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Abstract—German electricity European options on futures using 

Lévy processes for the underlying asset are examined. Implied 
volatility evolution, under each of the considered models, is 
discussed after calibrating for the Merton jump diffusion (MJD), 
variance gamma (VG), normal inverse Gaussian (NIG), Carr, Geman, 
Madan and Yor (CGMY) and the Black and Scholes (B&S) model. 
Implied volatility is examined for the entire sample period, revealing 
some curious features about market evolution, where data fitting 
performances of the five models are compared. It is shown that 
variance gamma processes provide relatively better results and that 
implied volatility shows significant differences through time, having 
increasingly evolved. Volatility changes for changed uncertainty, or 
else, increasing futures prices and there is evidence for the need to 
account for seasonality when modelling both electricity spot/futures 
prices and volatility. 
 
Keywords—Calibration, Electricity Markets, Implied Volatility, 

Lévy Models, Options on Futures, Pricing 

I. INTRODUCTION 

IVEN electricity market characteristics [1], we should not 
expect a model like B&S to offer reasonable fit to 

derivatives data. It assumes a constant volatility across 
moneyness and maturity despite empirical evidence showing 
that variance of returns is not stationary. Also, the relation 
between volatility and the commodity changes over time. 
Several models have been proposed as replacements or 
extensions of the Black-Scholes model for modeling stock 
prices, but many of these models or variations of them can 
also be used for pricing commodities. Lévy market models are 
now actively used in finance and many models have been 
developed recently, being mainly calibrated on index options 
[2], currency options [3], [4] and on European options on 
futures for the crude oil market [5]. Lot less attention has been 
given for Lévy market models in electricity markets mainly 
due to data scarcity problems. Implied volatility in 
commodities markets lack of attention is due to the fact that 
exchange-traded commodity options are not always very 
liquid and implied volatilities from their prices can be 
unreliable (see [6] for oil options on futures markets using 
semi-parametric and non-parametric approaches to infer about 
implied volatility dynamics). But electricity options markets 
are now more liquid than they were when introduced in 2004. 
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We do not attempt to describe the entire class of Lévy 
models or explain their mathematical properties, but yes to 
apply four known of these models to electricity options on 
futures data. As such, a jump diffusion model, two infinite 
activity models (normal inverse Gaussian and variance 
gamma) and one tempered stable Lévy process (CGMY) have 
been estimated and compared in terms of fitting with the B&S 
model. Option price calculations were obtained by the Fourier 
transform given that characteristic functions of log prices in 
the risk neutral measure are known analytically. Calibration to 
market option prices is parametric and performed through 
minimizing an objective function, which is a weighted sum of 
squared deviations of the model and market option prices. 

Lévy processes are seen as a random walk in continuous 
time with jumps occurring at random times. The probability 
distributions associated with Lévy processes are infinitely 
divisible and offer more flexibility for fitting financial data, 
and can have skewed shapes and slow decaying tails 
(characteristics of electricity markets). Moreover, the model's 
implied volatility tends to vary both in relation to the state and 
time, exhibiting a smile or a smirk. 

The dynamics of the electricity price may exhibit jumps of 
different sizes, with small jumps occurring more often than 
large jumps, leading both to asymmetries and fat tails in 
electricity returns, contradicting thus the Brownian motion 
assumption underlying the [7] model. Consequently, 
extracting densities from option prices allows one to analyze 
the role of electricity as an asset, besides its role as a 
commodity, and improves electricity market modeling. 

We were thus able to raise the following questions: Among 
the Lévy models selected, what model best describes a market 
with special characteristics such as the European Energy 
Exchange (EEX) electricity market in Germany, and which is 
better suited for pricing electricity futures options? Given that 
the level of implied volatilities changes with time, deforming 
the shape of the implied volatility surface [8], we also try to 
answer: How does implied volatility behaves for electricity 
options on futures over time? As such, we aim at analyzing the 
patterns of implied volatility in electricity markets, similar to 
[5] that compares two implied volatility reconstruction 
methodologies for European type options on commodity 
futures (WTI crude oil). Options allow flexibility in dealing 
with price risk providing profit from favorable market moves, 
being useful for hedging. Given that implied volatility is 
useful to infer information about market's expectations of 
future price movements; they are a relevant indicator of the 
uncertainty inherent to the electricity market. 

No special attention has been given to the patterns of 
implied volatility through time in electricity markets, although 
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it is highly investigated in other financial and commodities 
markets. Reference [8] study the joint dynamics of all implied 
volatilities quoted on the S&P500 index options market, while 
[9] question whether the evolution of implied volatility can be 
forecasted by studying a number of European and US implied 
volatility indices. Previously, [10] had explored the ability of 
alternative continuous-time diffusion and jump-diffusion 
processes to capture the dynamics of implied volatility indices 
over time for European and American implied volatility 
indices and CBOE volatility futures market. They found that 
the addition of jumps is necessary to capture the evolution of 
implied volatility indices. 

Many models have been tested in the context of the special 
electricity markets. However, none of these have performed an 
empirical comparison between Jump diffusion, CGMY and 
the broader class Lévy market models, in the European Energy 
Exchange (EEX) market. This study is primarily an empirical 
comparison of these models and their applicability in the 
context of options on futures electricity markets. So, we aim to 
extend the option pricing literature through an empirical 
comparison of the stated models. Our findings will provide 
insight into the comparative strengths and weaknesses of 
alternative model structures, given that existing literature has 
shown that a model with smaller pricing errors is the best 
model. 

The rest of the work develops as follows. Section 2 exposes 
the data to be used on the paper, while in section 3 the 
processes to be used are presented. Section 4 discusses the risk 
neutral parameter estimation methodology. In section 5 we 
present and discuss the results attained using the processes of 
section 3, while section 6 concludes the work, also providing 
directions for future research.  
 

