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Abstract—The prediction of meteorological parameters at a 

meteorological station is an interesting and open problem. A first-
order linear dynamic model GM(1,1) is the main component of the 
grey system theory. The grey model requires only a few previous data 
points in order to make a real-time forecast. In this paper, we 
consider the daily average ambient temperature as a time series and 
the grey model GM(1,1) applied to local prediction (short-term 
prediction) of the temperature. In the same case study we use a fuzzy 
predictive model for global prediction. We conclude the paper with a 
comparison between local and global prediction schemes. 
 

Keywords—Fuzzy predictive model, grey model, local and 
global prediction, meteorological forecasting, time series. 
 

I.  INTRODUCTION 
HE current weather forecasting tools, based on numerical 
techniques, are not always able to capture local variability 

in the weather. Local prediction is forecasting the future based 
only on a small set of the most recent data in time series. 
Forecasts of this kind are used to establish a curve for a most 
recent set of data, and then make predictions based on the 
established curve. In order to improve the current forecast 
system the ideas and algorithms of grey models are used [5]. 
Grey prediction can be considered as a curve fitting approach 
that has exceptionally good performance for real world data. 

The grey system theory, first proposed by J. Deng in 1982, 
avoids the inherent defects of conventional methods and only 
requires a limited amount of data to estimate the behavior of 
an uncertain system or a time series. Grey means incomplete 
or uncertain information. The grey system has been 
successfully applied to industrial, social, and ecological 
systems, economy, geography traffic, management and 
environmental sciences [6,7,8,15]. 

In this paper we represent a fuzzy predictive model (Wang-
Mendel method) for global prediction which learns an input-
output mapping [Chapter 5, 16], [5], [17]. The WM method 
was one of the first methods to design fuzzy systems from 
data. 
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The WM method gives accurate prediction and at the same 
time is easy to explain to the non-expert.  The method has 
been applied to a variety of problems [3,4,16].  

The source of origin of the temperature data of the period 
from 1981 up to 2003 (8390 samples) was: National 
Observatory of Athens (NOA), Institute for Environmental 
Research and Sustainable Development (IERSD). The grey 
model and fuzzy model were implemented using MATLAB®.  

The paper is organised as follows. Section 2 presents the 
methodology to create a predictor. In section 3 the grey 
modelling approach that acts as the local prediction scheme is 
discussed. Section 4 presents the fuzzy predictive model 
acting as global prediction scheme. Simulation results and the 
comparison of two prediction schemes are then discussed in 
section 5. Conclusions are made in the final section. 
 

II.  TIME SERIES PREDICTION 
In general, the predicted value of a variable in a future time 

is based on m previous values. The m is called the lag of the 
prediction. If we have the values of variable y for the moments 
from k-m to    k-1, that is, y(k-1), y(k-2), …, y(k-m), we may 
predict y(k), and also the next time interval values y(k+1), …, 
y(k+p) where p is the time step. The methodology used to 
train a predictor is summarized as follows: 
 

1. Pre-process data. 
2. Decide the m lag values. 
3. Separate the actual data set into a training data set 

and a test data set. 
4. Create a local or global predictor based on the 

architectures that follow in the next sections. 
5. Use the training data set to train the predictor. The 

training proceeds as follows. At time k, apply    y(k-
1), y(k-2), …,y(k-m) to the predictor. Take the 
prediction output y(k+p). Calculate the output errors 
(criteria evaluation).   

6. Evaluate the performance of the trained predictor 
with the test data set. 

 
The predictor uses a set of m-tuples as inputs and a single 

output as the target value of the predictor. This method is 
often called the sliding window technique as the m-tuples 
slides over the full training set.  

 
III.  LOCAL PREDICTION AND GREY MODEL 

Local prediction is forecasting the future based only on a set 
of the most recent data in a time series. In order to improve the 
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current forecast system, the ideas and algorithms of grey 
models are used. Summary of techniques for local prediction 
schemes: 1) First order polynomial fitting [15], 2) GM (1,1) 
[6,7,8,15], 3) Exact polynomial fitting [15], 4) Fourier Grey 
Model (FGM) [15], 5) Linear and nonlinear exponential 
smoothing methods (ES) [15]. 

A grey system is a system that is not completely known, 
i.e., the knowledge of the system is partially known and 
partially unknown. In recent years, grey models have been 
successfully employed in many prediction applications. A 
grey modeling algorithm is described as follows. 
 

