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Global exponential stability of impulsive BAM
fuzzy cellular neural networks with time delays in

the leakage terms
Liping Zhang and Kelin Li

Abstract—In this paper, a class of impulsive BAM fuzzy cellular
neural networks with time delays in the leakage terms is formulated
and investigated. By establishing a delay differential inequality and
M -matrix theory, some sufficient conditions ensuring the existence,
uniqueness and global exponential stability of equilibrium point for
impulsive BAM fuzzy cellular neural networks with time delays in
the leakage terms are obtained. In particular, a precise estimate of
the exponential convergence rate is also provided, which depends
on system parameters and impulsive perturbation intention. It is
believed that these results are significant and useful for the design
and applications of BAM fuzzy cellular neural networks. An example
is given to show the effectiveness of the results obtained here.

Keywords—global exponential stability; Bidirectional associative
memory; fuzzy cellular neural networks; leakage delays; impulses.

I. INTRODUCTION

IN mathematical modelling of real world problems, we
encounter inconveniences, namely, the complexity and the

uncertainty or vagueness. In order to take vagueness into
consideration, fuzzy theory is considered as a suitable setting.
Based on traditional CNN, Yang et al. proposed the fuzzy
cellular neural networks (FCNN) [1], [2], which integrates
fuzzy logic into the structure of the traditional CNN and
maintains local connectedness among cells. Unlike previous
CNN structures, FCNN has fuzzy logic between its template
input and/or output besides the sum of product operation.
FCNN is very useful paradigm for image processing prob-
lems (e.g., see, [12], [13]), which is a cornerstone in image
processing and pattern recognition. In such applications, the
stability of networks plays an important role, it is significant
and necessary to investigate the stability. It is well known, in
both biological and artificial neural networks, that the delays
arise because of the processing of information. Time delays
may lead to oscillation, divergence, or instability which may
be harmful to a system. Therefore, study of neural dynamics
with consideration of the delayed problem becomes extremely
important to manufacture high quality neural networks. In
recent years, there have been many analytical results for
FCNNs with various axonal signal transmission delays, for
example, see [3]-[13] and references therein. However, except
various axonal signal transmission delays, time delay in the
leakage term also has great impact on the dynamics of neural
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networks. As pointed out by Gopalsamy [14], [15], time
delay in the stabilizing negative feedback term has a tendency
to destabilize a system. Recently, some authors have paid
attention to stability analysis of neural networks with time
delays in the leakage (or“forgetting”) terms [14]-[20].

On the other hand, in respect of the complexity, besides
delay effect, impulsive effect likewise exists in a wide variety
of evolutionary processes in which states are changed abruptly
at certain moments of time, involving such fields as economics,
mechanics, medicine and biology, electronics and telecommu-
nications, etc. Many interesting results on impulsive effect
have been gained, e.g., Refs. [31]-[40]. As artificial electronic
systems, neural networks such as CNN, bidirectional neural
networks and recurrent neural networks often are subject to
impulsive perturbations which can affect dynamical behaviors
of the system just as time delays. Therefore, it is necessary to
consider both impulsive effect and delay effect on the stability
of neural networks.

The bidirectional associative memory (BAM) neural net-
work models were first introduced by Kosko [21]-[23]. It is a
special class of recurrent neural networks that can store bipolar
vector pairs. The BAM neural network is composed of neurons
arranged in two layers, the X-layer and Y-layer. The neurons
in one layer are fully interconnected to the neurons in the other
layer. Through iterations of forward and backward information
flows between the two layers, it performs a two-way asso-
ciative search for stored bipolar vector pairs and generalizes
the single-layer autoassociative Hebbian correlation to a two-
layer pattern-matched heteroassociative circuits. Therefore,
this class of networks possesses good application prospects
in some fields such as pattern recognition, signal and image
processing, artificial intelligence. Many researchers have done
extensive works on this subject due to their comprehensive
applications [24]-[30]. To the best of our knowledge, few
authors have considered impulsive BAM fuzzy cellular neural
networks with time delays in the leakage terms.

Motivated by the above discussions, by dint of the idea
of BAM neural networks, the objective of this paper is to
formulate and study impulsive BAM fuzzy cellular neural
networks with time delays in the leakage terms. Under quite
general conditions, by establishing a delay differential inequal-
ity and M -matrix theory, some sufficient conditions ensuring
the existence, uniqueness and global exponential stability of
equilibrium point for impulsive BAM fuzzy cellular neural
networks with time delays in the leakage terms are obtained.

The paper is organized as follows. In Section II, the
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new neural network model is formulated, and the necessary
knowledge is provided. The main results and their proofs are
presented in Section III. In Section IV, an example is given to
show the effectiveness of the results obtained here. Finally, in
Section V we give the conclusion.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we will consider the model of impulsive
BAM fuzzy cellular neural networks with time-varying de-
lays, it is described by the following functional differential
equations
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ẋi(t) = −aixi(t− δi) +
m
∑

j=1

aijgj(yj(t)) +
m
∑

j=1

ãijwj

+
m
∧

j=1

αijgj(yj(t− τij(t)))

+
m
∨

j=1

α̃ijgj(yj(t− τij(t)))

+
m
∧

j=1

Tijwj +
m
∨

j=1

Hijwj + Ii, t ≥ 0, t �= tk,

xi(t+) = xi(t−) + Pik(xi(t−)), t = tk, k ∈ N,

ẏj(t) = −bjyj(t− θj) +
n
∑

i=1

bjifi(xi(t)) +
n
∑

i=1

b̃jiw̃i

+
n
∧

i=1

βjifi(xi(t− σji(t)))

