
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

602

An Edit-Distance Algorithm to Detect Correlated
Attacks in Distributed Systems

Sule Simsek

Abstract—Intrusion detection systems (IDS)are crucial compo-
nents of the security mechanisms of today’s computer systems.
Existing research on intrusion detection has focused on sequential
intrusions. However, intrusions can also be formed by concurrent
interactions of multiple processes. Some of the intrusions caused
by these interactions cannot be detected using sequential intrusion
detection methods. Therefore, there is a need for a mechanism that
views the distributed system as a whole. L-BIDS (Lattice-Based
Intrusion Detection System) is proposed to address this problem. In
the L-BIDS framework, a library of intrusions and distributed traces
are represented as lattices. Then these lattices are compared in order
to detect intrusions in the distributed traces.

Keywords—Attack graph, distributed, edit-distance, misuse detec-
tion.

I. INTRODUCTION

An intrusion is defined as any set of actions which compro-
mise the integrity, confidentiality, or availability of information
and/or resources [4]. Intrusion detection in computer systems
has been an active field of research for over three decades.
Intrusion detection techniques are classified into two main
groups based on the detection mechanism, Anomaly Detection
and Misuse (Signature-based) Detection. In this paper, the
focus is on one form of misuse detection, distributed-system
based misuse detection in which the system inspects message
traffic between the processes of a distributed system and
detects intrusions that violate the system architecture’s security
policy. Although the current research focuses on intrusions
caused by sequential events, intrusions can also be formed
by concurrent interactions of multiple processes. Some of the
intrusions caused by these interactions cannot be detected by
using sequential intrusion detection methods alone on each
process. Therefore, there is a need for a mechanism that is
capable of capturing the concurrent interactions of processes
as well as detecting intrusions caused by these concurrent
interactions. Taking into account the concurrent structure of
events is important since distributed systems interact between
processors. The distributive lattice [16] is an attractive frame-
work to represent concurrent processor interactions since it is
capable of capturing causal interactions between the system
components as well as the concurrent interactions between
them [3].

Unfortunately, security threats increase exponentially with
multiple vulnerabilities [19]. The representation model (lat-
tices) to illustrate these vulnerabilities in this work also grows
exponentially. However, this problem can be overcome by
limiting the size of the lattice through different methods such

Sule Simsek is with the Department of Computer Science, Missouri
University of Science and Technology, Rolla, MO, USA 65409, email:
simsek@mst.edu

as reducing the size of the lattice by using computation slicing
method which slices the lattice into a concise sub-lattice [17]
and detecting the conjunctive predicates [8], [2] of the lattice.

In the remainder of this paper: Section 2 discusses the
related work on attack graphs, distributed intrusion detection
systems, and sequence-based intrusion detection. Section 3
motivates the reader to the importance of the problem. In
Section 4, fundamental concepts regarding the temporal prop-
erties of distributed systems is explained. Section 5 outlines the
architecture of the proposed method, L-BIDS. In Section 6, the
problem is analyzed and the paper concludes with discussion
and future plans.

II. RELATED WORK

Representing the attacks as graphs is becoming a popular
research area. Lippmann et al. [22] used attack graphs to show
how attackers progress through an enterprise network; [11]
represented attacks as graphs to simulate intruders’ actions
during the design and exploitation stages of computer net-
works; Gaoet al. [7] monitored the programs and modeled
sequential system call behavior as execution graphs; Tupper
and Zincir developed security metrics [19] that use data from
attack graphs to decide the attackability of the network.

Over the past years, different methods have been applied to
distributed intrusion detection. [24] combined distributed in-
trusion detection with anomaly-based clustering techniques for
completing global information extraction of intruder actions;
Wu et al.[23] presented BDI(Belief-Desire-Intention) model
of intelligent agents to improve the robustness hierarchical
distributed intrusion detection system. [21] designed an multi
agent-based distributed intrusion detection system which sur-
vives the attacks by hiding the main source of the network
from the attacker. [9] presented an event sequence based
distributed intrusion detection system in which the intrusion
detection performance rate is elevated by focusing on the
timespace precision, time synchronization and network delay.

Sequence relations between the events of an intrusion have
been studied widely. Lee et al. applied data mining [14],
Forrest et al. used human immunology system inspired tech-
niques [10], Lane and Brodley used limited memory models
to construct the normal profile of temporal data [13], and
[20] represented normal program behavior using system call
frequencies.