II. DATA 

This work uses data on EEX European option prices over 
futures, from one up to the next 5 months, having we 
randomly selected to use 4 months to maturity call and put 
options. Maturity is specified as the time at which the 
respective option concerned can be traded for the last time and 
exercised. The data covers the period 8 November 2004 until 
27 March 2008. Our sample of observations to implied 
volatility computations correspond to a total of 853 days. We 
exclude observations of option premiums of 0.001 (the 
minimum tick value allowed) because these values might be a 
noisy estimate of the true value of the option. Also, since most 
of the observations excluded correspond to short term out-of-
the-money options, we end up reducing liquidity-related 
biases. 

At the beginning of the sample period, given market 
immaturity, we had much lower observations and therefore 
more observations were excluded there. However, as the 
market evolved liquidity increased and more option contracts 
end up being traded. Like [11], the joint data set of call and 
put options is used for implicit parameter estimation. In other 
implicit parameter estimation studies, [12], only call options 
are used to simplify estimation. Good models should capture 

the behavior of the series over time and using more 
information should lead to better results. 

We have used the entire set of call and put options for 
parameters estimation. With these parameters we have 
obtained call prices, those that will be used in the implied 
volatility estimations through time for each of the processes 
considered. For the options used on the implied volatility 
computations we have assumed a moneyness interval of 0.6 to 
1.3, treating these as the at-the-money (ATM) options of our 
sample. 

An implied volatility corresponding to an option maturing 
in 4 months is a forecast of the average volatility over the next 
4 month period, whereas the shape of the implied volatility 
surface can be used to assess the adequacy of an option pricing 
model: if an option pricing model is correct, then there should 
be no shape to the implied volatility surface. 
 

III. MODELS 

How to model power prices? This is an issue investigated 
extensively in the literature. With respect to energy markets, 
[13] propose a class of stochastic mean reverting models for 
electricity prices with Lévy process driven Ornstein-
Uhlenbeck (O-U) processes being the building blocks. 
Reference [14] model spot prices in oil and natural gas 
markets with exponential non-Gaussian O-U processes 
introducing Lévy processes as the driving noise rather than 
Brownian Motion (BM), and imposing the normal inverse 
Gaussian distribution for the Lévy increments they obtain a 
superior fit (NIGOU model). 

Here, it is employed Lévy processes as an underlying asset 
to calculate option prices and implied volatility surfaces. The 

Lévy process, ( ) 0≤ttL characterized by its characteristic triplet 

( υσµ ,, ) can recreate features of option prices such as the 

smile or sneer behavior in the implied volatility surface. 
All the models to be discussed belong to a family of Lévy 

Processes called "exponential Lévy processes". In this class of 
Lévy processes, the risk-neutral dynamics of the underlying 
asset is given by 

)exp(0 tt LSS =                 (1)  

where Lt is a Lévy process under the equivalent martingale 
measure Q with characteristic triplet (µ , σ, υ). The log returns 
log(St+s/St) of such a model follow the distribution of 
increments of length s of the Lévy process Lt. Our spot price 
here will be with respect to futures market quotes (Ft=St). 
    The absence of arbitrage then imposes that 

tLrtrt
tt eeeSS −− ==ˆ  be a martingale, and r is the interest rate. 

Under the condition that Ste
-rt satisfies a martingale, 

Exponential-Lévy models allow us to use Fourier transform 
methods for option pricing because of the availability of 
closed-form expressions for characteristic functions of Lévy 
processes calculated by the Lévy-Khinchin representation. 
With this we are able to derive the risk-neutral characteristic 
function for the discounted Lévy process. Different 
exponential Lévy models proposed in the financial modeling 
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literature simply correspond to different choices for the Lévy 
measure v (and for the Gaussian part σ if present). 
    Before going ahead, we need to define a Lévy process 
called subordinator which has an important role in the 
construction of other Lévy processes. 
     
    Definition 1: A subordinator is an increasing (in t) Lévy 
process. Equivalently, for S to be a subordinator, the triplet 
must satisfy v(-∞,0)=0, c=0, ∫(0,1)lv(dl)<∞ and 
µ=b+∫(0,1)lv(dl)>0. 
     
    These are called subordinators because they can be used as 
time changes for other Lévy processes. The Poisson, the 
Gamma and the inverse Gaussian process are examples of 
subordinators. 

    Theorem [Lévy-Kinchin representation]: Let ( ) 0≤ttL  be a 

Lévy process on Rd with Lévy triplet (A,v,γ). Then its 
characteristic function ϕL and characteristic exponent φL are 
given by: 
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( ) 0≤ttL is a Lévy process of finite variation if and only if its 

Lévy triplet is given by (0,σ,v) with ∫ℜ
d|l|v(dl) < ∞. 

    Here we consider Lévy processes, widely acknowledged in 
financial literature, which include the two-categories: jump-
diffusion models and infinite activity models. The jump 
diffusion model included is the Merton model and infinite 
activity models considered here are the normal inverse 
Gaussian and variance gamma. Moreover, we also apply the 
tempered stable Lévy process, CGMY. Before presenting 
them, it is described the Fourier transform method for option 
pricing. 

A. Fast Fourier Transform (FFT) 

The pricing method by Fourier transforms (due to [15]) is a 
widely used method to price options in financial models when 
the risk neutral density of the underlying asset is not given in 
an analytically tractable form, however the characteristic 
function, which also fully describes the probabilistic behavior 
of the underlying, can be evaluated easily. By now, there is a 
large variety of Fourier-based pricing algorithms [16], yet we 
restrict the discussion to one of the most common versions. 