+
n
∨

i=1

β̃jifi(xi(t− σji(t)))

+
n
∧

i=1

T̃jiw̃i +
n
∨

i=1

H̃jiw̃i + Jj , t ≥ 0, t �= tk,

yj(t+) = yj(t−) +Qik(yj(t−)), t = tk, k ∈ N
(1)

for i ∈ I � {1, 2, · · · , n}, j ∈ J � {1, 2, · · · ,m}, where
N � {1, 2, · · ·}, xi(t) and yj(t) are the states of the ith neuron
and the jth neuron at time t, respectively; δi ≥ 0 and θj ≥ 0
denote the leakage delays, respectively; fi and gj denote the
signal functions of the ith neuron and the jth neuron at time t,
respectively; w̃i and wj denote inputs of the ith neuron and the
jth neuron at the time t, respectively; and Ii and Jj denote bias
of the ith neuron and the jth neuron at the time t, respectively;
ai > 0, bj > 0, aij , ãij , αij , α̃ij , bji, b̃ji, βji, β̃ji are constants,
ai and bj represent the rates with which the ith neuron and
the jth neuron will reset their potential to the resting state in
isolation when disconnected from the networks and external
inputs, respectively; aij , bji and ãij , b̃ji denote connection
weights of feedback template and feedforward template, re-
spectively; αij , βji and α̃ij , β̃ji denote connection weights of
the delays fuzzy feedback MIN template and the delays fuzzy
feedback MAX template, respectively; Tij , T̃ji and Hij , H̃ji

are elements of fuzzy feedforward MIN template and fuzzy
feedforward MAX template, respectively;

∧

and
∨

denote
the fuzzy AND and fuzzy OR operations, respectively; τij(t)
(0 ≤ τij(t) ≤ τij) and σji(t) (0 ≤ σji(t) ≤ σji) correspond
to the transmission delays at time t, respectively; tk is called
the impulsive moment, and satisfies 0 < t1 < t2 < · · ·,
lim

k→+∞
tk = +∞; xi(t−k ) and xi(t+k ) denote the left-hand and

right-hand limits at tk, respectively; Pik and Qjk show the
impulsive perturbations of the ith neuron and jth neuron at

time tk, respectively. We always assume xi(t+k ) = xi(tk) and
yj(t+k ) = yj(tk), k ∈ N .

The initial conditions are given by
{

xi(s) = φi(s), −τ ≤ t ≤ 0,
yj(s) = ϕj(s), −σ ≤ t ≤ 0, (2)

where τ = max
1≤i≤n,1≤j≤m

{τij}, σ = max
1≤i≤n,1≤j≤m

{σji}, and

φi(s) and ϕj(s) (i ∈ I , j ∈ J ) are continuous on [−τ, 0]
and [−σ, 0], respectively.

If the impulsive operators Pik(xi) = 0, Qjk(yj) = 0, i ∈
I , j ∈ J , k ∈ N , then system (1) may reduce to the
following model
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ẋi(t) = −aixi(t− δi) +
m
∑

j=1

aijgj(yj(t)) +
m
∑

j=1

ãijwj

+
m
∧

j=1

αijgj(yj(t− τij(t)))

+
m
∨

j=1

α̃ijgj(yj(t− τij(t)))

+
m
∧

j=1

Tijwj +
m
∨

j=1

Hijwj + Ii, t ≥ 0, i ∈ I ,

ẏj(t) = −bjyj(t− θj) +
n
∑

i=1

bjifi(xi(t)) +
n
∑

i=1

b̃jiw̃i

+
n
∧

i=1

βjifi(xi(t− σji(t)))

+
n
∨

i=1

β̃jifi(xi(t− σji(t)))

+
n
∧

i=1

T̃jiw̃i +
n
∨

i=1

H̃jiw̃i + Jj , t ≥ 0, j ∈ J .

(3)
System (3) is called the continuous system of model (1).

Throughout this paper, we make the following assumptions:
(H1) For neuron activation functions fi and gj (i ∈ I , j ∈

J ), there exist two positive diagonal matrices F =
diag(F1, F2, · · · , Fn) and G = diag(G1, G2, · · · , Gm)
such that

Fi = sup
x�=y

∣

∣

∣

∣

fi(x) − fi(y)
x− y

∣

∣

∣

∣

, Gj = sup
x�=y

∣

∣

∣

∣

gj(x) − gj(y)
x− y

∣

∣

∣

∣

for all x, y ∈ R (x �= y).
(H2) Let P̄k(x) = x+ Pk(x) and Q̄k(y) = y +Qk(y), where

P̄k(x) = (P̄1k(x1), P̄2k(x2), · · · , P̄nk(xn))T ,
Q̄k(x) = (Q̄1k(y1), Q̄2k(y2), · · · , Q̄mk(ym))T ,
Pk(x) = (P1k(x1), P2k(x2), · · · , Pnk(xn))T ,
Qk(y) = (Q1k(y1), Q2k(y2), · · · , Qmk(ym))T .

For k ∈ N there exist nonnegative diagnose ma-
trices Γk = diag(γ1k, γ2k, · · · , γnk) and Γ̄k =
diag(γ̄1k, γ̄2k, · · · , γ̄mk) such that

γik = sup
x�=y

∣

∣

∣

∣

P̄ik(x) − P̄ik(y)
x− y

∣

∣

∣

∣

,

γ̄ik = sup
x�=y

∣

∣

∣

∣

Q̄jk(x) − Q̄jk(y)
x− y

∣

∣

∣

∣

for all x, y ∈ R (x �= y), i ∈ I , j ∈ J , k ∈ N .