III. MOTIVATION

In order to elaborate on the differences between sequen-
tial and concurrent (distributed) systems and intrusions that
occur in these systems we provide two intrusion examples,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

603

one sequential and one distributed. The first example is the
sunsendmailcp intrusion of the sendmail UNIX program. In
the sunsendmailcp intrusion, first the sunsendmailcp script
uses a special command line to cause sendmail to append
an email message to a file. By using this script on a file
such as .rhosts, a local user may obtain root access [10]. The
sequence of events observed in the sunsendmailcp intrusion
is illustrated in Figure 1. In Figure 1 circles represent events
and the vertical line represents the timeline of the events which
happen at user1’s (U1)’s machine. Initially the email message
should be appended to a file then the intruder, U1, will be
able to obtain a root access. The sunsendmailcp intrusion of
sendmail can be detected by sequential intrusion detection
systems by observing the sequence of events which constitute
the intrusion.

U1

Time

Root
Access

Email

Append

Fig. 1. sunsendmailcp intrusion of the sendmail UNIX program. Initially,
sunsendmailcp script causes sendmail to append an email message to a file
which resides at local user U1’s machine then by using this script on .rhosts,
U1 may obtain a root access and attack other users’ machines in the system.

Intrusions can also be formed by non-sequential events.
In other words, the intrusive events may be concurrent with
each other. We provide a distributed intrusion example that is
resulted from concurrent interactions of processes which is the
distributed denial of service (DDoS) attack scenario illustrated
in Figure 2. In Figure 2 arrows between processes represent
messages. The starting point of the arrowed-line represents the
sending of a message, and the ending point of the arrowed-
line represents the receiving of a message. The dashed lines
represent the propagation of the intrusion. In this correlated,
distributed attack, P1 decides to initiate a DDoS attack on P4.
In order to achieve its malicious goal, P1 attempts to persuade
the other processes in the system to collaborate with it. First
P1 sends a message to P3 and receives a message from P3
which confirms P3’s willingness to collaborate with P1. Then
P1 sends a message to P2. Since all these processes agreed to
initiate an attack on P4, they start sending excessive messages
to P4 which results in P4 consuming all its resources to try
to reply to these excessive messages, therefore results in an
attack on the availability of system resources for P4.

On the right side of Figure 3 events on different processes
are provided in sequence. The process numbers followed by
send (shown by S after the process number) and receive
(shown by R after the process number) messages represent
how a sequential intrusion detection method views the DDoS
scenario depicted in Figure 2. Since the intrusive messages
sent by P1, P2 and P3 are observed at different processes’
timelines, P4 appears to receive three independent messages.
This representation fails to show the dependency between

 P1 P2 P3 P4

Time

Fig. 2. The distributed denial of service (DDoS) attack scenario which can
not be detected with sequential intrusion detection methods. P1, P2, and P3
collaborate on a DDoS attack on P4.

P1_S

P1_R
P1_S

P1_S

P2_R

P2_S

P3_R
P3_S

P3_S

P4_R

P4_R
P4_R

 P1 P2 P3 P4

P1: P1_S, P1_R, P1_S, P1_S

P2: P2_R, P2_S

P3: P3_R, P3_S, P3_S

P4: P4_R, P4_R, P4_R

Fig. 3. TimeSpace Diagram of the intrusion scenario including the labeling
on send and receive messages (on the left). Observations at each individual
process (on the right). The concurrency between intrusive messages can not
be captured by sequential intrusion detection methods due to the limited
individual process observations.

these virtually unrelated messages on different processes. In
other words, the partial order or causality between these
intrusive messages can not be detected by sequential intrusion
detection methods. On the other hand, by obtaining a global
view of the distributed system that observes causality we can
detect this intrusion. This is the basis for distributed intrusion
detection.

Without the global view of the distributed systems, the
intrusions such as the one depicted in Figure 3 gone un-
detected. In order to capture the relations between multiple
messages on different processes and detect intrusions caused
by these messages, we propose L-BIDS. The power of the
lattice representation is due to the ability of capturing both
sequential and distributed intrusions as well as concurrent
permutations of the events. Our aim is to represent intrusions
and distributed system traces as lattices then compare them
to detect to correlated, concurrent intrusions in the distributed
system traces.

