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Abstract—Analysis of heart rate variability (HRV) has become a 

popular non-invasive tool for assessing the activities of autonomic 
nervous system. Most of the methods were hired from techniques 
used for time series analysis. Currently used methods are time 
domain, frequency domain, geometrical and fractal methods. A new 
technique, which searches for pattern repeatability in a time series, is 
proposed for quantifying heart rate (HR) time series. These set of 
indices, which are termed as pattern repeatability measure and 
pattern repeatability ratio are able to distinguish HR data clearly 
from noise and electroencephalogram (EEG). The results of analysis 
using these measures give an insight into the fundamental difference 
between the composition of HR time series with respect to EEG and 
noise. 
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I. INTRODUCTION 
IME series analysis methods are used to quantify 
physiological data for classification and identification of 

different pathological conditions. Variability of 
electroencephalogram (EEG), heart rate (HR), human gait 
dynamics and blood pressure (BP) are some of the 
physiological signals that are analyzed using time series 
analysis techniques [1]-[3].  

Heart rate variability (HRV) refers to the variation in the 
rate at which sino-atrial (SA) node triggers over time. 
Analysis of HRV is a powerful tool for the estimation of 
autonomic nervous system (ANS) activity, as the rate of 
pulsation of SA node is controlled by ANS. HRV analysis has 
become an important tool in the detection of cardiac and other 
diseases, as it is non invasive and provide prognostic 
information in patients [4]-[11]. 

The EEG is a recording of the electrical activity of the brain 
from the scalp. The EEG has a very complex pattern, which is 
much more difficult to recognize than the electrocardiogram 
(ECG). EEG seems to be affected by the mental activity and 
health condition of person [1], [12]. 

The physiological signals mentioned above are not periodic 
and it looks like random noise. Various techniques are 
employed to differentiate these physiological signals from  
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random noise [13]. These data mining methods include time 
domain, frequency domain, geometrical and non-linear 
methods. Considering the variety of measures used for HRV 
analysis, European society of cardiology and the North 
American society of pacing and electrophysiology had set up 
a committee, and they submitted recommendations on 
standardization of the indices used for heart rate variability 
analysis [14]. Although various indices are used for 
quantification of HRV time series, a single clinically accepted 
parameter, which can detect various diseases, is not yet 
identified. Certain measures may be good in analyzing a 
particular group of diseases and others may fit for another 
group [15]. 

Linear methods like conventional time domain and 
frequency domain methods may not be able to detect subtle 
but important features embedded in signals that originate from 
complex living systems. It is found that the system generating 
the physiological signals is nonlinear and the signals are 
nonstationary. Nonlinear methods are able to describe more 
details of these processes [15]-[16]. Measures which can 
quantify complexity, irregularity or randomness are, 
approximate entropy [17], sample entropy [18]-[19] and 
multiscale entropy [20]-[21]. Sample entropy (SampEn) and 
approximate entropy (ApEn) are measures of time series 
regularity.   SampEn(m,r,N)  is  the  negative  natural 
logarithm of the  conditional probability that a data set of 
length  N, having repeated itself within a tolerance  r  for  m 
points, will also  repeat itself  for m+1  points,  without 
allowing  self  matches.  Low value of SampEn and ApEn 
indicates more self similarity in the time series. One of the 
differences between ApEn and SampEn is that the   former 
allows   self   matches, whereas the latter does not. Multiscale 
Entropy (MSE) takes into account of multiple scales when 
calculating the entropy. These measures are pattern 
identification methods, which search for similar patterns in the 
time series. 