To begin with, we introduce some notation and recall some
basic definitions.
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PC[J,Rn] � {z(t) : J → Rl | z(t) is continuous at t �= tk,
z(t+k ) = z(tk), and z(t−k ) exists for t, tk ∈ J, k ∈ N}, where
J ⊂ R is an interval.
PCτ � {φ : [−τ, 0] → Rn| φ(s+) = φ(s) for s ∈

[−τ, 0), φ(s−) exists for s ∈ (−τ, 0], φ(s−) = φ(s) for
all but at most a finite number of points s ∈ (−τ, 0]}.
PCσ � {ϕ : [−σ, 0] → Rm| ϕ(s+) = ϕ(s) for

s ∈ [−σ, 0), ϕ(s−) exists for s ∈ (−σ, 0], ϕ(s−) = ϕ(s)
for all but at most a finite number of points s ∈ (−τ, 0]}.

For an m × n matrix A, |A| denotes the absolute value
matrix given by |A| = (|aij |)m×n. For A = (aij)m×n, B =
(bij)m×n ∈ Rm×n, A ≥ B (A > B) means that each pair of
corresponding elements of A and B such that the inequality
aij ≥ bij (aij > bij).

Definition 1: A function (x(t), (y(t))T (x : [−τ,+∞) →
Rn, y : [−σ,+∞) → Rm) is said to be the solution of
impulsive system (1) with the initial condition (2), if the
following two conditions are satisfied:
(i) (x, y)T is piecewise continuous with first kind disconti-

nuity at the points tk, k ∈ N . Moreover, (x, y)T is right
continuous at each discontinuity point.

(ii) (x, y)T satisfies system (1) for t ≥ 0, and x(t) =
φ(t) (t ∈ [−τ, 0]), y(t) = ϕ(t) (t ∈ [−σ, 0]).

Especially, a point (x∗, y∗)T (x∗ ∈ Rn, y∗ ∈ Rm) is called an
equilibrium point of system (1), if (x(t), y(t))T = (x∗, y∗)T

is a solution of system (1).
Throughout this paper, we always assume that the impulsive

operators Pk and Qk satisfy (referring to [27]-[40])

Pk(x∗) = 0 and Qk(y∗) = 0, k ∈ N,

i.e.,

P̄k(x∗) = x∗ and Q̄k(y∗) = y∗, k ∈ N, (4)

where (x∗, y∗)T is the equilibrium point of continuous systems
(3). That is, if (x∗, y∗)T is an equilibrium point of continuous
system (3), then (x∗, y∗)T is also the equilibrium point of
impulsive system (1).

Definition 2: The equilibrium point (x∗, y∗)T of system
(1) is said to be globally exponentially stable, if there exist
constants λ > 0 and M ≥ 1 such that

n
∑

i=1

|xi(t) − x∗i | +
m

∑

j=1

|yj(t) − y∗j |

≤ M(‖ φ− x∗ ‖ + ‖ ϕ− y∗ ‖)e−λt

for all t ≥ 0, where (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T is
any solution of system (1) with the initial condition (2), x∗ =
(x∗1, · · · , x∗n)T , y∗ = (y∗1 , · · · , y∗m)T , φ = (φ1, · · · , φn)T ,

ϕ = (ϕ1, · · · , ϕm)T , and ‖φ−x∗‖ = sup
−τ≤t≤0

n
∑

i=1

|φi(t)−x∗i |,

‖ϕ− y∗‖ = sup
−σ≤t≤0

m
∑

j=1

|ϕj(t) − y∗j |.

Definition 3: A real matrix D = (dij)n×n is said to be a
nonsingular M -matrix if dij ≤ 0, i, j = 1, 2, · · · , n, i �= j,
and all successive principal minors of D are positive.

Lemma 1: [41] Let D = (dij)n×n with dij ≤ 0 (i �= j),
then the following statements are true:
(i) D is a nonsingular M -matrix if and only if D is inverse-

positive; that is, D−1 exists and D−1 is a nonnegative
matrix.

(ii) D is a nonsingular M -matrix if and only if there exists a
positive vector ξ = (ξ1, ξ2, · · · , ξn)T such that Dξ > 0.

Lemma 2: [2] For any positive integer l, let hj : R → R
be a function (j = 1, 2, · · · , l), then we have

∣

∣

∣

l
∧

j=1

αjhj(zj)−
l

∧

j=1

αjhj(z̄j)
∣

∣

∣
≤

l
∑

j=1

∣

∣

∣
αj

∣

∣

∣
·
∣

∣

∣
hj(zj)− hj(z̄j)

∣

∣

∣
,

∣

∣

∣

l
∨

j=1

αjhj(zj) −
l

∨

j=1

αjhj(z̄j)
∣

∣

∣
≤

l
∑

j=1

∣

∣

∣
αj

∣

∣

∣
·
∣

∣

∣
hj(zj) − hj(z̄j)

∣

∣

∣

for all α = (α1, α2, · · · , αl)T , z = (z1, z2, · · · , zl)T , z̄ =
(z̄1, z̄2, · · · , z̄l)T ∈ Rl.