IV. PRELIMINARIES, MODEL AND BACKGROUND

Since our aim is to detect distributed intrusions represented
in the form of lattices, we provide a brief introduction to the
terminology of distributed systems and graph (more specifi-
cally lattice) theory in the next sub-sections.

A. Distributed System Preliminaries

“happens-before” Relation. The relation “happens-before”
denoted by “→” on the set of events of a system is the smallest
relation satisfying the following conditions:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

604

1) If a and b are events in the same processor, and a comes
before b, then a →b; and a & b are sequentially related.

2) If a is the sending of a message by one processor, and b
is the receipt of the same message by another processor,
then a → b; and a & b are causally related.

3) If a → b and b → c then a → c.
4) If a and b are two distinct events and ⇁ (a→ b) and ⇁

(b →a); and a & b are concurrent [12]. The symbol ⇁
represent the negation logical symbol.

Consistent Global State. The entire system events repre-
senting the concurrent states of all processes based on their
message interactions.

Vector Time Stamp (VTs). A discrete clock for a process
is a monotonically increasing integer by increasing its value
at each event occurring at the process. A vector time stamp
is a vector of discrete clock values, one from each process in
the distributed application [6].

Time-Space Diagram. Modeling of a distributed computa-
tion by utilizing the partial order on the events.

Distributive Lattice Representation of the Time-Space
Diagram. The collection of all possible consistent states of a
distributed computation.

B. Lattice Theory Preliminaries

Lattice. A lattice L is a partial ordered set (poset) P in
which every pair of elements (x,y ε P) have a greatest lower
bound denoted by x

∧
y, and a lowest upper bound denoted by

x
∨

y [1]. Let L be represented as L(V,T) such that V denote
the set of vertices, T denote the set of transitions (edges).

Distributive Lattice. Let L be a lattice. L is said to be
distributive if it satisfies any of the following identities: (for
all x,y,z ε L)

1) x
∧

(y
∨

z) = (x
∧

y)
∨

(x
∧

z).
2) x

∨
(y

∧
z) = (x

∨
y)

∧
(x

∨
z).

3) (x
∨

y)
∧

(x
∨

z)
∧

(y
∨

z) = (x
∧

y)
∨

(x
∧

z)
∨

(y
∧

z).

V. THE PROPOSED METHOD

A. Architecture of L-BIDS

Figure 4 depicts the architecture of L-BIDS. In an L-
BIDS lattice, nodes represent consistent global states of a
distributed system and edges represent the events which are
the transitions from one consistent global state to another.
The paths in the lattice capture the sequence of events. If
the path is split into several forks then we can observe the
propagation of distributed intrusion in concurrent global states.
In the first phase of L-BIDS; the intrusions are identified
as intrusion signatures based on domain knowledge and/or a
priori knowledge. Then these intrusion signatures are collected
into a trace-based audit log. In the second phase, these audit
logs are transformed into intrusion signature lattices. In the
third phase of L-BIDS, messages between processes of a
distributed system are collected at run-time and aggregated
into a trace-based audit log. As the fourth phase, this collected
distributed trace is transformed into collected trace lattice.
The fifth phase of L-BIDS consists of the comparison of the

collected trace lattice and current intrusion signature lattice
in the library by the lattice matching algorithm. If these two
lattices match, an intrusion alert is generated and the intrusion
is stopped. On the other hand, if two lattices do not match then
the next intrusion signature lattice in the library is accessed
and comparison is performed between this intrusion signature
lattice and the collected trace lattice. This phase repeats
throughout the lifetime of L-BIDS. The transformation of audit
logs into distributive lattices is achieved by latGenU program
[18] and Graphviz software [5]. The library of intrusions
is a dynamic structure in which as the new intrusions are
identified this library is updated and extended. The lattice
matching phase of L-BIDS is related to the graph edit distance
problem1. Our goal is to formulate edit operations to apply on
the collected trace lattice so that we can obtain a similarity
or dissimilarity metric between the collected trace lattice and
intrusion lattice.

Intrusion
Signatures

Library of Intrusion Signature Lattices

Lattice Matching Algorithm
(Match?)