1st step: Assume that the original raw data series  (0)y  with 
n samples is expressed as: 

 
( 0 ) ( 0 ) ( 0 ) ( 0 )[ (1), (2),..., ( )]   4y y y y n n= ≥  

 
where the superscription (0) represents the original series. We 
assume that the original data are positive.  Negative values in 
data series are prohibited in grey modeling. Whenever 
negative values appear in the data sequence, the absolute value 
of the maximum negative data is added to shift all data to be 
positive. The task is to predict (0) ( )y n p+  where p 
determines the prediction sampling time, p≥1. 
 

2nd step: Pre-processing of original raw data. The original 
sequence (0)y  is transformed into a new sequence (1)y  using 
the first-order Accumulated Generating Operations (AGO). 
AGO weakens randomness of the raw data to generate a 
regular sequence (1)y .  
 

(1) (0) (0)

1

( ) ( ),    1,2,3,...,
k

m

y k AGO y y m k n
=

= ⋅ = =∑
 

(1) 

 
( 1 ) ( 1 ) ( 1 ) ( 1 )( ) [ (1 ) , ( 2 ) , . . . , ( ) ]y k y y y n=  

    
3rd step: The (1)y  sequence can be modeled by a first-order 

differential equation (Whitening Equation, WE) as follows: 
 

(1)
(1)

g g

dy a y u
dt

+ ⋅ =
 

(2) 

 
where the parameters αg and ug are called the development 
coefficient and grey input respectively. This grey model is 
referred to as GM(1,1), in which the first number in the 
brackets denotes the order of differential equation (first order) 
and the second  indicates the number of variables (here a 
single variable (1)y ).  

We define (1)z (k)  as the sequence obtained by applying 

the MEAN operation to (1)y     

(1) (1) (1) (1)1( ) [ ( ) ( 1)],    2,3,...,
2

z k MEAN y y k y k k n= ⋅ = ⋅ + − =
 

Generally the mean operation may be expressed as [2]: 
 

[ ]      (1) (1) (1)z (k) = ay (k)+(1 - a)y (k - 1)) a 0,1∈  (3) 
 
Since the sampling time is 1we have: 
 

(1) (1) (1) (0)/ ( ) ( 1) ( )
AGO

dy dt y k y k y k= − − =  (4) 

By substituting equations (1,3,4) into equation (2) one has 
the Grey Differential Equation (GDE):  
 

( 0 ) (1 )( ) ( )g gy k a z k u+ =  (5) 
 
In order to find the solution of the GDE (5) the parameters 

ga and gu must be solved by means of the Least Square Error 

Method as   

{
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ˆ ( )−Θ = ⋅ ⋅ ⋅T 1 T NB B B y  

 
The solution of the Whitening Equation (2) is an 

exponential function and with the initial 
condition (1) (0)(0) (1)y y= . The solution of equation (5) can be 
expressed as and the solution of (2) as follows:  

 
1( )(1) (0) (1)ˆ ( ) ( ) ,    4ga n pg g

g g

u u
y n p y e n

a a
− ⋅ + −+ = − ⋅ + ≥

 
 
n+ p is the forecasting p step-size and k +1= n+ p  is the 
time instant of the prediction. 
  

4th step: Take the inverse AGO (IAGO) on sequence 
(1)ŷ (k)  we have: 

 
( 0 ) (1 ) (1 )ˆ ˆ ˆ( ) ( ) ( 1)y n p y n p y n p+ = + − + −  

( 1)(0) (0) 1 1ˆ ( ) ( ( ) ) ( ),   gga n pg a

g

u
y n p y e e

a
− ⋅ + −+ = − ⋅ ⋅ − (6) 
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The four steps that are described above can be constructed 
concisely by the following scheme: 
 

(0) (0)1,1ˆ ( ) ( )y n p IAGO GM AGO y+ = ⋅ ⋅ ⋅  
 

The number of data used in a grey model is small because 
only two parameters need to be identified. For this reason the 
grey approach is often used as a local predictor. 
 