III. MAIN RESULTS

In this section, we will discuss the existence and global
exponential stability of the equilibrium point of impulsive
BAM fuzzy cellular neural networks with time delays in the
leakage terms, and give their proofs. In order to prove our
main result, we need the following lemma.

Lemma 3: Let a < b ≤ +∞, and u(t) =
(u1(t), u2(t), · · · , un(t))T ∈ PC[[a, b), Rn] and v(t) =
(v1(t), v2(t), · · · , vm(t))T ∈ PC[[a, b), Rm] satisfy the fol-
lowing delay differential inequalities with the initial conditions
u(a+ s) ∈ PCτ and v(a+ s) ∈ PCσ:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

D+ui(t) ≤ −riui(t− δi) +
m
∑

j=1

pijvj(t)

+
m
∑

j=1

qijvj(t− τij(t)), i ∈ I ,

D+vj(t) ≤ −r̄jvj(t− θj) +
n
∑

i=1

p̄jiui(t)

+
n
∑

i=1

q̄jiui(t− σji(t)), j ∈ J ,

(5)

where ri > 0, pij > 0, qij > 0, r̄j > 0, p̄ji > 0, q̄ji > 0, i ∈
I , j ∈ J . If the initial conditions satisfy

{

u(s) ≤ κξe−λ(s−a), s ∈ [−τ, 0],
v(s) ≤ κηe−λ(s−a), s ∈ [−σ, 0],

(6)

in which λ > 0, ξ = (ξ1, ξ2, · · · , ξn)T > 0 and η =
(η1, η2, · · · , ηm)T > 0 satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− rie
λδi)ξi +

m
∑

j=1

(pij + qije
λτij )ηj < 0, i ∈ I ,

(λ− r̄je
λθj )ηj +

n
∑

i=1

(p̄ji + q̄jie
λσji)ξi < 0, j ∈ J .

(7)
Then

{

u(t) ≤ κξe−λ(t−a), t ∈ [−a, b),
v(t) ≤ κηe−λ(t−a), t ∈ [−a, b).
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Proof. For i ∈ I , j ∈ J and arbitrary ε > 0, set zi(t) �
(κ+ ε)ξie−λ(t−a), z̄j(t) � (κ+ ε)ηje

−λ(t−a), we prove that
{

ui(t) ≤ zi(t) = (κ+ ε)ξie−λ(t−a), t ∈ [a, b), i ∈ I ,
vj(t) ≤ z̄j(t) = (κ+ ε)ηje

−λ(t−a), t ∈ [a, b), j ∈ J .
(8)

If this is not true, no loss of generality, suppose that there exist
i0 and t∗ ∈ [a, b) such that

ui0(t
∗) = zi0(t

∗), D+ui0(t
∗) ≥ żi0(t

∗),
ui(t) ≤ zi(t), vj(t) ≤ z̄j(t), t ∈ [a, t∗] (9)

for i ∈ I , j ∈ J .
However, from (5) and (8), we get

D+ui0(t
∗) ≤ −ri0ui0(t

∗ − δi0) +
m

∑

j=1

pji0vj(t∗)

+
m

∑

j=1

qji0vj(t∗ − τji0(t
∗))

≤ −ri0(κ+ ε)ξi0e
−λ(t∗−δi0−a)

+
m

∑

j=1

pji0ηj(κ+ ε)ηje
−λ(t∗−a)

+
m

∑

j=1

qji0(κ+ ε)ηje
−λ(t∗−τji0 (t∗)−a)

=
[

− ri0e
λδi0 ξi0 +

m
∑

j=1

(pji0 + qji0e
λτji0 (t∗))ηj

]

×(κ+ ε)e−λ(t∗−a)

≤
[

− ri0e
λδi0 ξi0 +

m
∑

j=1

(pji0 + qji0e
λτji0 )ηj

]

×(κ+ ε)e−λ(t∗−a).

Since (7) holds, it follows that −ri0eλδi0 ξi0 +
m
∑

j=1

(pji0 +

qji0e
λτji0 )ηj < −λξi0 < 0. Therefore, we have

D+ui0(t
∗) < −λξi0(κ+ ε)e−λ(t∗−a) = żi0(t

∗),

which contradicts the inequality D+ui0(t
∗) ≥ żi0(t

∗) in (9).
Thus (8) holds for all t ∈ [a, b). Letting ε→ 0, we have

{

ui(t) ≤ κξie
−λ(t−a), t ∈ [a, b), i ∈ I

vj(t) ≤ κηje
−λ(t−a), t ∈ [a, b), j ∈ J .

The proof is completed.

Theorem 1: Under assumptions (H1) and (H2), if the fol-
lowing conditions hold:

(C1) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such
that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 > (λ− rie
λδi)ξi

+
m
∑

j=1

[

|aij | + (|αij | + |α̃ij |)eλτij

]

Gjηj ,

0 > (λ− r̄je
λθj )ηj

+
n
∑

i=1

[

|bji| + (|βji| + |β̃ji|)eλσji

]

Fiξi

for i ∈ I , j ∈ J ;
(C2) μ = sup

k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (1) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate ap-
proximatively equals λ− μ.
Proof. By M -matrix theory ([41]), Condition (C1) can guaran-
tee that system (1) has exactly an equilibrium point (in detail,
see, [10]). Let (x∗, y∗)T be an equilibrium point of system
(1), (x(t), y(t))T is an arbitrary solution of system (1). Now
let ui(t) = xi(t) − x∗i , i ∈ I , vj(t) = yj(t) − y∗j , j ∈ J .
It is easy to see that system (1) can be transformed into the
following system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u̇i(t) = −aiui(t− δi) +
m
∑

j=1

aij(gj(vj(t) + y∗j ) − gj(y∗j ))

