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Abstract—In this study, an analysis has been performed for 

conjugate heat and mass transfer of a steady laminar boundary-layer 
mixed convection of magnetic hydrodynamic (MHD) flow with 
radiation effect of second grade subject to suction past a stretching 
sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of 
the viscoelastic fluid heat and mass transfer effect which have 
presented in governing equations, respectively. The similar 
transformation and the finite-difference method have been used to 
analyze the present problem. The conjugate heat and mass transfer 
results show that the non-Newtonian viscoelastic fluid has a better heat 
transfer effect than the Newtonian fluid. The free convection with a 
larger rG  or cG  has a good heat transfer effect better than a smaller 

rG  or cG , and the radiative convection has a good heat transfer 
effect better than non-radiative convection. 

 
Keywords—Conjugate heat and mass transfer, Radiation effect, 

Magnetic effect, Viscoelastic fluid, Viscous dissipation, Stretching 
sheet.  

I. INTRODUCTION 
HE study of visco-elastic fluids had become of increasing 
importance in the last few years. Qualitative analyses of 

these studies have significant bearing on several industrial 
applications such as polymer sheet extrusion from a dye, 
drawing of plastic films etc. When the manufacturing process at 
high temperature and need cooling the stretching sheet. The 
flows may need visco-elastic fluids to produce a good effect to 
reduce the temperature from the sheet. It is a well-known fact in 
the studies of non-Newtonian fluid flows by Hartnett [1].  

Rajagopal et al. [2] studied a Falkner-Skan flow field of a 
second-grade visco-elastic fluid. Massoudi and Ramezan [3] 
studied a wedge flow with suction and injection along walls of  
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a wedge by the similarity method and finite-difference 
calculations. An excellent review of boundary layers in 
non-linear fluids was recently written by Rajagopal [4]. These 
are related studies to the present investigation about 
second-grade fluids. All of above are dealing with forced 
convection problems. Recently, Vajravelu and Soewono [5] 
had solved the fourth order non-linear systems arising in 
combined free and forced convection flow of a second order 
fluid, over a stretching sheet. The stretching sheet flow of a 
non-Newtonian fluid is also one of important flow fields in real 
world, Raptis [6] had studied heat transfer of a visco-elastic 
fluid. On the other hand, researches in connection with 
visco-elastic fluid or second grade non-Newtonian fluids, but 
there are not the mixed convection flow [7]. Recently, 
Sanjayanand et al. [8], Cortell, Rafael [9,10] and Seddeek [11] 
had studied the heat and mass transfer problems about the 
viscoelastic boundary layer flow over a stretching sheet with 
magnetic effect. The related boundary layer flow or heat and 
mass transfer problems are studied by Hsiao et al. [12-13]. 
From above studies are still not considered the conjugate heat 
and mass mixed convection with radiation effect.  

There are some related conjugate problems concerning a fin 
in a Newtonian flow, for instance, a complete model study 
about the forced convection on a rectangular fin has been 
investigated by Sparrow and Chyu [14]; the effect of the 
Prandtl number on the heat transfer from a rectangular fin has 
been studied by Sunden [15]. In addition, Luikov and his 
co-workers solved the conjugate forced convective problem 
along a flat-plate both numerically [16] and analytically [17] by 
Luikov. Lately, relative researches in connection with mixed 
convection almost all were working for Newtonian fluid 
[18,19] by Seddeek et al. On the other hand, researches in 
connection with viscoelastic fluid or second grade 
non-Newtonian fluids, but there are not the mixed convection 
flow by Siddheshwar et al. [20,21], therefore the plan proceed 
especially toward this ways. Hsiao and Chen [22,23] have 
studied conjugate heat transfer problems about a second grade 
fluid adjacent to a stretching sheet, but not have toward the 
conjugate heat and mass transfer for electrical conducting 
magnetic mixed convection past a stretching sheet. There are 
some different features than before about the conjugate heat 
transfer problem, the first difference is the momentum equation 
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about the mass transfer force item and the second difference is 
the mass transfer equation adding into the study. Keeping this 
in view, the analysis of conjugate heat transfer problem 
encompasses simultaneous solutions for the heat conduction 
equation for the fin and the boundary layer equations for the 
adjacent fluid. By taking the importance of mathematical 
equivalence of the thermal boundary layer problem with the 
concentration analogue, results obtained for heat transfer 
characteristics can be carried directly to the mass transfer by 
replacing Prandtl number by Schmidt number. In this study, 
dealing the flow and heat and mass transfer in an 
incompressible second-grade fluid caused by a stretching sheet 
with a view to examining the influence of viscous elasticity on 
flow and heat transfer characteristics of free convection 
phenomena. The system to analyze in the present study is a 
stretching sheet in a second-grade viscoelastic fluid flow. The 
objective of the present analysis is to study the heat and mass 
transfer of a stretching sheet cooled or heated by a high or low 
Prandtl-number Pr, the buoyancy parameter Gr and Gc, the 
magnetic parameter Mn, the radiation parameter Nr and 
conduction-convection coefficient Ncc, for second-grade 
viscoelastic fluid. A schematic diagram of the stretching sheet 
is shown in Fig. 1 to illustrate the physical situation and 
symbols of parameters needed for the analysis. 