A method based on Monte Carlo simulation is inefficient, 
because of slow convergence due to the large magnitude of the 
jumps, and to inherent difficulties in identifying the optimal 
exercise policy. Knowing the characteristic function of the 
Lévy process paves the way for a Fourier approach for pricing 
options on the spot. We refer to [15] for complete descriptions 
of the fast Fourier transform technique for calculating option 
prices when the characteristic function of the log-price is 
known.  

To price derivatives written on electricity futures one needs 
to take into account the risk preferences of the investors. This 
is traditionally described by a market price of risk charged for 
issuing the derivative, which turns out to be an additional 

parameter coming from the equivalent martingale measure. 
Options on futures cannot be calculated explicitly, unless we 
know the characteristic function of the logarithmic spot prices 
given the Lévy process and the market price of risk. This is the 
necessary input for a numerical approach for pricing based on 
the fast Fourier transform (FFT). Reference [15] invoked the 
fast Fourier transform for its speed in pricing options. Though 
adequate for near money options the method is known to 
break down for deep out the money options where it often 
gives rise to negative prices.     

For this presentation we begin by working with log-price sT 

= ln(ST). This is due to the fact that as we have S₀=1, then 
ST=exp(LT)⇔sT=ln(exp(LT))=LT. 

The log-price process is then totally described by the risk-
neutral Lévy process we use, whose characteristic function is 
thus the risk-neutral characteristic function of the Lévy 
process, being 

[ ] [ ] ∫
+∞

∞−

≡== dssqeiuLEiusEu T
ius

TTT )()exp()exp()(φ      (3) 

 Therefore, even though any risk-neutral Lévy process can 
take on negative values, the exponential of this process is 
always positive, which is a requisite for a process describing 
the path of a stock price. 
 With sT=ln(ST), ST=FT, and considering k=ln(K), being K 
the strike price of the option, the value of a European call 
option, related to the risk neutral density qT, with maturity T as 
a function of k is given by 

( )[ ] ( ) dssqeeeKSEekC
k

T
ksrT

T
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T ∫
∞

−+− −=−= )()(     (4)  

being qT(s) the risk-neutral density function of s. If it is 
possible to compute the Fourier transform (or characteristic 
function) of the last equation, then we can derive the price of 
the call option through the inverse transformation. 
 Reference [15] define a modified call price function (square 
integrable for a range of α values and ∀k) given by 

0),()( >= αα kCekc T
k

T
          (5) 

given that CT(k) is not square integrable (it tends to S₀, a 
positive constant, as k tends to -∞), and so we can't compute 
its Fourier transform. Now, the modified call price cT(k) is 
square integrable in k over the whole range for proper positive 
values of α, allowing us to consider the Fourier transform of 
cT(k). If in applications all processes have finite variances, 
setting α=1 seems to be a valid choice. Though the choice 
appears arbitrary to some extent, we may not find any 
improvement in results when changing α to other values. 
 The parameter α is the dampening factor, being the Fourier 
transform and inverse Fourier transform of cT(k) given by: 
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Given that we can write 
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being the last equality given by the fact that when )(vTϕ  is 

symmetric we can write )()( vv TT −= ϕϕ , and Re(.) stands 
for the real part. Since CT(k) is real, we thus have 
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the option. 

 Reference [15] have derived the following form for )(vTϕ  
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where [ ]tivs
T eEv =)(φ  is the characteristic function of the log 

price sT=ln(ST/S₀)=ln(ST) given that we define S₀=1. 
 Developed by [17], the FFT algorithm consists in 
approximating the continuous Fourier transform (CFT) with 
its discrete counterpart (DFT) 
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 Using an integration rule as the trapezoidal rule, we can 

rewrite the integral ∫
∞

−

0

)(ve T
ivkϕ for option prices as 
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where η is the discretization step or grid spacing 
(corresponding to ∆x in the definition of the trapezoidal rule), 
the points νj are chosen to be equidistant with grid spacing η, 
that is νj=ηj. 'ϕ is just ϕ  weighted by the integration rule. The 
upper limit of the integration is thus a=ηN so the value of η 
has to be small enough to allow a good approximation but not 
too small to guarantee that the characteristic function is equal 
to zero for any point a′>a. 
 

B. Black and Scholes (B&S) 

The [7] model remains the paradigm of option pricing and 
the benchmark against which all other models and extensions 
are compared. The drawbacks in B&S have guided some of its 
extensions. For example, [12] put forward that B&S ignores 
possible price jumps of the underlying and assumes constant 

volatility across moneyness and maturity. With the aim to 
increase accuracy many models followed after. 

The [7] model assumes that the risk-neutral price process 
for the underlying stock follows a geometric Brownian 
motion: 

( ) tWqr
t eSS σσ +−−= ´2/

0

2

        (12) 

where t≥0, is the time remaining until maturity, r≥0 is the risk-
free interest rate, q≥0 is the dividend yield, σ>0 is the 
volatility parameter and Wt is a standard Brownian motion. 
The underlying St satisfies a log-normal distribution. By 
introducing the auxiliary stochastic 

variable, ( )tqr
S

S
X t

t −−



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
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log , we get as characteristic 

function [ ] ))(
2
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exp()( 2tiuueEu iuX

X σφ +−== . Moreover, the 

simulation of the underlying is straightforward from the 
discrete-time version of the above expression: St+∆t = Ste

(r-q-

σ²/2)∆t+σW∆t, where W∆t is a draw from a normal distribution 
with mean zero and standard deviation t∆ . 
 When the B&S model is used to calculate implied 
volatilities one often obtain different numbers for different 
values of K and T. In particular, a "smile" or "smirk" shape is 
often observed in the plot of implied volatility versus strike 
price. Implied volatility tends to increase with maturity time, 
but is often larger for options with very short maturities. This 
is due to the increase in price that sometimes occurs when 
options are close to maturity as the price and the payoff 
converge. Given that prices revealed to be very different and 
inconsistent, and to not incur in the "bands" problem we end 
working with options on futures up to 4 months to maturity. 