Access to the
Next Intrusion

Lattice

Distributed
System Trace

Collected
Trace
Lattice

STOP
Intrusion

Yes No

Fig. 4. The architecture of Lattice-based intrusion detection system(L-BIDS)

B. Encoding Scheme

In the distributive lattice representation of the collected
distributed trace, the nodes represent consistent global states
of a distributed system and edges represent the events which
are the transitions from one consistent global state to another.
Initially, the nodes of the lattice are composed of VTs of all the
processes in the system. Given that the number of processes is
n, this constitutes a vector of size n2. Representing the global
states with number-dependent VTs is not effective when com-
paring lattices. Additionally, one state can be represented with
specific VTs for a specific scenario and the same state can be
represented with different VTs for another scenario. In order
to solve this number-dependent and inconsistent representation
of global states problem we propose an encoding scheme for
lattice edges. This enables us to reason about the meaning of
the edges and lattice paths, and ultimately the behavior of the
intrusion more effectively and accurately.

1Graph edit distance [15] is used to find the similarity between graphs and is
defined as transforming one graph into another by performing edit operations
and computing their associated costs which resulted in minimum edit costs.
A lower cost of transformation represents greater similarity, whereas a higher
cost represents greater dissimilarity between the graphs.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

605

The definition of the encoding scheme is given as follows:
Each consistent global node in the lattice consists of VTs of
all the processes in the system. For a system of n-processes,
VTs of n digits is utilized.

1) For each starting and ending node pairs connected with
edges, subtract the starting-node’s first digit of VTs
which represents the first process’ VTs from the ending-
node’s first digit of VTs.

2) Keep performing the subtraction for all digit-wise num-
bers of VTs of the starting and ending node pairs.
The subtraction resulted in VTs of size n in which the
non-zero element of the VTs reveals the process which
sent/received message.

3) Map the resulting non-zero element of VTs to letters in
the alphabet which represent the send and receive events
at different processes.

The encoding scheme for events in a distributed system with
n-processes is formulated as follows:
For i = 1, 2, . . . , n, n is the number of processes.
Let

Pi be the ith process
Msi be the sending of a message at the ith process
Mri be the receiving of a message at the ith process
Then there exists a one-to-one mapping between the sending

and receiving of messages happened at P1, P2, . . . , Pn to the
letters in alphabet.

C. Equivalence Edges

Figure 5 represents the rhombus shaped sub-lattice of a
distributive lattice. We call the parallel edges which are labeled
with the same symbol as “equivalence edges.”The advantage of
“equivalence edges” (denoted by EE of events send (S), receive
(R)) of the distributive lattices is that: any edit operation which
is performed on an edge can simply be performed on the
“equivalence edges” of this edge.

a

b a

b

Fig. 5. Two events denoted by a and b are concurrent. The events denoted
by the same symbol which resides at the lower and upper half of the lattice
represent the same events (Equivalence edges).

VI. PROBLEM ANALYSIS

The problem of distributed intrusion detection becomes
more complicated when an intruder tries to trick the system by
sending irrelevant extra messages. Additionally, messages can
naturally be interleaved by other processes which results in a
similar type of an effect as in the case of the tricking intruder.
These irrelevant extra messages within the intrusion scenario
can cause the collected trace lattices to be different than the
intrusion lattices. However, further comparison of the intrusion
lattice and the collected trace lattice can lead to the discovery

of essential similarities or equivalences between these lattices.
The following discussion relates to the structural lattice differ-
ences caused by the embedding of extra irrelevant messages
and how to eliminate the effects of these messages. In order
to eliminate the effects of these messages, the irrelevant extra
messages are classified into three types:

1) Extra messages which preserve concurrency: Embedding
of this type of an extra message does not change
the relations between the intrusive messages, thus it
preserves the concurrency between intrusive messages.

2) Extra messages which transform concurrency into
causality: Embedding of this type of an extra message
transforms the concurrency between intrusive messages
into causality.

3) Extra messages which preserve causality: Embedding
of this type of an extra message preserve the causality
between intrusive messages2.

