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The Research and Application of M/M/1/N Queuing
Model with Variable Input Rates, Variable Service

Rates and Impatient Customers
Quanru Pan

Abstract—How to maintain the service speeds for the business
to make the biggest profit is a problem worthy of study, which is
discussed in this paper with the use of queuing theory. An M/M/1/N
queuing model with variable input rates, variable service rates and
impatient customers is established, and the following conclusions
are drawn: the stationary distribution of the model, the relationship
between the stationary distribution and the probability that there are n
customers left in the system when a customer leaves (not including
the customer who leaves himself), the busy period of the system,
the average operating cycle, the loss probability for the customers
not entering the system while they arriving at the system, the mean
of the customers who leaves the system being for impatient, the
loss probability for the customers not joining the queue due to the
limited capacity of the system and many other indicators. This paper
also indicates that the following conclusion is not correct: the more
customers the business serve, the more profit they will get. At last,
this paper points out the appropriate service speeds the business
should keep to make the biggest profit.

Keywords—variable input rates, impatient customer, variable ser-
vice rates, profit maximization.

I. INTRODUCTION

CUSTOMERS’ coming to the enterprise to seek for ser-
vice may constitute a queuing system. The arrival process

of the customers is the input process; the enterprise is the
service agency, and we rule on the principle that first-come,
first-served. Customers always hope that the queue length for
service is as short as possible when they arrive; otherwise, they
may refuse to enter the system and leave immediately, even
customers who are already in the system may also leave the
system due to impatience, which requires the system adjust
service speeds flexibly[1]−[5]: raise the service speed to reduce
the loss of customers when the queue is long and reduce
the service speeds to reduce the cost of services. The service
speeds which should the system keep is discussed in this paper.

II. MODEL HYPOTHESIS

(1) There is only one service window in the system, and its
capacity is N (N > m > 0 ), first come first served.

(2) Exponential distribution with the parameterλn = 1

1+nλ
is applied to time intervals that the customers arrive at system,
among which n is the queue length, n = 0, 1, 2 · · ·N-1. If
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we suppose αn = 1

1+n obviously we can get α0 = 1, αn >
αn+1, lim

n→+∞αn = 0

(3) Exponential distribution with the parameter μn is applied
to the service time T for each customer, among which μn ={
nμ, 1 ≤ n ≤ m
mμ,m < n ≤ N

(4)The customers who are already in the system may
leave the system due to impatience, its intensity is δn ,
and δn = n(n + 1)δ , among which n is the queue
length,n = 0, 1, 2 · · ·N , δ > 0. Obviously we can get:
δ0 = 0, δn < δn+1, lim

n→+∞ δn = +∞
(5) The arrival process of customers and system service

process are independent respectively.

III. MATHEMATICAL MODEL

Stationary distribution of the system pn = P (N(t) = n)
exists due to limited state of the system. From the model
hypothesis we can get the Kolmogorov equations:

For state 0: λp0 = (μ+ 2δ)p1 ⇒ p1 = λ
μ+2δp0

For state 1: λp0 +(2μ+6δ)p2 = [(μ+2δ)+ λ
2
)]p1⇒ p2 =

( 1

2!
)2 λ2

(μ+2δ)(μ+3δ)p0

For state 2: λ
2
p1 + (3μ + 12δ)p3 = [(2μ + 6δ) + λ

3
]p2

⇒ p3 = ( 1

3!
)2 λ3

(μ+2δ)(μ+3δ)(μ+4δ)p0

· · · · · ·
For state m-1: λ

m−1
pm−2 + [mμ + m(m + 1)δ]pm =

[(m − 1)μ + (m − 1)mδ + λ
m ]pm−1 ⇒ pm =

( 1

m!
)2 λm

(μ+2δ)(μ+3δ)···[μ+(m+1)δ]p0 = λm

(m!)2

m+1∏
i=2

1

μ+iδp0

For state m: λ
mpm−1 + [mμ + (m + 1)(m +

2)δ]pm+1 = [mμ + m(m + 1)δ + λ
m+1

]pm⇒pm+1 =

λm+1

m!(m+1)!
(
m+1∏
i=2

1

μ+iδ ) 1

mμ+(m+1)(m+2)δp0

For state m+1: λ
m+1

pm + [mμ + (m + 2)(m +

3)δ]pm+2 = [mμ + (m + 1)(m + 2)δ++ λ
m+1

]pm⇒
pm+1 = λm+1

m!(m+1)!
(
m+1∏
i=2

1

μ+iδ ) 1

mμ+(m+1)(m+2)δp0⇒ pm+2 =

λm+2

m!(m+2)!
(
m+1∏
i=2

1

μ+iδ ) 1

mμ+(m+1)(m+2)δ
1

mμ+(m+2)(m+3)δp0

· · · · · ·
For state N-1: λ

N−1
pN−2 + [mμ + N(N +

1)δ]pN = [mμ + (N − 1)Nδ + λ
N ]pN−1⇒ pN =

( λN

m!N !
)(

m+1∏
i=2

1

μ+iδ )(
N−m∏
i=1

1

mμ+(m+i)(m+i+1)δ )p0
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In accordance with the regularity we can get
N∑