C. Jump diffusion models (the Merton model) 

    Assuming that the process L = ( ) 0≤ttL  is a Lévy jump-

diffusion, meaning a Brownian motion plus a compensated 
compound Poisson process, it can be described by 

∑
=

++=
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i
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where γ ∈ ℝ, σ ∈ ℝ₊, W = (Wt)t≥0 is a standard Brownian 
Motion, N = (Nt)t≥0 is a Poisson process with parameter λ 
(E[Nt]=λt) and Y=(Yt)t≥1 is an i.i.d. sequence of random 
variables with probability distribution F and E[Y]=k < ∞, F 
describes the distribution of jump size. All sources of 
randomness are mutually independent. 
    Reference [18] was the first to use a discontinuous price 
process to model asset returns. In the Merton model (MJD), 
jumps in the log-price Xt are assumed to have a Gaussian 
distribution. The canonical decomposition of the driving 
process is 

∑
=
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i
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where Yi∼N(α,δ²). The distribution of the jump size has the 
density 
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and the Lévy density/measure is given by: 
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The Merton model has thus 4 parameters (excluding the drift 
µ): the diffusion volatility σ, λ the jump intensity, α the mean 
jump size and δ the standard deviation of the jump size: θ = 
(σ,λ,α,δ). 
    By using the Lévy-Khinchin formula, MJD has the 
characteristic function: 
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being the characteristic exponent )(uXϕ  
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and the Lévy triplet (µ, σ², λF). 
    The density of Xt is not known in closed form, but it admits 
a series expansion 
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and the first two moments are 
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D.  Infinite Activity Models (variance gamma and normal 
inverse Gaussian models) 

In this class of models we have the Variance Gamma (VG) 
model and the Normal Inverse Gaussian (NIG) model. The 
VG model was introduced by [19] as a model for stock returns 
considering the symmetric case with θ=0. Reference [20] 
presents the general case. The NIG distribution was first 
introduced by [21]. 

Both models are famous for their easy simulation through 
Brownian subordination. The subordinating processes under 
VG and NIG are respectively the Gamma and Inverse 
Gaussian processes. 

Let Tt be a subordinator, meaning its trajectories are almost 
surely non-decreasing with Laplace exponent 

( )∫
∞

−=
0

)(1)( dxeul ux ρ  where E[euTt] = et.l(u). An infinitely 

activity Lévy process can be obtained by subordinating 
Brownian motion by subordinator Tt as follows: 

)( ttt TWTX σµ +=          (21) 

    Then the characteristic exponent of Xt is given by 
( )uiuluX µσϕ +−= 2/)( 22  and the Lévy triplet (AX, vX, µX) 

of Xt is given by 
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where ps
T is the probability distribution of the subordinator Tt. 

This process is a Brownian motion observed on a new time 
scale, say business time. 

    Usually, subordinators are α-stable processes with α∈[0,1). 
Subordinators have no diffusion component, only positive 
jumps of finite variation and positive drift, the Lévy measure 

of a real valued α-stable process is of the form 
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by tempering this Lévy measure, we obtain a tempered stable 
subordinator, which is a three parameter process with Lévy 

measure 
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ρ  where c>0 alters the intensity of 

jumps of all sizes simultaneously (time scale of the process), 
λ>0 fixes the decay rate of big jumps, and 1>α≥0 determines 
the relative importance of small jumps in the path of the 
process. The probability density of tempered stable 
subordinator is only known in explicit form for α=0 (variance 
gamma) and α=1/2 (normal inverse Gaussian), so the 
corresponding subordinated processes have been widely used 
because they are easier to simulate and more mathematically 
tractable [16]. 
    The variance gamma process is a finite variation process 
with infinite but relatively low activity of small jumps 
obtained by evaluating Brownian motion with drift µ and 
volatility σ at an independent gamma time, Xt = µTt+σW(Tt), 
where Tt is a gamma process with mean rate t and variance 
rate κt. The Gamma distribution has density function of the 
gamma time change g over a finite interval t, with parameters 
a=(t/κ), b=(1/κ)>0, given by 
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Being the characteristic function given by 
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    There are 3 parameters in the gamma process that should be 
considered: θ = (µ,σ,κ), where µ is the diffusion drift, σ the 
diffusion volatility and κ the variance of the subordinator. 
    The characteristic function of the VG process is given by 
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whose characteristic exponent )(uXϕ  is: 
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and the characteristic function )(u
tXφ  of Xt is therefore 
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    The normal inverse Gaussian process is an infinite variation 
process with stable like behavior of small jumps constructed 
from Brownian subordination at an independent inverse 
Gaussian time, Xt = µTt + σW(Tt), where Tt is an independent 
inverse Gaussian process with mean t and variance κt. 
    There are 3 parameters in the normal inverse Gaussian 
(NIG) process: θ = (µ,σ,κ), where µ is the diffusion drift, σ the 
diffusion volatility and κ the variance of the subordinator. 

