
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3328

Abstract—In this paper, we propose use of convolutional codes

for file dispersal. The proposed method is comparable in complexity
to the information Dispersal Algorithm proposed by M.Rabin and for
particular choices of (non-binary) convolutional codes, is almost as
efficient as that algorithm in terms of controlling expansion in the
total storage. Further, our proposed dispersal method allows string
search.

Keywords—Convolutional codes, File dispersal, File

reconstruction, Information Dispersal Algorithm, String search.

I. INTRODUCTION
ARGE databases becoming increasingly ubiquitous, their
storage and retrieval, and string-searching in such

databases, has received much attention. In [9] Rabin
formulated the following problem: Suppose that, in order to
guarantee retrieval in the face of server failures, you are
willing to disperse the file across several servers. How do you
do this efficiently? The naive solution, of course, is to place
copies of the files at each of the servers. But this is quite
inefficient, in leading to a great expansion in the total storage.
In [9] Rabin also proposes an efficient solution for the
problem, called the Information Dispersal Algorithm.

System designers have long tried to build more reliable
storage systems. Techniques such as disk mirroring [2] and
RAID (Redundant Arrays of Independent Disks) [5] have
been used to improve system reliability. The other techniques
for file dispersal and recovery are discussed in [6, 14, 3, 13]
and Alvarez,et.al [1] developed DATUM, a method that can
tolerate multiple failures by spreading reconstruction accesses
uniformly over disks based on information dispersal as a
coding technique.

Our interest is in the question of string search when a file is
stored in a dispersed manner. (We naturally wish to avoid

A. S. Poornima is working as an Assistant Professor in the Department of
Computer Science and Engineering in Siddaganga Institute of Technology,
Tumkur, Karnataka, India (e-mail: aspoornima@sit.ac.in).

R. Aparna is working as an Assistant Professor in the Department of
Computer Science and Engineering in Siddaganga Institute of Technology,
Tumkur, Karnataka, India (e-mail: raparna@sit.ac.in).

B. B. Amberker is working as a Professor in the Department of Computer
Science and Engineering in National Institute of Technology, Warangal,
Andhra Pradesh, India (e-mail: bba@nit.ac.in).

reconstructing the entire file from data retrieved from the
different servers, and searching for the string in this
reconstructed file.) The obvious approach is to disperse the
string itself to the various servers and to consolidate their
answers to determine if the string is present in the file. But
previously proposed dispersal methods do not allow string
search via this approach: In these methods the file is broken
up into blocks and the block of data to be sent to each server
is determined. Suppose if the string is present in the file, it
may be within a block or across the block boundaries. If the
string is within a block, using the same dispersal algorithm to
disperse the string, as for the file, we can successfully search
the string. Instead, if the string is across block boundaries, it is
difficult to search for the string since the string may be broken
into blocks differently from how the file was dispersed.

In view of this, we propose use of convolutional codes for
file dispersal. Our proposal is based on the class of error-
correcting codes called convolutional codes, which have been
extensively studied in coding theory (see, for example [7, 8]).
The proposed method is comparable in complexity to the
Information Dispersal Algorithm of [9] and, for particular
choices of (non-binary) convolutional codes, is almost as
efficient as that algorithm in terms of controlling expansion in
the total storage. Further our dispersal technique is also
compatible with string searching.

Let n denote the total number of servers and, as in [9], let a
threshold m (m ≤ n) be specified such that at any point in time
at least m servers are guaranteed to respond. With our
algorithm the file is dispersed into n chunks of data, each of
size = (size of file)/k (here k is a number ≤ m); each of these
chunks may be stored in one of the n servers. The file can be
recovered if any m out of the n servers return their chunks.1A
given string (we impose no restriction on its minimum or
maximum size) will also be passed through the algorithm, and
the n chunks obtained will be passed to the servers, each
chunk to its corresponding server. If at least m out of the n
servers finds the string chunks in the same position in the
chunks of data with them, the string is present in the file,
otherwise not.

For some values on m and n (this corresponds to the class
of MDS convolutional codes, which have been previously
studied e.g. in [11, 10, 12]) it is possible to get k = m − 1.
Thus in these situations the file can be recovered by retrieving
chunks of data whose combined size is just more than the size

String Searching in Dispersed Files using MDS
Convolutional Codes

A. S. Poornima, R. Aparna, B. B. Amberker, and Prashant Koulgi

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3329

of the file itself by a factor of m/(m − 1). By comparison, if
the Information Dispersal Algorithm of [9] is used, this
combined size can be the same as the size of the file itself
(this, of course, is the best possible); but remember that string
search is not possible in this case.