k=0

pk = 1 ⇒

p0 = {1+
m∑

n=1

[
λn

(n!)2

n+1∏
i=2

1

μ+ iδ
]+

N∑
n=m+1

[
λn

m!n!
(
m+1∏
i=2

1

μ+ iδ
)

(
n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ )]}−1

We obtain the following theorem based on the above deriva-
tion:

Claim 1. Stationary distribution of the system exists, and
pn =⎧⎪⎪⎨
⎪⎪⎩

( 1

n!
)2λn(

n+1∏
i=2

1

μ+iδ )p0, 1 ≤ n ≤ m

λn

m!n!
(
m+1∏
i=2

1

μ+iδ )(
n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ )p0,m < n ≤ N

,

among which

p0 = {1+
m∑

n=1

[
λn

(n!)2

n+1∏
i=2

1

μ+ iδ
]+

N∑
n=m+1

[
λn

m!n!
(
m+1∏
i=2

1

μ+ iδ
)

(
n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ )]}−1

To get theorem 2, we give the following lemma:

Lemma . Let X(t) =
N(t)∑
n=1

Xn is the total amount of

remuneration before the moment t , if E[X] <∞ E[T ] <∞
,then(1) lim

t→∞P (X(t)
t ) = E[X]

E[T ]
= 1 (2) lim

t→∞E(X(t)
t ) = E[X]

E[T ]

Claim 2. If bn = P (there are n customers left in the
system when a customer leaves, not including the customer

who leaves himself),vn =

{
nμ+ n(n+ 1)δ, 1 ≤ n ≤ m
mμ+ n(n+ 1)δ,m < n ≤ N

, then pn = [λn

λ0
b0 + λn

N∑
n=0

vnpn]−1bn, n = 0, 1, 2 · · ·N .

Proof: Let An = the interval that from N(t) = n + 1 to
N(t) = n twice, Bn = the number of the customers served
during the time An , C0 = the number of times that there is
no customer left in the system when a customer leaves during
the time An , then that the N(t) from n + 1 to n each time
can be regarded as an update event,An can be regarded as
a update interval. The time that N(t) among An stay in the
state n is a random variable, and it obeys the exponential
distribution with the parameter λn. By the lemma, if we regard
the time that N(t) stay in the state n as remuneration, then

pn =
1
/λn

E[An]
. Only one customer leaves the system among

Bn , and we can get that N(t) stay in the state n; if we
regard Bn as update interval length, then by the lemma we
know that bn = 1

E[Bn]
, b0 = E[C0]

E[Bn]
. WhenN(t) = 0 , the

next customer will arrive after an interval with an average
length of λ−1

0
, and An can be viewed that it is formed by

C0 such length and Bn intervals (the length of the interval
is equal to the service time for each customer), so E[An] =
1

λ0
E[C0] + E[T ]E[Bn]⇒E[An] = 1

λ0

b0
bn

+ E[T ] 1

bn
. Because

E[T ] =
N∑

n=0

vnpn, we can get E[An] = 1

λ0

b0
bn

+ 1

bn

N∑
n=0

vnpn,

further,we can get:pn =
1
/λn

E[An]
= [λn

λ0
b0 + λn

N∑
n=0

vnpn]−1bn,

n = 0, 1, 2 · · ·N .

Inference 1. For M/M/1queuing system with parameters{
λi = λ
μi = μ

, then pn = bn , n = 0, 1, 2 · · ·N .