    It's characteristic exponent )(uXϕ is 
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and being the characteristic function )(u
tXφ : 
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    This characteristic function is infinitely divisible, so we can 
define the NIG process XNIG = {Xt

NIG, t≥0} with three 
parameters µ: µ>0, σ: -µ<σ<µ and κ: κ>0, with X₀

NIG=0 
stationary and independent NIG distributed increments. 
    The first two moments of the NIG process are given by 
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E.  Tempered stable Lévy processes CGMY process) 

    These are Lévy processes ℜ with no Gaussian component, 
constructed by directly specifying a Lévy measure of the form 
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where c±, λ± >0 and α± <2. We can represent these as a time 
changed Brownian motion (with drift) if and only if c₋=c₊ and 
α₋=α₊= α ≥-1. This enforcement implies that small jumps must 
be symmetric whereas decay rates for big jumps may be 
different. As discussed previously, the main impact on option 
prices are large jumps. The CGMY subclass of tempered 
stable Lévy processes is flexible allowing for asymmetry of 
small jumps. For more details on the CGMY process, please 
see [22]. 
    CGMY process is of finite variation if 0≤α<1 and of infinite 
variation if α≥1. In this class of processes 4 parameters should 
be taken into account: θ=(c,α,λ₋,λ₊), where c determines the 
overall and relative frequency of jumps; α determines the local 
behavior of the process (how the price evolves between big 
jumps); λ₋,λ₊ determine the tail behavior of the Lévy measure. 

    CGMY process Xt characteristic function )(u
tXφ is given 

by 
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being the characteristic exponent )(uXϕ  
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where 0<α<1 or α>1. 

IV. RISK NEUTRAL ESTIMATION OF PARAMETERS 

 Now that we have presented the processes and FFT method 
to price options when the characteristic function of those 
processes are known in closed form, we can use a number of 
different objectives to calibrate option pricing models. Among 
them, the minimization of the absolute pricing error gives 
more weight to in the money, long term options, while the 
minimization of the relative error gives more weight to out of 
the money, short term options. Here we settle this problem by 
using the Maximum Likelihood Estimation (MLE) method of 
[20]. Let ci

Market be the observed market price on the i-th 
option and ci

Model be the price according to the model under 
use; additionally, we assume that ci

Market and ci
Model satisfy the 

following equation, 
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Where iε  ~ N(0,1). The corresponding log likelihood 

function for ci
Market is, 
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where θ is the parameter vector. Reference [20] show that 
maximum likelihood estimation is equivalent to the 
minimization of 
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This is a non-linear minimization problem. We apply the 

standard Levenberg-Marquardt method to achieve the 
minimum point in the parameter space. To avoid local 
minima, we start with more than a hundred initial parameters 
guesses for each model. The interest rate considered was of 
5%.The parameter set θ is then determined minimizing the 
following expression 
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So, the objective function consists of finding the minimum 
value of a averaged sum of N squared residuals (difference 
between model prices and market prices) with respect to a set 
of n parameters of a model. Given that there are huge 
variations in the underlying prices (futures prices) the average 
squared errors are not comparable through time, and for the 
parameters estimates and implied volatility plot over time, we 
had to take into account the average relative squared errors: 
 

( )
∑

=

−N

i
Model
i

Market
i

Model
i

c

cc

N 1

2
1        (37) 

Usually the error produced by Fourier approximations is 
very little, except when maturity tends to zero (with very short 
maturities the Fourier method cannot provide satisfactory 
prices; one of the reasons to justify the choice of 4 months to 
maturity options on futures) or for deep-in-the-money or deep-
out-of-the-money options. As such, there was two steps on the 
estimation: Initially parameters for each model are estimated 
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using both the set of call and put prices. After the model 
calibration and parameters estimations we used the iterative 
search procedure Newton-Raphson method, to find implied 
volatilities for every option price and plot the implied 
volatility; Second we use parameter values estimated to price 
call options.In the next section we will discuss and present 
volatility surface plots considering the five processes 
discussed above for the last day of our sample. For implied 
volatility patterns discussion, implied volatility surfaces were 
computed daily, throughout the entire sample available. 

V. EMPIRICAL RESULTS 

Reference [18] proposed a jump diffusion model (MJD), 
under which the log return has both a diffusion component and 
a jump component (assumed to be a compound Poisson jump 
process). But, Poisson jumps happen at a very "slow" rate, that 
is, imply finite activity. Right after that [19] and [20], 
discussed the so called variance gamma model (VG) under 
which the jump component of the log return is an infinite 
activity process. This model was generalized in [22], CGMY, 
allowing for diffusions and jumps of both finite and infinite 
activity. Importantly, [23] and [24] argued that in infinite 
activity jump models, the diffusion component of the log 
return is redundant. Therefore, all these models can be 
simplified to pure jump models. Jump processes were also 
modeled by [21] and [25].Complementary to the previous 
papers, there is also a large empirical literature that tests the 
performance of the models, but these use mostly index or 
currency options. Reference [26] studies the behavior of 
Merton jump diffusion (MJD) before the 1987 crash, and 
shows that the S&P500 option market experienced crash fears 
before October, 1987, while [27] test the performance of VG 
in the Hang Seng index options market and conclude that VG 
marginally outperforms B&S. Also [23] test for the empirical 
performance of Lévy option pricing models. But, most of them 
investigate the performance on the call side, concluding that 
Lévy option pricing models exhibit better calibration 
performance. However, basing tests only on the call side is 
insufficient to draw the conclusion that more general Lévy 
models can explain market prices better than the traditional 
pure diffusion models. In this essay, we investigate model 
performance using both call and puts for each pricing model. 
Reference [22], using CGMY, also show that the index 
dynamics are devoid of a diffusion component. After the 
development of time changed Lévy processes, [22], [25] and 
[24] investigate their empirical performance in the S&P500 
index options market. Moreover, [23] compare the 
performance of B&S, MJD and VG in the Deutsche mark 
foreign currency options market, finding that VG has better 
out of sample performance and less entropy between the 
statistical measure and the risk neutral measure. More 
recently, [3] present evidence of stochastic skewness in over-
the-counter currency option markets, and develop a class of 
models that capture the stochastic skewness, where results 
favored these. Overall the extensions to B&S show strong 
empirical performance, especially the time changed Lévy 
processes, at least for financial markets. 
    The rational for having chosen Lévy models is that 
exponential distributions are known to have a good entropy. 

