that the localization algorithms track the 
reference path very accurately in the beginning of path and 
less accurately towards the end of the path. This behavior is 
exactly what is expected because of the noise accumulation 
during estimation process.  

Even though the route is not smooth at all, it is easy to 
observe the efficiency and accuracy of the EKF and UKF 
localization algorithm implementations. To validate and 
evaluate the performance of the EKF localization and UKF 
localization, Monte Carlo and Spherical Error probable (SPE) 
evaluations have been performed as well. Fig. 9 shows the 
Monte Carlo validation of the EKF localization algorithm 
implementation for 1000 iterations. Each circle corresponds to 
the mean error of one run.  

 
Fig. 9 Monte Carlo validation of EKF localization algorithm 

implementation (1000 iterations) for 3D environment 

 
Fig. 10 Monte Carlo validation of UKF localization algorithm 

implementation (1000 iterations) for 3D environment 
 

Fig. 10 shows the Monte Carlo validation of the UKF 
localization algorithm implementation for 1000 iterations. The 
SPE is defined as the radius of a sphere, centered about the 
general mean error, with a boundary expected to include 50% 
(or 68%, 95%) of the population (mean error of each Monte 
Carlo’ iteration) within it. The red circles represent the means 
of iterations which are part of SPE 50, the dark green circles 
represent SPE 68, the light green circles represent SPE 95, 
and the blue circles represent SPE 100. 

The Monte Carlo validation implementations show that 
even if the amount of noise is increased after each iteration, 
the model is still stable and robust. 

VII. CONCLUSION 
The goal of this paper is to present the minimum necessary 

to make the subject comprehensive and present new scientific 
argument and experimental result to support the SMM’s 
characteristics (high accuracy, robust, low-cost, and well 
adapted to microprocessor process control and estimation 
models). The SMM’s are low-cost because just by adding one 
additional gyroscope to a 2D navigation system and using the 
SMM’s in localization algorithms allows it to operate in a 3D 
environment. The Monte Carlo validation implementations 
show that the SMM’s are robust and stable models. 

As shown in section III, C, 1 & 4, the traditional inertial 
models are not adapted to the microprocessor estimation and 
control process. This can affect negative the accuracy in 
applications where the accuracy matters. 

Even though they were developed for land navigation, the 
SSM’s models can be used for underwater or airborne 
navigation if the vehicle is equipped with specific sensor 
systems or the model is adjusted to the existing sensor system. 
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