The objective of the present work is to distinguish the set of 
elements, which constitute the HR from EEG time series and 
noise. The study was intended to propose measures meant 
specifically for the quantification of the variability of heart 
rate time series, which is independent of data length. The 
results of analysis using these measures give the fundamental 
reason for the difference in the values of various established 
indices for HR data, EEG data and noise.  
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II. MATERIALS AND METHODS 
Electrocardiogram (ECG) was recorded from healthy 

volunteers, using BIOPAC(TM) equipment and converted to 
heart rate time series using ACQKnowledge software 
available along with the system. The sampling rate was 200 
Hz. The proposed indices were computed for HR data of 
normal healthy subjects, and different noise files and HR data 
of MIT-BIH normal sinus rhythm database available at 
www.physionet.org. This database includes long-term ECG 
recordings of subjects referred to the Arrhythmia Laboratory 
at Boston's Beth Israel Hospital (now the Beth Israel 
Deaconess Medical Center). Subjects included in this database 
were found to have had no significant arrhythmias; they 
include 5 men, aged 26 to 45, and 13 women aged 20 to 50. 
SampEn and ApEn values for the above mentioned groups 
were also computed for record length of 4000 points. The 
following section explains the details of the proposed indices. 
The EEG data for the experiment was also recorded using the 
same equipment at same sampling rate for five minutes. The 
subjects were instructed to relax in a lying position with eyes 
closed throughout the entire recording session in order to 
minimize eye movement artifacts. 

A. Pattern Repeatability Ratio 
The proposed new index, which is termed as pattern 

repeatability ratio (PRR), is based on the repetition of patterns 
in the given data. The number of patterns, with unity pattern 
length, which occurs at least once in the heart rate time series, 
Xt, is computed. That is, the range of the sample function will 
contain Xi, Xj, …. Let this be termed as pattern repeatability 
measure with unity pattern length, and be denoted as PRM (1). 
This computation eliminates the redundancy of repeated 
values. Similarly, let (Xi, Xi+1) occurs once or repeats in the 
time series Xt. The number of such distinct pairs is termed as 
pattern repeatability measure with pattern length two. Let this 
be denoted as PRM (2). This index gives the number of such 
unique patterns, by eliminating repeated values. In general, 
the number of distinct sets, (Xi, Xi+1, Xi+2, Xi+3,… Xi+m-1) are 
counted as PRM (m). A shift by c in the index where c = 1, 2, 
3, ... generates all pattern repeatability measures. Pattern 
repeatability ratio (m, n) is expressed as,  

( , ) ( ) / ( )PRR m n PRM m PRM n=  
where m and n are the pattern lengths. 

 

B. Testing with HR Data and Noise 
The proposed indices, PRM (1), PRM (2) and PRR (2, 1), 

were computed for the HR data files in the MIT-BIH normal 
sinus rhythm database and compared with that of the healthy 

volunteers, for a record length of 4000 points. The proposed 
measures were computed for EEG data of healthy volunteers 
and for noise files of physionet, for the same length. The 
effect of duration of the HR data, noise and EEG on the 
proposed indices was studied with increasing window size. 

III. RESULTS AND DISCUSSION 
The computed values of the proposed measures for healthy 

volunteers under study, the MIT-BIH normal sinus rhythm  

data, noise and EEG time series are tabulated in Table I. It can 
be noted that, for noise data, the values of the measures are at 

 
Fig. 1 The effect of record length on various indices for 12 hours 

MIT-BIH normal sinus rhythm data 
 

 
Fig. 2 The effect of record length on various indices for normal 

healthy volunteers 

TABLE I 
PROPOSED INDICES FOR THE VARIOUS GROUPS 

PRM (1) PRM (2) PRR (2,1) 
Groups 

Mean ± SD Mean ± SD Mean ± SD 
HR (Healthy 
Volunteers) 79.8 ± 25.7 1158.2 ± 510.7 14.1 ± 2.5 

HR (MIT-BIH 
data) 71 ± 23.8 920.6 ± 361.8 12.8 ± 1.7 

Noise 3997.2 ± 7.1 3999 ± 0 
1.0005 
± 0.002 

EEG 3992.22 ± 9.5365 3999 ± 0 
1.0017 
± 0.0024 
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extreme level indicating no pattern repetition. The values of 
these measures for EEG time series and noise are comparable. 
Hence the proposed measures distinguish HRV time series 
from noise and EEG time series, as the indices are beyond 
comparison. 