As such, it contains most information possible, capturing all 
available data, and also turns option price computation easier 
given that we may use FFT. Therefore, [5] calibration to 
market options is parametric, performed by minimizing an 
objective function, which in our case is the weighted sum of 
squared deviations, adjusted after for weighted relative sum of 
squared deviations, between model and market options. 
Reference [5] was the first to compare different methods to 
calculate implied volatilities for options on non-tradable spots, 
using NYMEX data on WTI European-type oil options on 
futures as example. He fits an exponential mean-reverting 
jump-diffusion model to market prices and a forward curve, 
and uses a stochastic volatility inspired (SVI) 
parameterization. We will start this section by presenting the 
implied volatility plots for each of the considered processes, in 
Fig. 1, considering electricity options on futures quoted on 27 
March 2008. Fig. 1 shows the volatility surface generated with 
5 models. Next we will show that the B&S model fails in 
modeling option prices on futures while Lévy processes can 
reproduce conveniently option prices and the volatility 
surface. Using model implied volatilities is also useful due to 
limited liquidity of market exchange-traded options in power. 
Therefore relying solely on market traded option prices to 
assess market fit is a disadvantage. Model implied volatility 
analysis have received attention on equity markets [28]-[30] 
and more recently in electricity markets by [31], although the 
latter’s only consider a spike mean-reverting model applied to 
the Nord Pool market. Reference [32] proposes to update 
implied volatility models on a day-by-day basis, whereby 
increasing the accuracy of the estimation, concluding that IVS 
evolves dynamically though time. As such, implied volatility 
modeling is sparse in commodity markets. Implied volatility 
plots across strike prices and time to expiration (implied 
volatility surface or IVS) is a convenient tool to illustrate 
discrepancies between market reality and theory. However, it 
should be noticed that implied volatility as a function of strike 
does not adequately capture volatility market movements, but 
the implied volatility as a function of moneyness parameter 
does. Therefore, we use as a measure of moneyness the ratio 
of the strike over the futures price (K/F). Implied volatility for 
each model is plotted on time to maturity (T) and moneyness 
(K/S = K/F). 

 

 
Fig. 1 Volatility surfaces generated with the MJD, VG, NIG, CGMY 

and B&S models on 27 March 2008 
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 First, noticed that we have calibrated the models for the 
entire sample, having obtained a volatility surface for each of 
the days in the sample. From all the computations it was 
clearly visible that the CGMY model provides the worst 
performance. VG being a special case of the CGMY model 
provides the best fit despite the day in the sample. 

Parameter values estimates obtained on that specific day for 
the MJD were 0.7402 for the diffusion volatility (σ), 0.1968 
for the jump intensity (λ), 0.0199 for the mean jump size (α) 
and 0.01 for the standard deviation of the jump size (δ). The 
diffusion drift (µ) was 0.0295 and 11.4459 for the VG and 
NIG models, respectively, while diffusion volatility values (σ) 
were 0.2384 for the VG process and -3.7489 for NIG. Finally, 
variance of the subordinator (κ) was -0.1516 and 0.1194 for 
VG and NIG, respectively. 

For the B&S model that uses a single volatility parameter 
(σ), the fitting wasn't better than for exponential Lévy models, 
being the parameter obtained of 0.2403. 

The CGMY model parameter values were 0.01, 0.4102, 
7.572 (λ₋) and 1 (λ₊) for the relative frequency of jumps (c), 
the local behavior of the process (α) which shows how the 
price evolves between big jumps, and for the tail behavior of 
the jumps (λ), respectively. 

In Fig. 2 to 6 we plot the relative quadratic mean errors and 
histograms obtained with the parameters found after 
calibration for all the models. Relative quadratic mean errors 
are represented on the vertical axis against the sample N on 
the horizontal axis. 
 

 
Fig. 2 Relative quadratic mean error and histogram plots using calls 

and puts testing under NIG 
     
    Fig. 2 shows a mean relative error per option of 0.159 for 
the NIG case with standard deviation of 0.125. However, for 
the VG process, the mean relative error per option was 8.44%, 
while 11.53% for standard deviation. Visually (Fig. 3) we can 
also see that this was the model for which model prices mostly 
fit market prices. Notices that, outliers can either indicate 
measurement errors or that the population has a heavy tailed 
distribution, and that we are dealing with options on futures. 
Initially, we should expect futures prices to be much more 
stable than spot prices in electricity markets. But, as futures 
depend on the evolution of the spot these should be modeled 
more accurately if we consider heavy-tailed distributions, like 
the ones we are applying. 
     

 
Fig. 3 Relative quadratic mean error and histogram plots using calls 

and puts testing under VG 
 
    The MJD model identified previously in the literature as 
being a good model for stock and commodities markets has 
mean relative error of 0.174 and standard deviation of 0.124, 
where relative quadratic mean errors plot show an higher 
dispersion of values inside the entire sample. 
     

 
Fig. 4 Relative quadratic mean error and histogram plots using calls 

and puts testing under MJD 
 
    The second lowest mean relative error (0.142) was obtained 
for the CGMY model and this revealed to be the model for 
which we have obtained the most unstable results. Plots for the 
CGMY process are presented in Fig. 5. 
     

 
Fig. 5 Relative quadratic mean error and histogram plots using calls 

and puts testing under CGMY 
 

Standard deviation for the CGMY process was 0.114, lower 
than that of the B&S model (0.124). The diffusion volatility 
parameter (σ) is 0.2403 for the B&S model while being 
0.7402 in the MJD process. This result was surprising in the 
sense that volatility of MJD comes from both the diffusion and 
jump components, and we should thus expect a lower value. 
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Maybe outlier’s presence could explain this result, and thus 
conclusions to be drawn deserve a more careful treatment. 