Proof: If vn ≡ μ , then E[T ] = 1

μ . If λn ≡ λ,n = 0, then
p0 = [b0 + λ

μ ]−1b0 . We have known that for M/M/1 queuing

system with the parameters

{
λi = λ
μi = μ

, then p0 = 1− λ
μ .So

we can get b0 = 1− λ
μ , put above results into pn = [λn

λ0
b0 +

λn

N∑
n=1

vnpn]−1bn, we can get pn = bn , n = 0, 1, 2 · · ·N

Claim 3. Let Wn = the time during which the state
of the system transfers to n till the state transfers to 0
for the first time, ωn = E(Wn),n = 1, 2 · · ·N , then

ωn =
N∑

n=1

ρn +
n−1∑
m=1

(
m

Π
k=1

vk

λk
)

N∑
i=m+1

ρi, among which λn =

1

1+nλ, ρ1 = 1

μ+2δ , vn =

{
nμ+ n(n+ 1)δ, 1 ≤ n ≤ m
mμ+ n(n+ 1)δ,m < n ≤ N

,

ρn =

⎧⎪⎪⎨
⎪⎪⎩

λn

n!

n

Π
k=1

[kμ+k(k+1)δ]
, 1 ≤ n ≤ m

λn

n!

m

Π
k=1

[kμ+k(k+1)δ]
n

Π
k=m+1

[mμ+k(k+1)δ]
,m < n ≤ N

.

Proof: Let βn = the time during which the state of the system
transfers to n till the next customer arrives. γn = the time
during the state of the system transfers to n till the next
customer leaves. From the moment that the state transfers
to n , the states will change at the probability of 1, either
n → n + 1 or n → n − 1 , also we depend on the math-
ematical expectation formula and the nature of exponential
distribution, we can get: ωn = E(Wn)= E[min(βn, γn)] +
E[Wn |βn < γn]P{βn < γn} + E[Wn|βn > γn]P{βn >
γn} = 1

λn+vn
+ λn

λn+vn
ωn+1 + vn

λn+vn
ωn−1, namely ωn+1 −

ωn = − 1

λn
+ vn

λn
(ωn − ωn−1)(*). Because ω0 = 0, from

the above equation recursion we can get ωn+1 − ωn =

− 1

λnρn

n∑
i=1

ρn + 1

λnρn
ω1. Let Zn = ωn+1 − ωn, un =

znλ1λ2···λn

v1v2···vn
, u0 = Z0, then depending on(*)we can get:

Zn = − 1

λn
+ vn

λn
Zn−1, Z0 = ω1 ⇒ un

v1v2···vn

λ1λ2···λn
= − 1

λn
+

v1v2···vn

λ1λ2···λn
un−1 ⇒ un − un−1 = − 1

λn

λ1λ2···λn

v1v2···vn
= −ρn < 0

⇒ un < un−1, ⇒ un is a monotone decreasing function,
also Zn > 0, λn > 0, vn > 0,thus un = λnZnρn > 0, ⇒
un has the lower bound, ⇒ lim

n→∞un exists. Also u0 − un =
n∑

i=1

ρi⇒ω1 = u0 = lim
n→∞un +

∞∑
i=1

ρi. It is easy for us to

get: lim
n→∞λn = 0, lim

n→∞ ρn = 0. The state of system is
limited, so the system is positive recurrent.∀ n, 0 < ωn <∞
⇒ lim

n→∞un = lim
n→∞λnZnρn = 0. ω1 = 0 +

∞∑
n=1

ρn =

N∑
n=1

ρn +
∞∑

n=N+1

ρn =
N∑

n=1

ρn + 0 =
N∑

n=1

ρn(λn = 1

1+nλ,

among which n is the queue length, n = 0, 1, 2 · · ·N −
1, namely μn =

{
1

1+nλ, 0 ≤ n ≤ N − 1

0, n > N + 1
⇒ρn = 0,

n> N-1⇒
∞∑

n=N+1

ρn = 0). Put ω1 =
N∑

n=1

ρn into

ωn+1 − ωn = − 1

λnρn

n∑
i=1

ρn + 1

λnρn
ω1, we can get
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ωn+1 − ωn = 1

λnρn

N∑
i=n+1

ρi =
n∏

k=1

vk

λk

N∑
i=n+1

ρi⇒ωn =

n−1∏
k=1

vk

λk

N∑
i=n

ρi + ωn−1, from this equation recursion we can get

ωn =
N∑

n=1

ρn +
n−1∑
m=1

(
m

Π
k=1

vk

λk
)

N∑
i=m+1

ρi, 1 ≤ n ≤ N .