 

 

Fig. 1 A sketch of the physical model for conjugate mixed convection 
heat and mass transfer pass a stretching sheet with magnetic and 

radiation effects 

II. THEORETICAL AND ANALYSIS 
An incompressible, homogeneous, non-Newtonian, 

second-grade fluid having a constitutive equation based on the 
postulate of gradually fading memory suggested by Rivlin and 
Ericksen [24] is used for the present flow.  The model equation 
is express as follows:  
T=-PI+μA 1 + 1α 2A + 2α A 2

1                                                 (1) 
T is the stress tensor, P is the pressure, I is the unit tensor, 

A 2
1  is a second order tensor, μ  is the dynamic viscosity, 1α  

and 2α  are first and second normal stress coefficients that are 
related to the material modulus and for the present 
second-grade fluid: 

,0≥μ    ,01 >α   021 =α+α                                        (2) 

The kinematic tensors 1A  and 2A  are defined as: 
T

1A V ( V)= ∇ + ∇                                                               (3) 

= + ∇ + ∇ T1
2 1 1

dA
A A ( V) ( V) A

dt
                               (4) 

Where V is velocity and d/dt is the material time derivative. 
The steady boundary-layer equations for this flow, heat transfer 
and mass transfer, in usual notations, are  

u v 0
x y
∂ ∂

+ =
∂ ∂

                                                                             (5) 

2

2
u u vu v
x y y
∂ ∂ ∂

+ = υ +
∂ ∂ ∂

2 2 3

1 2 2 3
u u v uk u v

x yy y y

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂
+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

  (6) 

( ) ( )
2

* ** 0B
g T T g C C u∞ ∞

σ
+ β − + β − −

ρ
 

2 2
r

p 2 2
qT T T uc u v k q(T T )

x y yy y ∞
⎛ ⎞ ∂∂ ∂ ∂ ∂

ρ + = +μ + − −⎜ ⎟∂ ∂ ∂∂ ∂⎝ ⎠
          (7) 

2

2
C C Cu v D
x y y
∂ ∂ ∂

+ =
∂ ∂ ∂

                                                              (8) 

The well-known Boussinesq approximation is used to 
represent the buoyancy mixed term. Where u, v are the velocity 
components in the x and y directions, T is the temperature, g is 
the magnitude of the gravity, υ  is the kinematic viscosity, 

1
1k

α
= −

ρ
is the visco-elastic parameter, *β  is the coefficient 

of thermal expansion, **β  is the concentration coefficient, T∞  

is the temperature of the ambient fluid,  ρ  is the density, pc  is 

the specific heat at constant pressure, k is the conductivity, σ  
is the electrical conductivity, 0B  is the magnetic field factor, q 
is the specific heat generation rate, D is mass diffusivity, 
respectively. By using Rosseland approximation the radiation 

heat flux. is given by 
* 4

r *
4 Tq

y3k
σ ∂

= −
∂

 ; Where *σ  and *k  

respectively, the Stefan-Boltzmann constant and the mean 
absorption coefficient. Further we assume that the temperature 
difference within the flow is such that 4T  may be expanded in 
a Taylor series. Hence, expanding 4T about T∞ and neglecting 
higher order terms we get 

4 3 4T 4T T 3T∞ ∞≅ −                                                                    (9) 

The problem for equation (9) can only be used for wT   

near-by the ambient temperature T∞ . There will be accuracy 

problem if w w(T -T )/T∞  is greater than 0.04, since Δ η =0.01, 

if w w(T -T )/T∞  = 0.04 then 4 3 4 4
w(T -4T T+3T )/T∞ ∞  

<=0.00906. w w(T -T )/T∞  is greater than 0.04. So that it is one 
of the similarities transformations restrict. Sometime may 
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control the Δ η  values to obtain a accuracy result. Now using 
Eqs. (8), (9), Eq. (7) becomes: 