In the next section, we briefly describe a version of the
algorithm of [9], and interpret it in the language of error-
correcting codes. This allows us to then lead up in Section 3,
to our dispersal algorithm in a transparent manner. After
providing a brief introduction to convolutional codes
sufficient for our purpose, we describe our algorithm in some
detail, illustrating it with a couple of examples. And then we
analyze the complexity of our algorithm, and relate this to the
implementation of the algorithm of [9].

II. INFORMATION DISPERSAL ALGORITHM: BASIC VERSION
Throughout, the file shall be denoted as F1F2F3. . . FN, and a

string as q1q2q 3. . . qq. While, for a given choice of m and n,
different versions of the Information Dispersal Algorithm are
obtained by varying the choice of an associated matrix, we
shall present here a choice corresponding to a particularly
easy-to-understand version. Here the file is blocked (i.e., its
contents are relabeled) as

F1,1F1,2F1,3 . . . F1,mF2,1F2,2F2,3 . . . F2,m . . .
F(N/m)−1,1F(N/m)−1,2… F(N/m)-1,m

For each i =1, . . . , (N/m)−1, the block Fi1Fi2Fi3 . . . Fim is
treated as representing the polynomial

Fi(x) = Fi1 + Fi2x + Fi3x2+ . . . + Fimxm-1

and the n evaluations of this polynomial Fi(j) for j = 1, .
. . , n are sent, one to each of the servers.

For reconstruction of the files, if m of the servers respond,
for each i, i = 1, . . . (N/m) − 1, m evaluations of the
(unknown) polynomial Fi(x) (which, however, is known to be
of degree = m − 1)are available, and these can be employed in
Lagrange interpolation to reconstruct the polynomial.

Notice that the data stored at server j, j=1, . . . , n, is
therefore F1(j) F2(j) . . . F(N/m-1) (j)
Suppose that the given string is present in the file, in fact as

q1q2q3 . . . qq = Fi1,1Fi,1,2 . . . Fi1,mFi,2,1 Fi2,2 … Fi,2,m

Then the string can be declared as present in the file by

searching server j, j = 1, . . . , n, with the string F1(j)… F2(j)
and checking that at least m out of the n servers respond
saying that they found the strings sent to them between the
positions i1and i2, in the chunks. But suppose that the string
does not thus happen to fit correctly at the block boundaries
but falls within or between these boundaries. The reader may
appreciate that then it is not clear how the string should be
transformed in order to convert the problem of search for this
string in the file to search for some related strings in the
chunks of data with the servers. The same problem with

searching for strings persists when other proposed methods of
dispersal are used. For these too are in the same manner based
on breaking the file into blocks.

Further, all these previously proposed dispersal methods
may be considered as applications of block error-correcting
codes. In the above algorithm the transformation Fi1,1Fi,1,2 .
. . Fi1,m → Fi(1)Fi(2) . . . Fi(n) is simply the Reed-Solomon
encoding of the information word Fi1,1Fi,1,2 . . . Fi1,m imas
the codeword Fi(1)Fi(2) . . . Fi(n). Any other error-correcting
code could also be used instead.

Previously-proposed dispersal methods can be subsumed as
the following approach: For a given m, n choose a block
code with codeword size = n, and with every two code words
differing in at least n − m + 1 positions (i.e., with minimum
Hamming distance = n − m + 1). Suppose that, for this code
the size of an information word is k.(The singleton bound
implies that for any block code k < m. Codes for which
equality holds form the special class of MDS codes. Reed-
Solomon codes are an example of such codes. For more
details see [4].) Then break the file into blocks of size k.
Treating each such block as an information word encode the
block as its corresponding codeword (of size n), and send one
element to each of the n servers. At reconstruction, receiving
responses from m of the servers gives values at m positions
in each codeword (which, recall, is of size n). Since every two
code words are known to differ in at least n − m + 1 positions,
there can be only one codeword with these values at these m
positions, and the information word encoding this codeword is
the corresponding block in the file.

III. OUR CONVOLUTIONAL CODE BASED DISPERSAL
ALGORITHM

We use essentially the same approach as in the previous
section; but we dispense with block codes and use
convolutional codes instead. The encoder of a convolutional code
is basically a Finite state machine, and can thus be implemented
using shift registers, adders and multipliers (we will only need
linear convolutional codes, which are linear finite state
machines). The output of the state machine is a function of the
input, and the contents of the shift registers. The state is given
by the shift register contents; at each instant the input is
sequentially shifted into the shift registers, and thus
determines the next state.

In a (k, n) convolutional code the size of the encoded stream is
n/k times the size of the input stream. To fix ideas we will
consider the example of a particularly simple convolutional
code, a (1, 4) code whose linear shift register representation is
given in Fig. 1. Here D represents delay element.