+
m
∧

j=1

αijgj(vj(t− τij(t)) + y∗j ) −
m
∧

j=1

αijgj(y∗j )

+
m
∨

j=1

α̃ijgj(vj(t− τij(t)) + y∗j ) −
m
∨

j=1

α̃ijgj(y∗j ),

t ≥ 0, t �= tk,

ui(t+k ) = P̃ik(ui(t−k )), k ∈ N

v̇j(t) = −bjvj(t− θj) +
n
∑

i=1

bji(fi(ui(t) + x∗i ) − fi(x∗i ))

+
n
∧

i=1

βjifi(ui(t− σji(t)) + x∗i ) −
n
∧

i=1

βjifi(x∗i )

+
n
∨

i=1

β̃jifi(ui(t− σji(t)) + x∗i ) −
n
∨

i=1

β̃jifi(x∗i ),

t ≥ 0, t �= tk
vj(t+k ) = Q̃jk(vj(t−k )), k ∈ N,

(10)
where P̃ik(ui(t)) = P̄ik(ui(t) + x∗i )− P̄ik(x∗i ), Q̃jk(vj(t)) =
Q̄jk(vj(t) + y∗j )− Q̄jk(y∗j ), and initial conditions of (10) are

{

u(s) = φ̄(s) = x(s) − x∗ = φ(s) − x∗, s ∈ [−τ, 0],
v(s) = ϕ̄(s) = y(s) − y∗ = ϕ(s) − y∗, s ∈ [−σ, 0].

(11)
From (H1) and Lemma 2, we calculate the upper right deriva-
tive along the solutions of first equation equation of (10), we
can obtain

D+|ui(t)|
= sgn(ui(t))

dui(t)
dt

= sgn(ui(t))
{

− aiui(t− δi)

+
m

∑

j=1

aij

[

gj(vj(t) + y∗j ) − gj(y∗j )
]

+
[

m
∧

j=1

αijgj(vj(t− τij(t)) + y∗j ) −
m
∧

j=1

αijgj(y∗j )
]

+
[

m
∨

j=1

α̃ijgj(vj(t− τij(t)) + y∗j ) −
m
∨

j=1

α̃ijgj(y∗j )
]}

≤ −ai|ui(t− δi)| +
m

∑

j=1

|aij |
∣

∣

∣
gj(vj(t) + y∗j ) − gj(y∗j )

∣

∣

∣
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+
∣

∣

∣

m
∧

j=1

αijgj(vj(t− τij(t)) + y∗j ) −
m
∧

j=1

αijgj(y∗j )
∣

∣

∣

+
∣

∣

∣

m
∨

j=1

α̃ijgj(vj(t− τij(t)) + y∗j ) −
m
∨

j=1

α̃ijgj(y∗j )
∣

∣

∣

≤ −ai|ui(t− δi)| +
m

∑

j=1

|aij |Gj |vj(t)|

+
m

∑

j=1

|αij |Gj |vj(t− τij(t))|

+
m

∑

j=1

|α̃ij |Gj |vj(t− τij(t))|

= −ai|ui(t− δi)| +
m

∑

j=1

|aij |Gj |vj(t)|

+
m

∑

j=1

(|αij | + |α̃ij |)Gj |vj(t− τij(t))|. (12)

By the same way, we calculate the upper right derivative along
the solutions of third equation equation of (10), we can obtain

D+|vj(t)| ≤ −bj |vj(t− θj)| +
n

∑

i=1

|bji||ui(t)|

+
n

∑

j=i

(|βji| + |β̃ji|)Fi|ui(t− σji(t))|. (13)

From (12) and (13), we have
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

D+|ui(t)| ≤ −ai|ui(t− δi)| +
m
∑

j=1

|aij |Gj |vj(t)|

+
m
∑

j=1

(|αij | + |α̃ij |)Gj |vj(t− τij(t))|, i ∈ I ,

D+|vj(t)| ≤ −bj |vj(t− θj)| +
n
∑

i=1

|bji|Fi|ui(t)|

+
n
∑

i=1

(|βji| + |β̃ji|)Fi|ui(t− σji(t))|, j ∈ J .

Let ui(t) = |ui(t)|, vj(t) = |vj(t)|, ri = ai, pij =
|aij |Gj , qij = (|αij |+ |α̃ij |)Gj , r̄j = bj , p̄ji = |bji|Fi, q̄ji =
(|βji| + |β̃ji|)Fi (i ∈ I , j ∈ J ), then we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

D+ui(t) ≤ −riui(t− δi) +
m
∑

j=1

pijvj(t)

+
m
∑

j=1

qijvj(t− τij(t)), i ∈ I ,

D+vj(t) ≤ −r̄jvj(t− θj) +
n
∑

i=1

p̄jiui(t)

+
n
∑

i=1

q̄jiui(t− σji(t)), j ∈ J ,

(14)

and from (C1), there exist vectors ξ = (ξ1, ξ2, · · · , ξn)T >
0, η = (η1, η2, · · · , ηm)T > 0 and positive number λ > 0 such
that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− rie
λδi)ξi +

m
∑

j=1

[

pij + qije
λτij

]

Gjηj < 0, i ∈ I ,

(λ− r̄je
λθj )ηj +

n
∑

i=1

[

p̄ji + q̄jie
λσji

]

Fiξi < 0. j ∈ J .