Since our aim is to discover whether the collected trace
lattice contains an intrusion, we compare these lattices by
using the proposed lattice matching algorithm. The lattice
matching algorithms for eliminating the effects of each type of
extra message are defined in the following sub-sections. The
notation used in these algorithms is given as follows:
Let

LT(L) be the lattice traversal of a lattice L
I be the set of intrusion signature lattices
i be the intrusion signature lattice (i ε I)
c be the collected trace lattice
E be the set of events (E = S → R: S (send event),
R (receive event), S, R ε T).

A. Preserving Concurrency

In order to transform a concurrency preserving collected
trace lattice into an intrusion lattice the following edit opera-
tions are proposed as follows:

Delete Edges. Delete e (e ε E).
Merge Vertices. Merge ve

s (the vertex which e starts from)
with ve

e (the vertex which e ends at) (ve
s , v

e
eε V).

The recursive function preserve cc is the cost of transform-
ing a collected trace lattice into an intrusion signature lattice by
performing the proposed edit operations on LT(c) and E. The
goal is to find the optimum sequence of edit operations which
minimizes preserve cc. The application of the edit operations
on LT(c) and E are defined as follows:

1) DelS: Apply the “Delete Edges” operation on S of e and
also on all EE of S in LT(c).

2) MergeS: Apply the “Merge Vertices” operation on all
vS

s of S and vS
e of S in LT(c).

3) DelR: Apply the “Delete Edges” operation on R of e
and also on all EE of R in LT(c).

4) MergeR: Apply the “Merge Vertices” operation on all
vR

s of R and vR
e of R in LT(c).

2The first type of extra message can also be viewed as this type of extra
message. In other words, embedding this type of extra message results in the
same differences in the lattices which is also caused by the first type of extra
message. Therefore, the series of operations to transform a lattice embedded
with the first type of extra message is exactly same as the series of operations
to transform a lattice embedded with the third type of extra message.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

606

The associated costs with these operations should be
summed up when they are applied on LT(c) and E. The total
cost of these operations (Cdm) is defined as follows:
Cdm= Cost(DelS)+Cost(MergeS)+Cost(DelR)+Cost(MergeR)

In preserve cc, E also represents the candidate set of events
which will be deleted from LT(c). The goal is to find specific
e’s in E which minimizes the cost of transforming one lattice
into another. The recursive function preserve cc is:
preserve cc(i, c, E) = min(preserve cc(i, c-e, E-e) + Cdm,

preserve cc(i, c, E-e))
Boundary Conditions:

1) if (E = ∅) and (c �= i)
preserve cc(i, c, E)= ∞

2) if (c = i)
preserve cc(i, c, E)= 0

3) if (E = ∅) and (c = ∅)
preserve cc(i, c, E)= ∞

The first boundary condition is for the case in which all the
candidate events in E are considered for deletion and all the
operations are also performed on c, however, the resulting c is
still not the same as i. Therefore, the cost associated with this
case is extremely huge (∞). The second boundary condition
applies to the case in which no matter what E is, c and i
become the same. In this case, the matching between i and c
is accomplished and the cost of this case is zero. In the third
boundary condition, all the candidate events are removed from
c and E and both become empty sets. Since an empty set (c)
is not equal to a non-empty set (in this case i), the associated
cost for this case is extremely huge (∞).

As an example consider the time-space diagram of an
intrusion signature in Figure 6. Also in Figure 7 the time-
space diagram of the concurrency preserving extra message
embedded collected distributed trace is depicted. The cor-
responding distributive lattice of the intrusion signature is
depicted in Figure 8. The corresponding distributive lattice of
the concurrency preserving extra message embedded collected
distributed trace is also illustrated in Figure 9.

 P1 P2 P3 P4

1000 (a)

2020 (b)
3020 (a)

4020 (a)

1010 (f)
1020 (e)

1030 (e)

3120 (d)
3220 (c)

1031 (h)

3232 (h)

4233 (h)

Fig. 6. Time-space diagram of the intrusion scenario.

The proposed edit operations are applied on all combina-
tions of events in the lattice seen in Figure 9. The optimum
sequence of edit operations which minimizes preserve cc is
found as the one which resulted from applying the proposed
operations to the event of g followed by d. The “Merge
Vertices” operation defined in Merge Vertices operation is
consistently observed throughout the lattice which results in

 P1 P2 P4 P5

1000 (a)

2020 (b)
3020 (a)

4020 (a)

1010 (h)
1020 (g)
1030 (g)
1040 (g)

3120 (d)
 3230 (d)

3330 (c)

1041 (j)

3342 (j)
4343 (j)

Fig. 7. Time-space diagram of the interleaved intrusion scenario.