Inference 2. Busy period ξ is the time from the mo-
ment the first customer arrives at the system to the mo-
ment the last customer leaves the system. The average

busy period of the system E(ξ) = 1

λ{
m∑

n=1

[ λn

(n!)2

∏
1

μ+iδ ] +

N∑
n=m+1

[ λn

m!n!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}
Proof: E(ξ) = ω1, also depending on the proof of the

theorem 3: ω1 =
N∑

n=1

ρn ⇒ E(ξ) =
N∑

i=1

ρi =
N∑

i=1

λ1λ2···λi−1
μ1μ2···μi

=

1

λ0

N∑
i=1

λ0λ1λ2···λi−1
μ1μ2···μi

= 1

λ0

[
1

p0
− 1
]

= 1

λ{
m∑

n=1

[ λn

(n!)2

n+1∏
i=2

1

μ+iδ

] +
N∑

n=m+1

[ λn

m!n!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}
Inference 3. Idle period I is the time when there is no

customer in the system. The operating cycle is the time
when the state of the system from 0 until the next time
they transferred to the state 0. The average operating cycle

of the system E(I + ξ)= 1

λ{1 +
m∑

n=1

[ λn

(n!)2

n+1∏
i=2

1

μ+iδ ] +

N∑
n=m+1

[ λn

m!n!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}
Proof: βn = the time during the state of the system

transfers to n till the next customer arrives. When the
state of system transfers to the state 0, it will transfer
to state 1 in β0 time, and the state 1 will return 0 in
W1 time. Thus I = β0, E(I + ξ) = E(β0 + W1) =

1

λ0
+ 1

λ0

(
1

p0
− 1
)

= 1

λ0p0
= 1

λ{1 +
m∑

n=1

[ λn

(n!)2

n+1∏
i=2

1

μ+iδ ] +

N∑
n=m+1

[ λn

m!n!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}

IV. THE OTHER RELEVANT INDICATORS OF SYSTEM

(1) When a customer reaches the system and finds that
there are n customers in the system, if he enters the sys-
tem at the probability of αn = 1

1+n , and he leaves
the system at the probability of 1 − αn , then the loss
probability of the system because of the customers not

entering the system Ploss =
N∑

n=0

p(X = n) × (1 − αn)=

N∑
n=0

pn −
N∑

n=0

αnpn= 1 − {p0 + p0

m∑
n=1

[ λn+1

(n+1)!n!

n+1∏
i=2

1

μ+iδ ] +

p0

N∑
n=m+1

[ λn+1

m!(n+1)!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}
2) Some customers may leave system before being served

due to impatience. The mean of those customers who leaves

the system because of impatience LI =
N∑

n=0

δnpn+1 =

N∑
n=0

n(n+ 1)δpn+1 = p0

m−1∑
n=0

[ δλn+1

(n+1)!(n−1)!

n+2∏
i=2

1

μ+iδ ] p0

N∑
n=m

[ δλn+1

m!(n−1)!

m+1∏
i=2

1

μ+iδ

n−m+1∏
i=1

1

mμ+(m+i)(m+i+1)δ ]

(3) When a customer arrives at the system and finds that
there are N customers in the system, he can not enter the
system. The loss probability of the system because of limited

capacity PN = λN

m!N !

m+1∏
i=2

1

μ+iδ

N−m∏
i=1

1

mμ+(m+i)(m+i+1)δp0

(4) The average input rate of system λ =

(
N∑

n=0

λnpn)(1 − PN ) = p0{λ +
m∑

n=1

[ λn+1

n!(n+1)!

n+1

Π
i=2

1

μ+iδ ]+

N∑
n=m+1

[ λn+1

m!(n+1)!
(
m+1

Π
i=2

1

μ+iδ )(
n−m

Π
i=1

1

mμ+(m+i)(m+i+1)δ )]}{1 −

p0
λN

m!N !
[
m+1∏
i=2

1

μ+iδ ][
N−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}

(5) The average service intensity of the system is ρ̄ = λ̃
μ ,

λ̃ is the average input rate of those customers who enter the
system and receive the service, μ is the average service rate. If
γ = 1

μ , then γ is the average service time of the system. The
average number of the customers who arrive and receive the
service during the time t is λ̃t . The free time of the system
is p0t . The busy time of the system is t− p0t . The number
of customers who receive service during the time t is t−p0t

γ .
The number of customers entering the system and receive the
service, and the number of customers who are serviced in unit
time are the same under the balance condition , so λ̃t = t−p0t

γ

. If t→ ∞ , then λ̃γ = 1 − p0 , so ρ = 1 − p0.

(6)The average queue length of the system Ls =
N∑

n=0

npn

=p0

m∑
n=1

[ λn

(n−1)!n!

n+1∏
i=2

1

μ+iδ ] + p0

N∑
n=m+1

[ λn

m!(n−1)!

m+1∏
i=2

1

μ+iδ

n−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]

V. AN EXAMPLE

For an M/M/1/3 queue system, exponential distribution with
the parameter λ is applied to time intervals that the customers
enter the system, and λ = 3.6 ; the average service cost for
each customer is E, and E=1; the average income for serving a
customer is G, and G =2; μ is the service rate; the probability
that customers entering the system is Pn = (1−ρ)ρn

1−ρN+1 ; n =
0, 1, 2, 3 N=3, then the income of the system is λ(1 − pN )G
, net income F=λ(1− pN )G−Eμ . Compare the net income
F and loss probability Pn when μ = 6 and μ = 3 .