(15)

Taking κ = ‖φ̄‖+‖ϕ̄‖
min

1≤i≤n,1≤j≤m
{ξi,ηj} , it is easy to prove that

{

u(t) ≤ κξe−λt, −τ ≤ t ≤ 0 = t0,
v(t) ≤ κηe−λt, −σ ≤ t ≤ 0 = t0.

(16)

From Lemma 3, we obtain that
{

u(t) ≤ κξe−λt, t0 ≤ t < t1,
v(t) ≤ κηe−λt, t0 ≤ t < t1.

(17)

Suppose that for l ≤ k, the inequalities
{

u(t) ≤ κμ0μ1 · · ·μl−1ξe
−λt, tl−1 ≤ t < tl,

v(t) ≤ κμ0μ1 · · ·μl−1ηe
−λt, tl−1 ≤ t < tl

(18)

hold, where μ0 = 1. When l = k + 1, we note that

u(tk) = |P̃k(u(t−k ))| ≤ Γku(t−k )
≤ κμ0μ1 · · ·μk−1Γkξ lim

t→t−k
e−λt

≤ κμ0μ1 · · ·μk−1μkξe
−λtk , (19)

and

v(tk) = |Q̃k(v(t−k ))| ≤ Γ̄kv(t−k )
≤ κμ0μ1 · · ·μk−1Γ̄kη lim

t→t−k
e−λt

≤ κμ0μ1 · · ·μk−1μkηe
−λtk . (20)

From (19), (20) and μk ≥ 1, we have
{

u(t) ≤ κμ0μ1 · · ·μk−1μkξe
−λt, −τ ≤ t ≤ tk,

v(t) ≤ κμ0μ1 · · ·μk−1μkηe
−λt, −σ ≤ t ≤ tk.

(21)
Combining (14), (15), (21) and Lemma 3, we obtain that

{

u(t) ≤ κμ0μ1 · · ·μkξe
−λt, tk ≤ t < tk+1,

v(t) ≤ κμ0μ1 · · ·μkηe
−λt, tk ≤ t < tk+1.

(22)

Applying the mathematical induction, we can obtain the fol-
lowing inequalities
{

u(t) ≤ κμ0μ1 · · ·μkξe
−λt, t ∈ [tk, tk+1), k ∈ N,

v(t) ≤ κμ0μ1 · · ·μkηe
−λt, t ∈ [tk, tk+1), k ∈ N.

(23)
According to (C2), we have μk ≤ eμ(tk−tk−1) < eλ(tk−tk−1),
it follows that

u(t) ≤ κeμt1eμ(t2−t1) · · · eμ(tk−1−tk−2)ξe−λt

= κξeμtk−1e−λt ≤ κξe−(λ−μ)t, t ∈ [tk−1, tk),

and

v(t) ≤ κeμt1eμ(t2−t1) · · · eμ(tk−1−tk−2)ηe−λt

= κξeμtk−1e−λt ≤ κηe−(λ−μ)t, t ∈ [tk−1, tk)

for k ∈ N . That is
{

u(t) ≤ κξe−(λ−μ)t, t ∈ [−τ, tk), k ∈ N,
v(t) ≤ κηe−(λ−μ)t, t ∈ [−σ, tk), k ∈ N.

(24)
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It follows that
n

∑

i=1

|xi(t) − x∗i | +
m

∑

j=1

|yj(t) − y∗j |

=
n

∑

i=1

ui(t) +
m

∑

j=1

vj(t)

≤
n

∑

i=1

κξie
−(λ−μ)t +

m
∑

j=1

κηje
−(λ−μ)t

=

∑n
i=1 ξi +

∑m
j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj} (‖φ̄‖ + ‖ϕ̄‖)e−(λ−μ)t

=

∑n
i=1 ξi +

∑m
j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj} (‖φ− x∗‖ + ‖ϕ− y∗‖)e−(λ−μ)t.

Let M =
Pn

i=1 ξi+
Pm

j=1 ηj

min
1≤i≤n,1≤j≤m

{ξi,ηj} , then we have

n
∑

i=1

|xi(t) − x∗i | +
m

∑

j=1

|yj(t) − y∗j |

≤ M
(

‖φ− x∗‖ + ‖ϕ− y∗‖
)

e−(λ−μ)t.

The proof is completed.
Remark 1: In Theorem 1, the parameters μk and μ depend

on the impulsive perturbation of system (1), and λ is actually
an estimate of the exponential convergence rate of continuous
system (3), which depends on delays and system parameters.
Condition (C2) shows the fact that the exponential stability
of system (1) still remains when the impulsive perturbation
intensity μ ∈ [0, λ). Thus, Theorem 1 actually characterizes
the robustness of stability for the impulsive BAM fuzzy
cellular neural networks (1).

Remark 2: In order to obtain more precise estimate of the
exponential convergence rate of system (1) (or system (3)), we
suggest the following optimization problem

(OP)
{

maxλ,
s.t. (C1)holds.

Henceforth, λ̂ denotes the optimal solution of this optimization
problem.