* 32 2 2

p 2 2 * 2
16 TT T T u Tc u v k q(T T )

x y y y 3k y
∞

∞
⎛ ⎞ σ∂ ∂ ∂ ∂ ∂

ρ + = +μ + − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                                                                                             (10) 

Both u and T were assumed to be linearly dependent on x. The 
boundary conditions to the problem for Eqs. (5), (6), (8) and 
(10) are  

1/2
wu Bx, v v (B ) (m 1/ m)= = = − υ − ,                                   (11) 

B 0> at y→ 0  
u 0,→ u / y 0∂ ∂ →  at y →∞  

w
xT T T A( )
L∞= = + at  y→ 0 

T T∞→ at y →∞  

The item u Bx= , the velocity component u is assumed linear 
with x at the boundary, just a simple approach method. Where 

wT  and T∞  are constant wall temperature and ambient fluid 
temperature, A and B is the proportional constant. The item 

w
xT T A( )
L∞= +  has the relationship about the wall 

temperature varies along the x with a linear approximation, this 
is a simplify model. Where 1/2

wv (B ) (m 1/ m)= − υ − , m is 
suction constant and L is the characteristic length, respectively. 
It should be noted that m>1 corresponds to suction ( wv <0). 

Where m<1 corresponds to blowing ( wv >0). In the case when 
the parameter m=1, the stretching sheet is impermeable. A 
similarity solution for velocity will be obtained if introduce a 
set of transformations, such that: 

' 1/2

1/2

u Bxf ( ), v (B ) f ( ),

(B / ) y

= η = − υ η

η = υ
                                           (12) 

Equation (12) has satisfied the continuity equation (5), 
Substituting (12) into (6), we have: 

 
2

2

' '' ''' ' ''

' ''' '' IV '
r c

f ff f E(2f f )

E(2f f f ff ) G G Mf

− = +

+ − − + θ+ φ−
                           (13) 

1E B /= α μ is the viscoelastic parameter, 
* 2

r x wG g (T T ) / B x∞= β − is the free convection parameter, 
** 2

c x wG g ( ) / B x∞= β φ − φ  is the free mass convection 

parameter and 2
0M B / B= σ σ is the magnetic parameter. L is 

the wall thickness of the stretching sheet. The corresponding 
boundary conditions become:  
f=0   'f 1=    at 0η =                                                          (14) 

' ''f 0, f 0, at→ → η→∞  
for the prescribed surface temperature.  We introduce the 
dimensionless temperature ( )θ η :  

w

T T( ) and k k (1 )
T T

∞
∞

∞

−
θ η = = + εθ

−
                               (15) 

And combine the transformations from equation (12), the 
energy equation (10) becomes: 

( ) ( ) ( )'' 'r r

r r

3Pr N 3Pr Nf 2f al
3N 4 3N 4 ηθ + θ − − θ

+ +
                             (16) 

( )
'' 2r

c
r

3Pr N
E (f ) 0

3N 4
+ =

+
  

Where pPr c / k= μ  is the Prandtl number, Nr=
* 3

*
16 T
3k k

∞

∞

σ
 is the 

radiation parameter, 
2 2

c
p

B tE
c

= is the Eckert number, t is the 

characteristic length of the stretching sheet and a1
p

q
c B

=
ρ

 is 

the heat source/sink parameter. The corresponding thermal 
boundary conditions are: 

1θ =   at  0η =                                                                      (17) 
0 asθ→ η→∞            

For the solutions of heat and mass transfer equations, it can be 
defined non-dimensional temperature and concentration 
variables as: 

w

C C( )
C C

∞

∞

−
φ η =

−
                                                                      (18) 

This leads to the non-dimensional form of temperature and 
concentration equations as follows: 

'' ' '
c cS f S f 0φ + φ − φ =                                                             (19) 

Where Sc= /Dυ  is the Schmidt number. The corresponding 
boundary conditions are: 

1φ =   at  0η =                                                                      (20) 
 0 asφ = η→ ∞      

The relationship between, the density ρ and the concentration 

C is CDA
L

ρ = − , where D is the diffusing coefficient, A is 

control surface area, and L is concentration adjacent regions 
length. In terms of similarity parameters and dimensionless 
quantities defined by Equations (9) and (12), the heating rate on 
the wall is: 