00000

10000

a

10010

h

10020

g

20020

b

10030

g

30020

a

20030

gb

10031

j

31020

d

30030

g

40020

aa

20031

j

31030

g

32020

c

41020

ad

30031

j

40030

a dg

31031

j

32030

c

41030

a g

42020

ag c

b

a

d

40031

a dj

32031

c

41031

a j

42030

aj cd

32032

j

42031

ac

g

j

42032

a j

42033

j

Fig. 8. The corresponding distributive lattice of the intrusion scenario.

a compressed lattice. Therefore, this operation decreases the
size (total number of nodes and edges) of the collected trace
lattice and make the size of the collected trace lattice exactly
same as the intrusion lattice. Applying the “Merge Vertices”
operation on the lattice seen in Figure 9 compresses it and
reduces the number of its nodes from 42 to 30 which is the
number of nodes of the intrusion lattice seen in Figure 8.

B. Transforming Causality into Concurrency

Transforming causality into concurrency requires adding
concurrency to a causal system. In order to transform a
collected trace lattice into an intrusion lattice by transforming
the causality into concurrency the following edit operations
are defined as follows:

Delete Edges. Delete e ε E.
Move-Up the Edges. Move e

′

(e
′

ε E) up according to the
following rules: If the edge appears before S of e happens at
the same process as S and if e

′

appears after R of e happens
at the same process as R then move up e

′

and attach it to the
nearest edge which also happens at the same process as itself.
If it does not exist, move e

′

up and attach it to the root of the
lattice.

Update the Vector Timestamps of the Vertices. Update
the VTs of the vertices attached to e

′

.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

607

00000

10000

a

10010

h

10020

g

20020

b

10030

g

30020

a

20030

gb

10040

g

31020

d

30030

g

40020

aa

20040

g

31030

g

41020

ad

30040

g

40030

a dg

32030

d

31040

g

41030

a g

b

10041

j

a

20041

j

d

30041

j

40040

a dg

32040

g

33030

c

42030

ad

31041

j

41040

a dg

32041

j

33040

c

42040

a g

43030

ag c

b

a

d

40041

a dj

d

41041

a dj

33041

c

42041

a j

43040

aj c

d

d

33042

j

43041

ac

g

j

43042

aj

43043

j

Fig. 9. The corresponding distributive lattice of the interleaving intrusion
scenario.

Take the Cross-Product of All Concurrent Vertices.
Identify concurrent vertices by examining their VTs and take
the cross-product of all concurrent vertices.

transform cc is the cost of the optimum sequence of edit
operations which transforms the collected trace lattice into
the intrusion signature lattice. The application of the edit
operations on LT(c) and E are defined as follows:

1) DelR: Apply the “Delete Edges” operation on R of e
and also on all EE of R in LT(c).

2) MoveR: Apply the “ Move-Up the Edges” operation on
all e

′

of R in LT(c).
3) UpdateR: Apply the “Update the Vector Timestamps of

Vertices” operation on vR
e of R in LT(c).

4) DelS: Apply the “Delete Edges” operation on S of e and
also on all EE of S in LT(c).

5) MoveS: Apply the “ Move-Up the Edges” operation on
all e

′

of S in LT(c).
6) UpdateS: Apply the “Update the Vector Timestamps of

Vertices” operation on vS
e of S in LT(c).

7) TakeCP: Apply the “Take the Cross-Product of All
Concurrent Vertices” operation in LT(c).

The associated costs with these operations should be
summed up when they are applied on LT(c) and E. The total
cost of these operations (Cdmut) is defined as follows:
Cdmut= (Cost(DelR) + Cost(MoveR) + Cost(UpdateR) +

Cost(DelS) + Cost(MoveS) + Cost(UpdateS) +
Cost(TakeCP))

In transform cc, E also represents the candidate set of
events which will be deleted from LT(c). The goal is to find
specific e’s in E which minimizes the cost of transforming one
lattice into another. The algorithm transform cc is:
transform cc(i, c, E) = min(transform cc(i, c-e, E-e) + Cdm,

transform cc(i, c, E-e))
Boundary Conditions:

1) if (E = ∅) and (c �= i)

1000 (a)

 1100 (d)

0001(g)

0011 (f)

 P1 P2 P3 P4

1000 (a)

1200 (c)

 1100 (d)

1201 (h)

1202 (g)

1212 (f)

 P1 P2 P3 P4

Fig. 10. Time-Space Diagram of the intrusion scenario (on the left) and the
Time-Space Diagram of the collected trace scenario (on the right).

transform cc(i, c, E)= ∞
2) if (c = i)

transform cc(i, c, E)= 0
3) if (E = ∅) and (c = ∅)

transform cc(i, c, E)= ∞
The first boundary condition is for the case in which all the

candidate events in E are considered for deletion and all the
operations are also performed on c, however, the resulting c is
still not the same as i. Therefore, the cost associated with this
case is extremely huge (∞). The second boundary condition
applies to the case in which no matter what E is, c and i
become the same. In this case, the matching between i and c
is accomplished and the cost of this case is zero. In the third
boundary condition, all the candidate events are removed from
c and E and both become empty sets. Since an empty set (c)
is not equal to a non-empty set (in this case i), the associated
cost for this case is extremely huge (∞).

In order to elaborate on the application of transform cc we
provide a contrived scenario in Figure 10 which shows an
intrusion scenario (on the left) and a collected trace scenario
(on the right). Figure 11 depicts the corresponding lattices
of the scenarios seen in Figure 10. Our goal is to transform
the lattice on the right hand-side of Figure 11 into the
lattice on the left hand-side of Figure 11 by performing the
proposed operations. The sequence of edit operations which
minimizes transform cc is applied on the collected trace
lattice depicted in Figure 11. Figure 12 is obtained by applying
the edit operations # 1 and # 2 on Figure 11. Figure 13 is
obtained by applying edit operation # 3. Figure 14 is obtained
by applying edit operations # 4 and #5. After all concurrent
events in Figure 14 are identified and the cross-product of
these concurrent events is taken, Figure 14 is transformed into
the same graph as shown on the left side of Figure 11. In
other words, collected trace lattice is transformed into intrusive
lattice, therefore, we can conclude that collected distributed
trace is in essence intrusive.

When L-BIDS compares two lattices, it compares the costs
obtained from transform cc and preserve cc and chooses
the lattice matching algorithm with the minimum cost. The
following formula shows this decision:

lattice matching = min(transform cc(i, c-e, E-e),
preserve cc(i, c, E-e))

VII. CONCLUSION AND FUTURE WORK

It is shown that the proposed lattice edit distance algorithm
is capable of eliminating the effects of extra messages in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

608

0000

1000

a

0001

g

1100

d

1001

g a

0011

f

1101

g d

1011

f

1111

f

a

d

0000

1000

a

1100

d

1200

c

1201

h

1202

g

1212

f

Fig. 11. Lattice Representations of the intrusion scenario (on the left) and
the collected trace scenario (on the right).

0000

1000

a

1100

d

1200

c

1201

1202

g

1212

f

Fig. 12. The extra receive message h is deleted and the edges following h
are moved.

collected trace lattices, therefore, can match two lattices to
detect distributed intrusions. Finding edit operations and their
associated costs to transform the collected trace lattice into the
intrusion lattice, as a means of intrusion detection, provides
a quantitative metric for the proposed intrusion detection
framework. A higher edit cost reveals dissimilarity between
lattices; on the other hand, lower edit cost reveals similarity
between lattices. As a future work, we plan to define the lattice
traversal algorithm thoroughly and limit the complexity of the
lattice comparison by performing the comparisons on regions
of lattices rather than entire lattices.

REFERENCES

[1] G. Birkhoff, Lattice Theory, 3rd ed., ser. American Mathematical Societ
Colloquium Publications. NY, USA: American Mathematical Society,
1967, vol. 25.

[2] P. Chandra and A. D. Kshemkalyani, “Distributed algorithm to detect
strong conjunctive predicates,” Inf. Process. Lett., vol. 87, no. 5, pp.
243–249, 2003.

[3] R. Cooper and K. Marzullo, “Consistent detection of global predicates,”
in Proceedings of the 1991 ACM Workshop on Parallel and distributed
debugging. New York, NY, USA: ACM Press, 1991, pp. 167–174.