Moreover, the mean relative error per option was 0.155 for 
the B&S model, higher than that of the CGMY and VG 
processes. For all the processes used, histogram of relative 
quadratic mean errors using both calls and puts reinforce the 
idea on non-normality presented in electricity derivatives data. 
Given that a model with smaller pricing errors is the one that 
offers the best fit, in our analysis this role is attributed to the 
VG process. 
 

 
Fig. 6 Relative quadratic mean error and histogram plots using calls 

and puts testing under B&S 
 

Implied volatility surface plots are not new. An implied 
volatility is the volatility implied by the market price of an 
option based on the option pricing model. With this we mean 
the volatility that when used in the pricing model, yields a 
theoretical value for the option equal to the current market 
price of that option. We will present graphically the results 
obtained for both NIG and VG processes, thus considering the 
joint patterns of all implied volatilities quoted on the EEX 
electricity market for "ATM" options on futures of a 4 month 
maturity. 

Volatility surfaces need to be updated when forward prices 
changes or the implied volatility levels experience variations. 
Changes in the shape of implied volatilities for different points 
in the surface are usually highly correlated across strikes and 
maturities due to various arbitrage relationships. Therefore, if 
we have updated information on the implied volatilities for the 
most liquid options traded in the market, we can treat those as 
a volatility shock. 

For many commodities where the price is supported by non-
market effects (government intervention or production costs) it 
is common to see a flat or negative skew for puts and a 
pronounced positive skew for calls, due to the risk of price 
spikes. 

The shape of the volatility smile can also provide 
information about the correlation of price movements and 
changes in the implied volatility. For certain commodities, it is 
reasonable to expect that price increases are more likely to be 
associated with higher implied volatilities than price 
decreases. For example, in the oil market, when price goes up 
it is usually due to increased geopolitical instability, and this is 
commonly associated with higher levels of volatility. In the 
case of natural gas and electricity markets, large price 
increases are usually the result of supply or demand shocks 
that tend to be followed by higher implied volatilities for 
traded options. 

In order to price a European call or put option with the same 
strike and maturity with the B&S model, the same volatility 
should be used. This is true for European options when put-
call parity holds, and it does not depend on the future 
probability distribution of the underlying, due to the fact that it 
is based on simple arbitrage arguments. Therefore, when we 
are talking about implied volatilities, it does not matter 
whether we are referring to calls or puts, because they should 
be the same. However, in electricity put-call parity does not 
hold due to the asset non-storability, and we decided to price 
only call options. 

We have obtained implied volatility surfaces for each of the 
available daily quotes and retained implied volatility, average 
squared errors and relative average squared errors for each of 
the processes. Fig. 7 presents the implied volatility daily plot 
for the entire observation period. The blue line is for the NIG 
process while the red line is for the VG process. 
 

 
Fig. 7 Implied volatility daily plot using at-the-money options for the 

entire sample period 
         

It was observed that the level of implied volatilities change 
with time, deforming the shape of the implied volatility 
surface. Therefore, the evolution in time of this surface 
captures the evolution of prices in the options market. The 
implied volatility surface also changes dynamically over time 
in a way that is not taken into account by current modeling 
approaches, but that should. 

In fact, if we look at Fig. 7 we see that implied volatility 
was relatively lower at the beginning of the sample period and 
increased substantially as time passed by. This increase was 
even higher during 2007 with implied volatility values of more 
than 1.5 for that period under the NIG model, and of around 1 
for the VG process. Market changing rules, like CO₂ contracts 
introduction and development, or even fuel prices evolution, 
increased liquidity in the options on futures market, extreme 
weather conditions, or even the financial crisis could explain 
this implied volatility movement on the market. However, the 
causes underlying the dynamics of implied volatility over time 
are left for future works, where we intend to apply semi-
parametric or even non-parametric methods in order to be able 
to explain this dynamic. 

To reinforce our results we have also computed mean and 
variance values obtained from implicit volatility and relative 
quadratic mean errors for the data gathered. We present results 
on Tables I and II for each of the processes used. In fact, mean 
and variance implied volatility values increased suddenly from 
2007 onwards, independently of the process under analysis, to 
decrease after in 2008, and explaining this behavior will be a 
challenging task. For know we can only say that this increase 
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is due to also higher prices verified in the market in that 
period. Implied volatility values have varied from as low as 0 
for CGMY, to as high as 1.79 for the NIG model. 
 

TABLE I 
MEAN AND VARIANCE VALUES OF IMPLIED VOLATILITY BY MONTH FOR 

THE ENTIRE SAMPLE PERIOD, FOR PROCESSES VG, NIG, MJD, CGMY 

AND B&S 

 

 
 
Relative mean squared errors in our implied volatility 

estimates ranged from 0.009 for almost every process to a high 

of 0.88 for all the processes analyzed. In general all models 
have showed a high instability when estimated through time. 
    The evolution of calls implied volatility is also different 
throughout months for 4 months options on futures, and this 
could also be different for different options. It would be useful 
to analyze implied volatility surface evolution from day-to-
day, which can be modelled in the spirit of yield and forward 
curve modelling by applying principal component analysis 
(PCA) methods. On Fig. 8 it is plotted the implied volatility 
values obtained for each of the fitted processes, which 
generated those values reported on Table I. 
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Fig. 8 Implied volatility patterns for VG, NIG, MJD, CGMY and 