* 4

w y=0 y=0*
T 4 Tq  = -k( ) ( )
y y3k

∂ σ ∂
−

∂ ∂
                                          (21) 

In addition, the local Nusselt number xNu  is defined by: 

w
x

w

qhx xNu
k T -T k∞

= =                                                           (22) 

This expression has written as: 
' 3 1/4w

x
w

qhx xNu (0)[1 Nr( (0) N) ]G
k T -T k∞

= = = −θ + θ +        (23) 

(Where,
w

TN
T T

∞

∞
=

−
 , G Gr Gc= + ) 

The formulation of the first analysis principle for free 
convection along a stretching sheet involves the energy 
conservation for the stretching sheet and the boundary layer 
equations for the flow. For a slender stretching sheet, ample 
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evidence based on finite difference solutions shows that a 
one-dimensional model is adequate. The stretching sheet 
temperature at any x location serves as the wall temperature for 
the adjacent fluid and has denoted as fT (x) . The energy 
equation for the stretching sheet may be written in two different 
forms, depending on how the coupled-fin/boundary-layer 
problem is solved. The stretching sheet energy equation can be 
expressed as: 

2
f

2
f

d T q
k tdx

=                                                                           (24) 

or 
2

f
f e2

f

d T h (T T )
k tdx

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

                                                        (25) 

In which, fk  is the thermal conductivity of the stretching 
sheet. For the solutions of either equation (24) or (25) at a given 
cycle of the iterative procedure, h and q can be regarded as 
known quantities. At first glance, it appears advantageous to 
use equation (25) rather than equation (24) because it is easier 
to solve; however, equation (25) has been employed in the 
solution scheme. Equation (25) recasts in a dimensionless form 
by the substitutions: 
X x / L,= Y y / L,=   f f e 0 e(T T ) / (T T )θ = − −                    (26) 

where 0T  is the base temperature of the stretching sheet, so 
that: 

2
f

cc f2
d

h N
dx

∧θ
= θ                                                                      (27) 

with boundary conditions: 

f 1θ =  (X=0),  fd
0

dX
θ

=   (X=1)                                           (28) 

where ccN  is the conduction-convection number and is 
defined as: 

3 1/4
cc fN (kL / k t)[1 Nr( (0) N) ]G= + θ +                                 (29) 

The quantity h
∧

 is a dimensionless form of the local convective 
heat transfer coefficient and can be written as:  

3 1 1/4hLh [1 Nr( (0) N) ] G
k

∧
− −⎛ ⎞= + θ +⎜ ⎟

⎝ ⎠
                                    (30) 

III.  NUMERICAL TECHNIQUE  
In the present problem, the set of similar equations (13) to 

(20) and (27) to (30) are solved by a finite difference method. 
These ordinary differential equations have discretized by an 
accurate finite difference method, and a computer program has 
been developed to solve these equations.  A suitable η  range 
and a direct gauss elimination method with Newton's method 
[25] is used in the computer program to obtain solutions of 
these difference equations.  

Hsiao et al. [26-29] Vajravelu. [30] are also using analytical 
and numerical solutions to solve the related problems. So, some 
numerical technique methods will be applied to the same area 
in the future. In this study, the program to compute finite 
difference approximations of derivatives for equal spaced 

discrete data. The code employ centered differences of O( 2h ) 
for the interior points and forward and backward differences of 
O(h) for the first and last points, respectively. See Chapra and 
Canale, Numerical Methods for Engineers [31].  

IV. RESULTS AND DISCUSSION 
The model for grade-two fluids is used in this study. The 

effects of dimensionless parameters, the Prandtl number (Pr), 
the magnetic parameter (M), the radiation parameter (Nr), the 
elastic number (E), the free-convection parameter (Gr) , the 
free-convection mass transport parameter (Gc) are main 
parameters of the study. Flow and temperature fields of the 
stretching sheet flow are analyzed by utilizing the boundary 
layer concept to obtain a set of coupled momentum equation, 
energy equation and mass equation. A similarity transformation 
is then used to convert the nonlinear, coupled partial 
differential equations to a set of nonlinear, coupled ordinary 
differential equations. A second-order accurate finite 
difference method is used to obtain solutions of these 
equations. Table 1 shows that the different values of skin 
friction −f″(0), Nusselt number −θ′(0) and Sherwood number 
−φ′(0) for different values of physical parameters. Table II 
shows that the different values of physical parameters for 
Newtonian flow E=0 and for non-Newtonian flow E=5 its 
− ' (0)θ for different values of physical parameters.  
 