Corollary 1: Under assumptions (H1) and (H2), if the fol-
lowing conditions hold:

(C1′) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such
that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 > (λ− aie
λδi)ξi

+
m
∑

j=1

[

|aij | + (|αij | + |α̃ij |)eλτ
]

Gjηj ,

0 > (λ− bje
λθj )ηj

+
n
∑

i=1

[

|bji| + (|βji| + |β̃ji|)eλσ
]

Fiξi

for all i ∈ I , j ∈ J ;
(C2) μ = sup

k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (1) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ̂− μ.
Proof. Since eλτij ≤ eλτ , eλσji ≤ eλσ for i ∈ I , j ∈ J ,
m
∑

j=1

(|αij | + |α̃ij |)eλτij ≤
m
∑

j=1

(|αij | + |α̃ij |)eλτ ,
n
∑

i=1

(|βji| +

|β̃ji|)eλσji ≤
n
∑

i=1

(|βji| + |β̃ji|)eλσ. That is, condition (C1′)

can guarantee (C1). This completes the proof.
If the leakage delays satisfy δi = 0 and θj = 0 for i ∈

I , j ∈ J , then system (1) may reduce to the following
system [10]:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi(t) = −aixi(t) +
m
∑

j=1

aijgj(yj(t)) +
m
∑

j=1

ãijwj

+
m
∧

j=1

αijgj(yj(t− τij(t)))

+
m
∨

j=1

α̃ijgj(yj(t− τij(t)))

+
m
∧

j=1

Tijwj +
m
∨

j=1

Hijwj + Ii, t ≥ 0, t �= tk,

xi(t+) = xi(t−) + Pik(xi(t−)), t = tk, k ∈ N,

ẏj(t) = −bjyj(t) +
n
∑

i=1

bjifi(xi(t)) +
n
∑

i=1

b̃jiw̃i

+
n
∧

i=1

βjifi(xi(t− σji(t)))

+
n
∨

i=1

β̃jifi(xi(t− σji(t)))

+
n
∧

i=1

T̃jiw̃i +
n
∨

i=1

H̃jiw̃i + Jj , t ≥ 0, t �= tk,

yj(t+) = yj(t−) +Qik(yj(t−)), t = tk, k ∈ N
(25)

for i ∈ I , j ∈ J .
For model (25), it is easy to obtain the following corollary.

Corollary 2: Under assumptions (H1) and (H2), if the fol-
lowing conditions hold:

(C1′′) there exist constant λ > 0 and vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 such
that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 > (λ− ai)ξi

+
m
∑

j=1

[

|aij | + (|αij | + |α̃ij |)eλτij

]

Gjηj ,

0 > (λ− bj)ηj

+
n
∑

i=1

[

|bji| + (|βji| + |β̃ji|)eλσji

]

Fiξi

for i ∈ I , j ∈ J ;
(C2) μ = sup

k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (25) has exactly one globally exponentially sta-
ble equilibrium point, and its exponential convergence rate
approximatively equals λ̂− μ.

Remark 3: Corollary 2 is actually Theorem 1 in [10], so,
Theorem 1 in this paper generalizes some existing results.

Remark 4: Note that Lemma 2 transforms the fuzzy AND
(
∧

) and the fuzzy OR (
∨

) operations into the SUM operation
(
∑

). So above results can be applied to the following classical
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impulsive BAM neural networks with time delay in the leakage
term:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi(t) = −aixi(t− δi) +
m
∑

j=1

aijgj(yj(t))

+
m
∑

j=1

αijgj(yj(t− τij(t))) + Ii, t ≥ 0, t �= tk,

xi(t+) = xi(t−) + Pik(xi(t−)), t = tk, k ∈ N,

ẏj(t) = −bjyj(t− θj) +
n
∑

i=1

bjifi(xi(t))

+
n
∑

i=1

βjifi(xi(t− σji(t))) + Jj , t ≥ 0, t �= tk,

yj(t+) = yj(t−) +Qik(yj(t−)), t = tk, k ∈ N
(26)

for i ∈ I , j ∈ J .
For model (26), it is easy to obtain the following result.

Theorem 2: Under assumptions (H1) and (H2), if the fol-
lowing conditions hold:

(C̄1) there exist vectors ξ = (ξ1, ξ2, · · · , ξn)T > 0, η =
(η1, η2, · · · , ηm)T > 0 and positive number λ > 0 such
that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 > (λ− aie
λδi)ξi +

m
∑

j=1

[

|aij | + |αij |eλτij

]

Gjηj ,

0 > (λ− bje
λθj )ηj +

n
∑

i=1

[

|bji| + |βji|eλσji

]

Fiξi

for all i ∈ I , j ∈ J ;
(C2) μ = sup

k∈N

{

ln μk

tk−tk−1

}

< λ, where μk =

max
1≤i≤n,1≤j≤m

{1, γik, γ̄jk}, k ∈ N ;

then system (26) has exactly one globally exponentially stable
equilibrium point, and its exponential convergence rate equals
λ̂− μ.