[4] D. E. Denning and P. G. Neumann, “Requirements and model for IDES
- a real-time intrusion expert system,” SRI International, Computer
Science Lab, Tech. Rep., August 1985.

[5] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz - open source graph drawing tools,” Lecture Notes in Com-
puter Science, vol. 2265, 2002.

[6] C. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” in Proc. 11th Australian Computer Science Conference,
1988.

[7] D. Gao, M. Reiter, and D. Song, “Gray-box extraction of execution
graphs for anomaly detection,” in Proceedings of the 11th ACM Conf.
on Computer and Communications Security. New York, NY, USA:
ACM, 2004, pp. 318–329.

[8] V. Garg and C. Chase, “Distributed algorithms for detecting conjunctive
predicates.” in ICDCS, 1995, pp. 423–430.

0000

1000

a

0001

g

1100

d

1200

c

0011

f

Fig. 13. The VTs of the moved-up edges are updated. Two sub-lattices are
connected with each other by attaching the edge g to the root of the lattice.

0000

1000

a

0001

g

1100

d

0011

f

Fig. 14. The extra send message c is deleted and the edges following c are
moved-up (in this case no edges are moved-up).

[9] L. Guoyuan, H. Hao, and C. Tianjie, “Issue of event sequence in time
of distributed intrusion detection system,” in Proceedings of the 2007
Network and Parallel Computing Workshops. Dalian, China: IEEE
Computer Society, 2007, pp. 215–222.

[10] S. A. Hofmeyr and S. A. Forrest, “Architecture for an artificial immune
system,” Evol. Comput., vol. 8, no. 4, pp. 443–473, 2000.

[11] I. V. Kotenko and M. Stepashkin, “Attack graph based evaluation of
network security,” in Comm. and Multimedia Security, ser. Lecture Notes
in Computer Science, vol. 4237. Springer, 2006, pp. 216–227.

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[13] T. Lane and C. E. Brodley, “An empirical study of two approaches to
sequence learning for anomaly detection,” Mach. Learn., vol. 51, no. 1,
pp. 73–107, 2003.

[14] W. Lee and S. J. Stolfo, “A framework for constructing features and
models for intrusion detection systems,” ACM Trans. Inf. Syst. Secur.,
vol. 3, no. 4, pp. 227–261, 2000.

[15] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions, and reversals,” Soviet Physics - Doklady, vol. 10, no. 8, pp.
707–710, February 1966.

[16] F. Mattern, “Virtual time and global states of distributed systems,” in
Proceedings of the International Workshop on Parallel and Distributed
Algorithms. Elsevier Science Publishers B.V., 1989.

[17] N. Mittal and V. Garg, “Techniques and Applications of Computation
Slicing,” Distributed Computing, vol. 17, no. 3, pp. 251–277, 2005.

[18] S. Shivashankaraiah, “Latgenu - lattice generator for unix,” Computer
Science Department, Missouri University of Science and Technology,
Tech. Rep., 2003.

[19] M. Tupper and A. N. Zincir-Heywood, “Vea-bility security metric: A
network security analysis tool,” in ARES, 2008, pp. 950–957.

[20] S. M. Varghese and K. Jacob, “Anomaly detection using system call
sequence sets,” Journal of Software, vol. 2, no. 6, pp. 14–21, 2007.

[21] S. Vongpradhip and W. Plaimart, “Survival architecture for distributed
intrusion detection system (dids) using mobile agent,” in NCA, 2007,
pp. 332–338.

[22] L. Williams, R. Lippmann, and K. Ingols, “An interactive attack graph
cascade and reachability display,” in Proceedings of the Workshop on
Visualization for Computer Security, 2007, pp. 97–104.

[23] J. Wu, C. Wang, J. Wang, and S. fu Chen, “Dynamic hierarchical
distributed intrusion detection system based on multi-agent system,” in
WI-IATW ’06: Proceedings of the 2006 International Conference on Web
Intelligence and Intelligent Agent Technology. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 89–93.

[24] Y.-F. Zhang, Z.-Y. Xiong, and X.-Q. Wang, “Distributed intrusion
detection based on clustering,” in Proceedings of 2005 International
Conference on Machine Learning and Cybernetics, vol. 4, 2005, pp.
2379–2383.