B&S processes 
     

Greater sensitivity to economic, financial or political 
information which impact demand and supply and therefore 
commodities markets, can be adduced to account for 
uncertainty which turns difficult to derive a general profile for 
implied volatilities. The variance gamma process implied 
volatility highest value occurred in 14 June 2007, being 1.159. 
As for NIG the highest value turns to be on 21 September 
2007 (1.790), while for MJD and CGMY the highest implied 
volatility value occurred in 29 October 2007, which have been 
1.134 and 1.367, respectively. The B&S model implied 
volatility computed values presents the highest value on 
January 6, 2006, being only 0.99. We may infer from here the 
underestimation of implied volatility obtained using B&S as it 
has already been reported previously in the literature [13], [10] 
and [5]. We could model implied volatility behavior according 
to moneyness and option maturity using IVFs in the spirit of 
[32] OLS regressions. Moreover, generalizations to 
incorporate additional state variables inherent to electricity 
markets like volatile fuel prices, CO₂ allowances prices, and a 
dummy to account for market change rules impact, are among 
those possibilities that offer promising areas for future 
research, allowing for a deeper understanding of electricity 
implied volatilities. 
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TABLE II 
MEAN AND VARIANCE VALUES FOR RELATIVE MEAN SQUARED ERRORS 

BY MONTH FOR THE ENTIRE SAMPLE PERIOD AND FOR PROCESSES VG, 
NIG, MJD, CGMY AND B&S 

 

 
    Relative mean squared errors mean and variance values over 
months, show that the pattern of increasing values is mostly 
felt in 2007, especially during summer (June, July) and winter 
(December, January) due to the commodity seasonality 
cooling and heating needs, respectively, to start decreasing 
from 2008 onwards. In fact, more options started to be traded 
from 2007 onwards and market learning can be one of the 
justifications. But price increases verified could also be 
explained by other causes. The VG process shows mean and 
variance values lower than those of NIG and MJD processes, 
for most of the months, but always monthly lower than 
CGMY, at least until 2007. From that moment onwards results 
change a lot. 

 
 

     

TABLE III 
MEAN AND VARIANCE VALUES FOR IMPLICIT VOLATILITY AND RELATIVE 

MEAN SQUARED ERRORS FOR THE ENTIRE SAMPLE PERIOD AND FOR 

PROCESSES VG, NIG, MJD, CGMY AND B&S 
 

 
     

Since we have implied volatility values and relative mean 
squared errors computed for each of the days in the sample, in 
Table III we report implicit volatility and relative mean 
squared errors, for the entire sample period, based on mean 
and variance values. We observe that CGMY has the largest 
implicit volatility mean, while NIG has the highest variance. 
Once again we see that the model with the smaller mean 
relative pricing error is the VG model, given that CGMY 
should be excluded.The CGMY model was the one that 
revealed the worst adjustment independently on the day, in 
terms of very strange, unstable and hard values to interpret. 
Hence we can get improvements if we employ more general 
Lévy processes than Brownian motion in option pricing. 
Moreover, the B&S model has a mean relative mean squared 
error lower than that of the MJD model indicating that jumps 
are necessary to include in option pricing. The bad 
performance of the B&S model also suggests that we need 
additional parameters to capture skewness and kurtosis of 
futures contracts (the underlying) which also implies increased 
computational time and hardness.However, a huge array of 
possibilities emerges with respect to the "cause-effect" 
standards, and studying these deeply would be our next step. 
The main conclusion therefore remains: Heavy tailed 
modeling in electricity options on futures is extremely 
important.   

VI. CONCLUSION 

This paper addressed option pricing models from the 
perspective of Lévy processes, which offer better tools for 
analyzing skewness, fat tails, and stochastic volatility in 
financial data than the classical diffusions or jump-diffusion 
models. We estimate relative pricing errors for the Affine 
Jump Diffusion model (MJD) and Lévy models presented, 
using the B&S model as a benchmark, on electricity futures 
options. The stability of the implied volatility estimates over 
time is also examined, with an increasing pattern identified in 
2007. Using these Lévy models, we clearly observe a 
significant improvement with respect to the B&S model. We 
can conclude that the more flexible Lévy processes are more 
suitable than the normal distribution.Volatility surface plots on 
27 March 2008 show that the CGMY model provides the 
worst performance compared to VG. Therefore, allowing for 
diffusions and jumps of both finite and infinite activity 
(CGMY model) seems redundant in electricity. In fact, from 
all the processes analyzed, CGMY model gave the worst and 
incorrect results.Implied volatility surface changed 
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dynamically over time in a way that is not taken into account 
by current modeling approaches in electricity options on 
futures, with visible patterns. The increased pattern verified on 
implied volatilities from 2007 onwards is due to larger prices 
verified in the market in that period. In the present setting, and 
considering that modeling adjustment is measured by that 
model with the smallest relative pricing error, the Variance 
Gamma (VG) process should be the one selected for electricity 
options on futures.The analysis undertaken over implied 
volatility indicates that an increase in the underlying price will 
increase the implied volatility, but will also increase relative 
mean squared errors. Moreover, differences in changes of 
implied volatility found between different models revealed to 
be seasonal, where in general mean and variance values 
changed in the same way for every model from one month to 
another, especially during winter and summer. As such, 
volatility changes for changed uncertainty, or else, increasing 
futures prices. This also induces the need to account for 
seasonality when modeling electricity spot/futures price 
volatility, and not only to account for this seasonality for 
electricity prices (as it has been extensively noticed in the 
literature). However, we should bear in mind that the higher 
the volatility, the higher the premium to be demanded and the 
more difficult it will be to pay for the option.Despite the future 
work tips provided during the exposition, we should also 
consider some other possibilities. In the future, it would be 
interesting to calibrate with more option data as it becomes 
available. We also should to take into account non-constant 
interest rates and Lévy processes with stochastic volatility. 
More research is needed also on how to link the implied 
volatility dynamics to return factors, market specificities as 
well as discontinuous movements in the price and implied 
volatility dynamics, and still retaining simplicity and 
tractability. Moreover, computation of the Greeks under 
infinite activity models would be interesting for risk 
management purposes. 
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