TABLE I 

VALUES OF -
''f (0) , −

' (0)θ and -
' (0)φ  FOR DIFFERENT VALUES OF 

PHYSICAL PARAMETERS E=0.1, Gc=0.5, Pr=1.0, Nr=1 

Gr   M    al   Ec   Sc  -
''f (0)  -

' (0)θ  -
' (0)φ  

0.5  0.0  0.0  0.0  0.1  0.3332   0.9684   0.3379 
0.0  0.0  0.0  0.0  0.1  0.5564   0.9416   0.3274 
0.5  0.0  0.0  0.1  0.5  0.4588   0.9282   0.7792 
0.0  0.5  0.2  0.1  0.5  1.0183   0.7491   0.6871 
0.2  0.5  0.2  0.0  1.0  0.9748   0.7613   1.0456 
0.2  0.5  0.0  0.0  1.0  0.9801   0.8304   1.0435 

     
TABLE II 

VALUES OF −
' (0)θ AND -

' (0)φ  FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETERS M=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1 

  -
' (0)θ  -

' (0)θ  h
∧

 h
∧

 
(E=0) (E=5) (E=0) (E=5) 
0.9006 1.4833       5.3192    8.7607 

 
 
 

TABLE III 

VALUES OF −
' (0)θ and -

' (0)φ  FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETERS M=0.1, al=0.1, E=0.1, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1 

  -
' (0)θ  -

' (0)θ  h
∧

 h
∧

 
(G=1) (G=5) (G=1) (G=5) 
0.9122 1.1283       5.3877    6.6640 
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TABLE IV 

VALUES OF −
' (0)θ AND -

' (0)φ  FOR DIFFERENT VALUES OF PHYSICAL 

PARAMETERS M=0.1, E=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Ec=0.1, Sc=0.1 

  -
' (0)θ  -

' (0)θ  h
∧

 h
∧

 
(Nr=0) (Nr=5) (Nr=0) (Nr=5) 
0.1429 1.2615      0.8440 7.4507 

 
 
Table III shows that the different values of physical parameters 
for free convection flow Gr=2.5, Gc=2.5 and for mixed 
convection Gr=0.5, Gc=0.5 flow its − ' (0)θ for different values 
of physical parameters. Table IV shows that the different values 
of physical parameters for non-radiative flow Nr=0 and for 
radiative flow Nr=5 its − ' (0)θ for different values of physical 
parameters.  Fig. 2 depicts conjugate stretching sheet 
temperature distributions for M=0.1, al=0.1, Gr=0.5, Gc=0.5, 

Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, E=0, h
∧

=25.3192, Ncc=0.1, 
0.5, 2. Figure 3 depicts conjugate stretching sheet temperature 
distributions for M=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, 

Ec=0.1, Sc=0.1, E=0, h
∧

=8.7607, Ncc=0.1, 0.5, 2. Fig. 2 and 3 
show the conjugate stretching sheet temperature distributions. 
The results obtained from the present computation for different 
Ncc values and different viscoelastic coefficients E by centered 
finite difference methods. From the results, we find that the 
larger Ncc parameters reduce the stretching sheet temperature 
effect is better than the lower Ncc parameters. On the other 
hand, compared the two Figs. 2 and 3, find that the larger 

parameters h
∧

 reduce the stretching sheet temperature effect is 

better than the lower h
∧

 parameters. From Figs. 2 and 3, we 
find an important result that the non-Newtonian fluid heat 
transfer effect is better than the Newtonian fluid flow for about 
27% at current conditions, and produce a good effect in heat 
conduction for about 5% to 10% at these conditions. 
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Fig. 2 Conjugate stretching sheet temperature distributions for M=0.1, 

al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, E=0, 

h
∧

=5.3192 
 

Fig. 4 depicts conjugate stretching sheet temperature 
distributions for M=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, 

Ec=0.1, Sc=0.1, E=0.1, h
∧

=5.3877, Ncc=0.1, 0.5, 2.  
Fig. 5 depicts conjugate stretching sheet temperature 

distributions for M=0.1, al=0.1, Gr=2.5, Gc=2.5, Pr=1.0, Nr=1, 

 Ec=0.1, Sc=0.1, E=0.1, h
∧

=6.6640, Ncc=0.1, 0.5, 2. 
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Fig. 3 Conjugate stretching sheet temperature distributions for M=0.1, 

al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, E=5 
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Fig. 4 Conjugate stretching sheet temperature distributions for M=0.1, 

al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, E=0.1, 
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Fig. 5 Conjugate stretching sheet temperature distributions for M=0.1, al=0.1, 