IV. AN ILLUSTRATE EXAMPLE

Consider the following impulsive BAM fuzzy neural net-
works with time-varying delays:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi(t) = −aixi(t− δi) +
2
∑

j=1

aijgj(yj(t)) +
2
∑

j=1

ãijwj

+
2
∧

j=1

αijgj(yj(t− τij(t)))

+
2
∨

j=1

α̃ijgj(yj(t− τij(t)))

+
2
∧

j=1

Tijwj +
2
∨

j=1

Hijwj + Ii, t �= tk,

xi(tk) = −e0.05kxi(t−k ), t = tk, k ∈ N,

ẏj(t) = −bjyj(t− θj) +
2
∑

i=1

bjifi(xi(t)) +
2
∑

i=1

b̃jiw̃i

+
2
∧

i=1

βjifi(xi(t− σji(t)))

+
2
∨

i=1

β̃jifi(xi(t− σji(t)))

+
2
∧

i=1

T̃jiw̃i +
2
∨

i=1

H̃jiw̃i + Jj , t �= tk,

yj(tk) = −e0.05kyj(t−k ), t = tk, k ∈ N
(27)

for i, j = 1, 2, t ≥ 0, t0 = 0, tk = tk−1+0.5k, k ∈ N , where

δ1 = δ2 = 0.5, θ1 = θ2 = 0.5,
a1 = 3, a2 = 3, a11 = 4

3 , a12 = − 1
2 ,

a21 = 1
2 , a22 = 2

3 , ã11 = 1, ã12 = −2,
ã21 = −2, ã22 = 1, I1 = 0, I2 = −1,
α11 = 1

3 , α12 = − 1
4 , α21 = 1

4 , α22 = 2
3 ,

α̃11 = 1
3 , α̃12 = 1

4 , α̃21 = − 1
4 , α̃22 = 2

3 ,
T11 = 1, T12 = 0, T21 = 0, T22 = 1,
H11 = 1, H12 = 0, H21 = 0, H22 = 1,
w1 = 1, w2 = 2, τ11(t) = | sin t|,
τ12(t) = 1.5 sin2 t, τ21(t) = | cos 2t|, τ22(t) = | cos t|,
gj(s) = |s+1|−|s−1|

2 , j = 1, 2;
b1 = 3, b2 = 3, b11 = 1

3 , b12 = − 2
3 ,

b21 = 4
3 , b22 = 1

3 , b̃11 = −1, b̃12 = 3,
b̃21 = 2, b̃22 = −2, J1 = −2, J2 = −1,
β11 = 1

3 , β12 = − 1
6 , β21 = 1

3 , β22 = 1
3 ,

β̃11 = 1
3 , β̃12 = 1

6 , β̃21 = 1
3 β̃22 = 1

3 ,
T̃11 = 1, T̃12 = 0, T̃21 = 0, T̃22 = 1,
H̃11 = 1, H̃12 = 0, H̃21 = 0, H̃22 = 1,
w̃1 = −1, w̃2 = 1, σ11(t) = 1 + 0.5 sin t,
σ12 = | cos t|, σ21(t) = | sin 3t|, σ22(t) = 1 + cos t,
fi(s) = tanh(s), i = 1, 2.

It is easy to verify that assumptions (H1) and (H2) are satisfied,
and it is easy to calculate that F1 = F2 = 1, G1 =
G2 = 1, (τ11) = 1, τ12 = 1.5, τ21 = 1, τ22 =
1, σ11 = 1.5, σ12 = 1, σ21 = 1, σ22 = 1.5, Γk =
(

e0.05k

e0.05k

)

, Γ̄k =
(

e0.05k

e0.05k

)

.

Solving the following optimization problem
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

maxλ
0 > (λ− a1e

λδ1)ξ1 +
(

|a11| + (|α11| + |α̃11|)eλτ11

)

G1η1

+
(

|a12| + (|α12| + |α̃12|)eλτ12

)

G2η2,

0 > (λ− a2e
λδ2)ξ1 +

(

|a21| + (|α21| + |α̃21|)eλτ21

)

G1η1

+
(

|a22| + (|α22| + |α̃22|)eλτ22

)

G2η2,

0 > (λ− b1e
λθ1)η1 +

(

|b11| + (|β11| + |β̃11|)eλσ11

)

F1ξ1

+
(

|b12| + (|β12| + |β̃12|)eλσ12

)

F2ξ2,

0 > (λ− b2e
λθ2)η2 +

(

|b21| + (|β21| + |β̃21|)eλσ21

)

F1ξ1

+
(

|b22| + (|β22| + |β̃22|)eλσ22

)

F2ξ2,

λ > 0, ξ = (ξ1, ξ2)T > 0, η = (η1, η2)T > 0,

we get λ̂ ≈ 0.224428 > 0, ξ = (11372499, 1310864)T > 0
and η = (9136837, 13174078)T > 0, so (C1) holds. From
Theorem 1, we know that system (27) has a unique equilibrium
point, this equilibrium point is (0, 0, 0, 0)T . Also,

μk = max
1≤i≤2,1≤j≤2

{1, γik, γ̄jk} = e0.05k,

μ = sup
k∈N

lnμk

tk − tk−1
=

0.05k
0.5k

= 0.1 < 0.224428 = λ̂.

That is, (C2) holds. From Theorem 1, the unique equilibrium
point (0, 0, 0, 0)T of system (27) is globally exponentially
stable, and its exponential convergence rate is 0.124428.
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V. CONCLUSIONS

A class of impulsive BAM fuzzy cellular neural networks
with time delays in the leakage terms has been formulated and
investigated. Some new criteria on the existence, uniqueness
and global exponential stability of the equilibrium point for the
networks have been derived by using M -matrix theory and the
impulsive delay differential inequality. Our stability criteria are
delay-dependent and impulse-dependent. The neuronal output
activation functions and the impulsive operators only need to
satisfy (H1) and (H2), respectively; but need not be bounded
and monotonically increasing. It is worthwhile to mention
that our technical methods are practical, in the sense that
all new stability conditions are stated in simple algebraic
forms and provided a more precise estimate of the exponen-
tial convergence rate, so their verification and applications
are straightforward and convenient. The effectiveness of our
results has been demonstrated by the convenient numerical
example.
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