The encoding process may be represented in a trellis diagram,
which itself is derived from the shift register representation of
Fig. 1. The trellis diagram graphically displays the transitions
to new states and outputs obtained for different input streams.
Thus the start and termination of a branch indicate the initial
and final state respectively, the input (and output) producing
this transition being labeled above the branch itself. A path

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3330

through the trellis diagram identifies an output sequence, the
input sequence (and initial state) which produced it, and the
corresponding state sequence. See Fig. 2. Our idea is to feed the
file as input to the convolutional encoder. With a (k, n) encoder
each of the n values obtained at the output is sent to one of the
n servers. (Notice, therefore, that the size of data received at
each server is 1/k times the size of the file). Thus if the
encoder of Fig. 1 is used in a situation where there are n = 4
servers, the stream ci is sent to server i (i = 1, . . . , 4). (At the
outset the shift registers may arbitrarily be initialized to
zeros).

Consider first the question of reconstruction of the entire
file. Suppose that only three out of the four servers respond
with the streams with them (thus we have the situation m = 3).
The received information should nevertheless unambiguously
determine a single path in the trellis diagram: in this case the
input sequence corresponding to this path may be declared as
the reconstructed file.

Now notice this property of the trellis diagram (in Fig. 2)
for the convolutional encoder we have chosen in Fig. 1: the
output labels of every two branches differ in at least two
positions. The case when some three servers respond
corresponds to knowing three of the four positions on every
branch of the path encoding the file. Therefore from the above
property the responses of three servers is sufficient to
determine a path in the trellis diagram, and the file can be
declared to be the corresponding input sequence. (The reader
can convince himself by checking, say that the responses of
the servers 1, 2 and 4 are sufficient to reconstruct the file
chosen as an illustration in Fig. 2.)

Let us now move on to the question of string search, of the
string q1q2q 3. . . qq in the file F1F2F3. . . FN. The string should
be encoded using the same convolutional encoder and each of
the n resulting streams should be sent to its corresponding
server. But how is the initial state to begin this encoding to be
determined? (For remember that the location of the string in
the file is also unknown, and it may therefore be a mistake to
assume the initial shift register contents to say, all be zeroes.)
We circumvent this problem by noticing that, if we give up
the encoding of the part of the string made up of the first few
values of the string, for the encoding of the subsequent part
the preceding part itself determines the contents of the shift
registers (and no further information is required to determine
these contents. Thus in the convolutional encoder we have
considered as an example, q1q2is the initial state for encoding
the sequence q1q2q 3. . . qq). Only the streams corresponding to
the encoding of this subsequent part is sent to the servers.

Given n the total number of servers, and m, the number of
servers guaranteed to respond, how is the convolutional
encoder to be chosen? Suppose that the string is encoded (in
the manner described above), and some m of the n servers
respond. (Recall that the response of a server consists of
whether the stream sent to it is present in the stream with it
and, if yes, the position of the match.) Consider the case when
all these m servers find the streams they receive, and at the
same location. We want to then be able to conclude that the

string itself is present in the file.
The encoded string sequence had determined a sub-path in

the trellis diagram. The string being present in the file
corresponds to this sub-path being a part of the path encoding
the file. Since the m servers have found the streams sent to
them, and all in the same location, one possibility is that the
sub-path encoding the string is a part of the path encoding the
file, therefore that the string is present in the file (at the
location specified by the servers). We need to be sure that the
information returned by the m servers does not also permit a
different sub-path to be concluded as being part of the path
encoding the file.

Since the servers have found matches at a particular
location, for the sequence sent to them, on each branch of
every candidate sub-path (of certain length) starting at this
location the values at m positions (out of the total of n) are
known. We need to be sure that this information permits only
the subpath encoding the string. This will indeed be the case if
every two branches in the trellis diagram differ in at least n −
m + 1 positions (out of the total of n).

Let us summarize: For a given m, n, if a (k, n)
convolutional encoder is chosen in whose trellis diagram
every two branches differ in at least n − m + 1 positions, and
is used to encode and disperse the file (as outlined above),
then the string is present in the file if m out of the n servers
find matches (at the same location in the streams with them)
for the sequences sent to them, and is not present in the file
otherwise.

IV. SOME IMPLEMENTATION ISSUES
If a particular (k, n) convolutional encoder, satisfy a given

requirement of n (the total number of servers) and m (the
minimum number among these which can be relied upon to
respond), is chosen, then queries (of any bigger length and) as
small as a string of k elements can be searched for in our
approach. That is to say, the question ” is q1q2q 3. . . qq in
 F1F2F3. . . FN?” can be answered for strings with Q ≥ k. Q
≤ k are not permitted since the encoding linear shift register
takes an input of k elements.