Gr=2.5, Gc=2.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, E=0.1, h
∧

=6.6640 
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Fig. 6 Conjugate stretching sheet temperature distributions for M=0.1, 
al=0.1, Gr=0.5, E=0.1, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, Nr=0, 

h
∧

=0.8440 
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Fig. 7 Conjugate stretching sheet temperature distributions for M=0.1, 
al=0.1, Gr=0.5, E=0.1, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, Nr=5 

h
∧

=7.4507 
 

Figs. 4 and 5 show the conjugate stretching sheet 
temperature distributions. The results obtained from the present 

computation for different Ncc values and different viscoelastic 
coefficients E by centered finite difference methods. From the 
results, we find that the larger Ncc parameters reduce the 
stretching sheet temperature effect is better than the lower Ncc 
parameters. On the other hand, compared the two Figs. 4 and 5, 

find that the larger parameters h
∧

 reduce the stretching sheet 

temperature effect is better than the lower h
∧

 parameters. From 
Figs. 4 and 5, we find an important result that the free 
convection fluid heat transfer effect is better than the mixed 
convection fluid flow for about 23% at current conditions, and 
produce a good effect in heat conduction for about 3% to 5% at 
these conditions. 

Fig. 6 depicts conjugate stretching sheet temperature 
distributions for M=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, 

Ec=0.1, Sc=0.1, E=0, h
∧

=2.0563, Ncc=0.1, 0.5, 2. Fig. 7 
depicts conjugate stretching sheet temperature distributions for 
M=0.1, al=0.1, Gr=0.5, Gc=0.5, Pr=1.0, Nr=1, Ec=0.1, Sc=0.1, 

E=0, h
∧

=2.5549, Ncc=0.1, 0.5, 2. Figs. 6 and 7 show the 
conjugate stretching sheet temperature distributions. The 
results obtained from the present computation for different Ncc 
values and different viscoelastic coefficients E by centered 
finite difference methods. From the results, we find that the 
larger Ncc parameters reduce the stretching sheet temperature 
effect is better than the lower Ncc parameters. On the other 
hand, compared the two Figs.  6 and 7, find that the larger 

parameters h
∧

 reduce the stretching sheet temperature effect is 

better than the lower h
∧

 parameters. From Figs. 6 and 7, we 
find an important result that the radiative convection fluid heat 
transfer effect is better than the non-radiative convection fluid 
flow for about 770% at current conditions, and produce a good 
effect in heat conduction for about 5% to 20% at these 
conditions. 

V. CONCLUSION 
The thermal characteristics of conjugate heat and mass 

transfer on a stretching sheet have been further explored in this 
study. We have considered a more general variation of the 
conjugate heat and mass transfer problem than that considered 
in Refs. [22] and [23]. Nevertheless, the generalized problem 
admits similarity solutions to be obtained. The numerical 
solutions of the resulting set of ODEs admit an efficient 
analysis of the consequences of a stretching sheet. The main 
conclusions to be drawn are as follows: 
1) It is observed that increase in viscoelastic parameter E 
produces a significant increase in the thickness of the thermal 
boundary layer of the fluid and so as the temperature increases 
in presence/absence of thermal conductivity parameter. 
2) The effect of Schmidt number Sc on mass transfer process 
may show that the increase of value of Schmidt number Sc 
results in the decrease of concentration distribution as a result 
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of decrease of the concentration boundary layer thickness with 
the increased values of Sc. 

3) The larger Ncc or h
∧

 parameters reduce the stretching sheet 

temperature effect is better than the lower Ncc or h
∧

 
parameters.  
4) The larger parameters E reduce the stretching sheet 
temperature effect is better than the lower E parameters, so that 
the non-Newtonian viscoelastic fluid has a better heat transfer 
effect than the Newtonian fluid flow. 
5) The larger parameters G reduce the stretching sheet 
temperature effect is better than the lower G parameters, so that 
the free convection with a larger G has a better heat transfer 
effect than a smaller G. 
6) The larger parameters Nr reduce the stretching sheet 
temperature effect is better than the lower E parameters, so that 
the radiative convection viscoelastic fluid has a better heat 
transfer effect than the non-radiative fluid flow. 
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