 

 
Fig. 3 The effect of record length on various indices for noise 

 

 
 

Fig. 4 The effect of record length on various indices for EEG 
 

 

 
 

Fig. 5 Comparison of proposed measures for HR time series (healthy 
and MIT-BIH), noise and EEG 

 

TABLE II 
SAMPEN AND APEN FOR THE VARIOUS GROUPS 

ApEn SampEn 
Groups 

Mean ± SD  Mean ± SD 

HR  (Healthy volunteers) 1.3113 ± 0.267 1.4392 ± 0.273 

HR (MIT-BIH data) 0.8392 ± 0.191 0.9221 ± 0.207 

Noise 1.713 ± 0.217 1.823 ± 0.291 

EEG 1.0423 ± 0.3810 1.1125 ± 0.4282 

 
The effect of length of the data on PRM (1), PRM (2) and 

the PRR (2, 1) are shown in Fig. 1 for 12 hours MIT-BIH 
normal sinus rhythm data. It can be seen that the indices reach 
almost a steady value after 1000 samples. In the case of HR 
data of the healthy volunteers also, the sample number at 
which the steady state occurs is comparable with that of the 
MIT-BIH normal sinus rhythm data. The variation of the 
indices for noise and EEG are shown in Fig. 3 and Fig. 4 
respectively. It can be seen that, for noise data and EEG time 
series, the indices PRM (1) and PRM (2) go on increasing 
with the window size. But PRR (2,1) is saturated immediately 
indicating proportional increase in PRM(1) and PRM(2). This 
suggests that proposed measures are highly dependant on the 
length of data in the case of noise and EEG.  

It is evident from the Fig. 1 and Fig. 2 that the number of 
elements in the sample set of HRV time series, is limited and 
is less than 150, which is given by the measure PRM(1). Fig. 
5 shows the graphical representation of Table I, for better 
visual interpretation of the result. 

It can be seen that there is an initial increase in the 
measures PRM (1), PRM (2) and the PRR (2, 1) with window 
size, in the case of HR data. These measures reach a plateau 
around window length of 1000 points. If the average heart rate 
is taken as 70 beats per minute, this sample number 1000 
corresponds to an approximate duration of 15 minutes. It can 
be inferred from Fig. 1 that almost all the distinct values, PRM 
(1), of the heart rate time series Xt, occur in duration of about 
15 minutes in the case of healthy subjects.  In another study 
we found that the time duration required to reach the plateau 
is around 3000 points for diabetic patients [23]. Hence the 
analysis is done with 4000 points providing some tolerance. 
We suggest that in the established linear and nonlinear HRV 
analysis techniques also this time span of recording may be 
considered as the minimum standard.  We propose this as 
most of the elements in the sample set in the time series 
appear within this duration and any further increase in time 
duration produce negligibly small increase in the number of 
HR values in sample set. 

It can be seen from Table II that SampEn and ApEn values 
do not show much difference between HR data and noise and 
EEG. Moreover, the new indices for the MIT-BIH normal 
sinus rhythm database are comparable with that of the healthy 
volunteer group, which confirms the robustness and 
reproducibility of the measure. Most of the established indices 
are dependent on the length of the time series [12]. The 
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advantage of the new measures is that they are independent of 
the duration of HR data, above a record length of one hour. 

IV. CONCLUSION 
In a given heart rate time series, it is found that the 

instantaneous heart rate values are distinct and they are the 
members of a limited sample set whereas in noise time series, 
the sample set is made of non-repeating values. This confirms 
that although heart rate time series looks like random noise, it 
is totally different and distinguishable from noise. In EEG 
time series also the repetition of elements is very less and is 
comparable with noise. So HR data can be easily 
distinguished from EEG and noise. One of the important 
features of the proposed measure is that they are independent 
of length of HR data, if the duration of record is above one 
hour. As this measure is specially suited for HRV analysis, it 
can be used for characterizing ANS activity at various 
pathological conditions. 
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