 

IV.  GLOBAL PREDICTION AND FUZZY PREDICTIVE MODEL 
Global prediction schemes employ all training data as input. 

Summary techniques for global prediction schemes: 1) Fuzzy 
predictive model [3,4,5,9,12,15,16,17]. 2) A neural fuzzy 
inference network SONFIN [10], 3) Case-Based Reasoning 
[14], 4) Adaptive Network-Fuzzy Inference System ANFIS. 
[10]. 5) A Genetic Fuzzy Predictor Ensemble (GFPE) for the 
accurate prediction of the future in time series [11]. 6) Neural 
Networks [1,12,13]. 

 
Fuzzy predictive model (Wang-Mendel) 
The WM’s method for prediction system design presents 

three characteristics: simplicity, a one-pass operation on the 
numerical input-output pairs to extract the rules and fast 
computational time. Suppose we are given N  input–output 
samples: 

( )( ) ( ) ( ) ( )
1 2, ,..., ;p p p p

Mx x x y , ( )py R∈ , p = 1,2,...,N  

where ix  are inputs, M  is the number of the inputs and y  is 
the output. This method consists of the following five steps.  
 

1st step: Divide the input and output spaces into fuzzy 
regions 
 

We consider that the input ix  and the output y  lie in the 

domain intervals i|min i|maxx ,x⎡ ⎤⎣ ⎦  and [ ]min maxy , y  

respectively. We divide each interval into 2z+1 fuzzy regions 
and assign each region a symmetrical triangular fuzzy set.  Of 
course, other shapes of membership functions are possible.  

 
2nd step: Data-generated fuzzy rules 

 
From the training set, take the mth numerical data pair  

( )( ) ( ) ( ) ( )
1 2, ,..., ;m m m m

Mx x x y  

for each data pair calculate their respective membership 
grades in the attributed fuzzy sets. Next, choose for each 
variable their highest membership degree from the respective 
grades. Now, a rule from the m training pair is obtained: 

R(m): IF 1
mx  is 1

mA AND…AND m
Mx is m

MA  

THEN my  is mC                                    
(7) 

 

 where m
iA  and mC  are fuzzy sets that attributed in the 

condition and conclusion parts of the rule and m is the index 
of the rule. Especially, we define ( 1,..., )il i M=  fuzzy sets 

q
iA , 1,..., iq l=  for each input ix  and ol  represent the 

number of membership functions in  the output space. The 
fuzzy set m

iA  is one of the q
iA ’s. Generally, in real 

applications we give in the fuzzy sets linguistic names like 
“big”, “very positive”, etc. 
 
 

3rd step: Assign a degree to each rule 
As there are usually many data pairs and therefore many 

rules are generated, there is high probability of conflict, that is, 
rules which have the same IF part and a different THEN part. 
To resolve this problem is to assign a truth degree (TD) to 
each rule and accept only the rule that has the largest truth 
degree. We use the following product strategy: 
 

1

( ) ( ) ( ) ( )
1( ) ( ) ( )m m m

M

m m m m
MA A C

TD x x yμ μ μ= ⋅⋅⋅⋅ ⋅  

 
4th step: Create a combined fuzzy rule base 
The maximum number of rules that can be generated is l1· 

l2·… · lM. From the 3rd step the reduction of the number rules 
is achieved. The generated rules determine a combined fuzzy 
rule base.  
 

5th step: Determine a mapping based on the combined 
fuzzy rule base 

Determine the overall continuous fuzzy predictive model. 
Using the combined rule base with K fuzzy rules in the form 
(7), the product inference engine, the singleton fuzzifier and 
the center-average defuzzifier, the following fuzzy system is 
obtained [17]: 
 

1 1

1 1

( )
    

( )

( )
( )

( )

j
i

j
i

j
c i

i

MK

A
j i

MK

A
j i

y x

x
y f x

μ

μ

= =

= =

= =
∑ ∏

∑ ∏
 

 
where j

cy  is the centre of jC . The output variable y  based 

on the inputs ( )1 2, ,..., Mx x x . 

 
V.  SIMULATION RESULTS 

For the local prediction of ambient time series temperature, 
the grey model GM(1,1) is employed. We use four data of the 
most recent daily average temperatures as model inputs. We 
know from the past research that α always equals 0.5. But with 
this value the error may be too large, making it unacceptable.  
The parameter α is critical for the grey model performance [2]. 
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In this paper we found the optimal value α=0.71 using Genetic 
Algorithms.   