Fix m and n. Then every possible (k, n) convolutional
encoder satisfies k ≤ m (due to a form of the singleton bound
which holds for convolutional codes; see [7]). We would like
to choose the encoder with the largest possible k, since this
would ensure the smallest possible size for the data sent to
each server (which, we call, is (file size)/k), and the smallest
possible size of data required to reconstruct the file (which,
when m servers respond, is m/k*file size). The best encoder
will turn out quite often not to be defined over the binary
alphabet but over some extension field GF(2q) (i.e., the inputs,
outputs and register contents of the linear shift registers
implementing this encoder are elements of GF(2q)) for some q
> 1. For instance when n = 5 and m = 3 the largest possible k
is 2, as shown in [11] and this (k, n) = (2, 5) encoder is
defined over GF(24).

In Table I, we summarize the maximum number of
operations needed to disperse a file, F1F2F3. . . FN using the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3331

best possible convolutional encoder for a given m and n. We
also compare this number with the number of operations
required if the Information Dispersal Algorithm of [9] were
used.

REFERENCES
[1] G.A.Alvarez, W.A.Burkhard and F.Cristian. Tolerating multiple failures

in RAID architectures with optimal storage and uniform declustering. In
proceedings of the 24th International Symposium on Computer
Architecture,pages 62-72, Denever,CO,ACM. June 1997.

[2] D.Bitton and J.Gray. Disk Shadowing. In proceedings of the 14th
conference on Very Large Databases (VLDB), pages 331-338, 1988.

[3] W.A.Burkhard and J.Menon. Disk array storage system reliability. In
Proceedings of the 23rd International Symposium on Fault-Tolerant
Computing (FTCS’93), Pages 432-441, June 1993.

[4] W. Cary Huffman and Vera Plees Fundamentals of Error-Correcting
Codes Cambridge University Press, 2003.

[5] P.M.Chen, E.K.Lee, G.A.Gibson, R.H.Kartz, and D.A.Patterson. RAID:
High-Performance, reliable secondary storage. ACM Computing
Surveys,26(2), June 1994.

[6] Gui-Lang Feng, Robert H. Deng, Feng Bao, JiaChen Shen, New
Efficient MDS Array Codes for RAID part II: Rabin-Like codes for
Tolerating Multiple (greater than or equal to 4) Disk Failures, IEEE
Transactions on Computers,V.54 n.12,p.1473-1483, December 2005.

[7] R. Johannesson and K. Sh. Zigangirov , Fundamentals of
Convolutional Coding, University Press (India) Limited, 2001.

[8] R. Johannesson and K. S. Zigangirov Fundamentals of Convolutional
Coding IEEE Press, Newyork, 1999.

[9] M. Rabin. Effecient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance. Journal of the ACM, 36(2): 335-348,
1989.

[10] J. Rosenthal and R. Smarandache. Maximum Distance Separable
Convolutional codes. Appl. Algebra Engrg. Comm.Comput., 10(1):
15-32,1999.

Fig. 1 The Shift Register representation of the Encoder of a (1,4)

binary convolutional code. Here D represents a delay element. X(i) is
the current input bit. C1(i), C2(i), C3(i), and C4(i) are the

corresponding output bits

Fig. 2 Trellis diagram of the encoder of the (1, 4) binary
convolutional code of Fig. 1. S0=00, S1=01, S2=10, S3=11 are the
states of finite state machine of Fig. 1. Lines represent transitions
from one state to the next state in the next interval. Labels on each
line in interval i=1 represent the output bits c1(i), c2(i), c3(i), c4(i)

respectively. Output bits at each subsequent levels remain the same.
Bold lines represent the path for the input file 10100. The

corresponding output sequence is 1111 0011 1010 0011 0101.
Suppose at reconstruction, three servers, say 1, 2, and 4 respond with

the sequence 11_1 00_110_0 00_1 01_1. It is then possible to
reconstruct the correct sequence.

A. S. Poornima obtained her M. Tech. from VTU, Belgaum, Karnataka,
India. She is presently working as an Assistant Professor in the Department of
Computer Science and Engineering Siddaganga Institute of Technology,
Tumkur, Karnataka, India and pursuing PhD in the area of Cryptography and
Network Security.

R. Aparna obtained her M.S. from Birla Institute of Technology, Pilani,
Rajasthan, India. She is presently working as an Assistant Professor in the
Department of Computer Science and Engineering, Siddaganga Institute of
Technology, Tumkur, Karnataka, India and pursuing PhD in the area of
Cryptography and Network Security.

B. B. Amberker obtained his PhD from Department of Computer Science and
Automation, IISc., Bangalore, India. He is presently working as Professor in
the Department of Computer Science and Engineering, National Institute of
Technology, Warangal, AP, India.