The performance of the forecasting models was evaluated 
according to criteria: Mean Square Error (MSE), Absolute 
Mean Error (AME) and Correlation Coefficient (ρ), as 
follows:  

2

1

1 ˆ( ( ) ( ))
n

kn
MSE y k y k

=

= −∑
 

1

1 ˆ( ) ( ))
n

k

AME y k y k
n =

= −∑
 

1

2 2

1 1

ˆ ˆ( ( ) ) ( ( ) )

ˆ ˆ( ( ) ) ( ( ) )

                 1 1

n

k

n n

k k

y k y y k y

y k y y k y
ρ

ρ

=

= =

− ⋅ −
=

− ⋅ −

− ≤ ≤ +

∑

∑ ∑
 

The y(k)  is the actual value for time k, ŷ(k)  is the predicted 
value (model output) for the time k and n is the number of test 

data used for prediction, y , ŷ  are the mean of the actual and 
predicted values, respectively. The first criterion is a measure 
of the average squared error for all points. Correlation 
coefficient ρ (Pearson’s formula) measures how well the 
predicted values correlate with the actual values. Clearly, 
correlation coefficient value closer to positive unity means 
better forecasting. 

Notice that in our simulation results only the errors for the 
test data sets are reported because local prediction scheme do 
not have training errors. Temperature data are provided in 
Centigrade, so, apparently, they take negative or zero values. 
In order to employ the GM(1,1) for the local prediction, we 
add the absolute value of the maximum negative of the 

original data plus one, to each data type  Let y  be the original 

data, the transformed data will be: 1y+ min(y) +  

The studied Grey model scheme has the form: 
 

GM(1,1): ( y(k -1), y(k - 2), y(k -6), y(k -7) ; y(k) ) 
 
                                       Inputs                    Output 

 
The daily average temperatures (in °C) data for Athens, 

from 1981 to 2003 are plotted in Fig. 1. For the global 
prediction scheme we split the collected data into two 
categories. The training set consists of the temperature of the 
first seventeen years (1981-1997), while the test set includes 
the remaining six years (1998-2003). The choice of four inputs 
to form the WM method is case-dependent. It is an open 
question of how to select the optimal number of data points.  

The results are tabulated in Table I. For the numerical fuzzy 
approach 138 rules were obtained.  Table I shows that 
concerning the fuzzy model, the grey model has the best 
performance with regard to the ΑΜΕ criterion but the worst 
performance according to the other criteria. The computational 
time has also been recorded in the table of comparisons. The 
training time for WM’s method is 32.366sec in Pentium M 
1,7GHz, 512 MB RAM. The local grey prediction model does 
not have a training phase. In Fig 2 we present the results of the 
fuzzy and grey models for testing data for 1998 to 2003. Fig. 3 
depicts the results of fuzzy and grey model for training data 
1981 to 1997. 

 
 

 
TABLE I 

PREDICTION COMPARISON 
Predictor Fuzzy (WM) Grey 

Inputs T(k-1) T(k-2) T(k-6) T(k-7) T(k-1) T(k-2) T(k-6) T(k-7) 
Mfs 9 7 7 5 - 

Output T(k) T(k) 
Mfs 15 
AND 

Method Product 

Implication Product 
Aggregation Sum 
Defuzzifier Centroid 

Rules 138 

- 

Results Train Test Local Prediction 
Computation 

Time 32.366 sec 2.063 sec 0.471 sec 

AME 1.385728 1.447687 1.407747 
MSE 3.066376 3.375785 3.524036 
ρ 0.971563 0.972925 0.970235 

Maximum 
Error 

(absolute) 
8.736815 8.198800 9.056811 
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Fig. 1 The daily average temperatures (in °C) for Athens, from 1981 to 2003 
 
 
 

 
 

Fig. 2 The test results of daily temperatures between 1998 to 2003 for the WM method (a) and GM(1,1|0.71) model (c). The other two 
diagrams (b,d) represent the test results for the two models only for 2003 respectively 
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Fig. 3 

(a) The training results of daily temperatures since 1981 to 1997 for fuzzy predictive model (b)The training results only for the 1997  
 

VI.  CONCLUSION 
In this paper, we have proposed a first-order linear dynamic 

model GM(1,1) for local prediction and a fuzzy predictive 
model for global prediction. From our simulation results it can 
be seen that the global prediction scheme has relatively better 
performance than the local prediction model. The results of 
comparison show that the knowledge from the global 
prediction can be incorporated in the local prediction scheme 
aiming at the creation of an integrated model for temperature 
forecasting problems.    
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