Analysis: μ = 6 ⇒ ρ = 0.6,P3 = (1−0.6)0.63

1−0.64 =

0.0993,F=2×3.6[1− (1−0.6)0.63

1−0.64 ]−1×6=0.46; μ = 3 ⇒ ρ =

1.21,P3 = (1−1.21)1.213

1−1.214 ] = 0.32, F=2 × 3.6[1 − (1−1.21)1.213

1−1.214 ]
−1 × 3= 1.86.

From above analysis we can see that when μ = 3 , 32%
of the customers do not enter the system and the net income
F=1.86, while μ = 6, less than10% of the customers do not
enter the system, but F= 0.46, from which we can get: the
most profitable strategy is not necessarily the strategy to serve
the largest number of customers. Then what the service speeds
should the business keep to make the biggest profit?

VI. OPTIMIZATION OF THE MODEL

1. Selection of (μ,m) among μn(μ,m)
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The net income of the system F = Gλ̃ − G
M1
μ − G

M2
N

, among which G is the average income for serving a
customer, G

M1
is the average service cost for each customer,

N is the total number of seats for customers, and G
M2

is loss cost of each seat, λ̃ is the average input rate
of those customers who enter the system and receive

the service, and λ̃ =
N∑

n=0

(λnpn − δnpn+1)(1 − PN )=

p0{λ+
m−1∑
n=1

[ λn+1

n!(n+1)!

n+1

Π
i=2

1

μ+iδ − λn+1δ
(n−1)!(n+1)!

n+2

Π
i=2

1

μ+iδ ]+

λm+1P0
m!(m+1)!

m+1

Π
i=2

1

μ+iδ − λm+1δP0
(m−1)!m!

m+1

Π
i=2

1

μ+iδ
1

mμ+(m+1)(m+2)δ

]+
N∑

n=m+1

[ λn+1

m!(n+1)!
(
m+1

Π
i=2

1

μ+iδ )(
n−m

Π
i=1

1

mμ+(m+i)(m+i+1)δ ) −
λn+1δP0
m!(n−1)!

(
m+1

Π
i=2

1

μ+iδ )(
n−m+1

Π
i=2

1

mμ+(m+i)(m+i+1)δ )]}(m+1

Π
i=2

1

μ+iδ )

(
n−m+1

Π
i=2

1

mμ+(m+i)(m+i+1)δ )]}{1 − p0
λN

m!N !
[
m+1∏
i=2

1

μ+iδ ]

[
N−m∏
i=1

1

mμ+(m+i)(m+i+1)δ ]}, μ is the average service

rates, and μ =
N∑

n=1

μnpn = p0μ
m∑

n=1

λn

(n−1)!n!

n+1

Π
i=2

1

μ+iδ +

p0μ
N∑

n=m+1

{ λn

n!(m−1)!

m+1

Π
i=2

1

μ+iδ

n−m

Π
i=1

1

mμ+(m+i)(m+i+1)δ}
We want to get maxF . Considering both m and μ are

limited, we can put the possible values of (μ,m) into F =
Gλ̃ − G

M1
μ − G

M2
N , and compare these values, if (μ0,m0)

makes the biggest, then (μ0,m0) is what we want.
2. Optimization of N among M/M/1/N

To get maxF , N should satisfy

{
F (N − 1) ≤ F (N)
F (N + 1) ≤ F (N)

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gλ̃(N − 1) − G
M1
μ(N − 1) − (N − 1) G

M2

≤ Gλ̃(N) − G
M1
μ(N) −N G

M2

Gλ̃(N + 1) − G
M1
μ(N + 1) − (N + 1) G

M2

≤ Gλ̃(N) − G
M1
μ(N) −N G

M2

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̃(N − 1) − 1

M1
μ(N − 1) − (N − 1) 1

M2

≤ λ̃(N) − 1

M1
μ(N) −N 1

M2

λ̃(N + 1) − 1

M1
μ(N + 1) − (N + 1) 1

M2

≤ λ̃(N) − 1

M1
μ(N) −N 1

M2

⇔[M1λ̃(N + 1) − μ(N + 1)] − [M1λ̃(N) − μ(N)]≤ M1
M2

≤ [M1λ̃(N) − μ(N)] − [M1λ̃(N − 1) − μ(N − 1)] , with
different value ranges, we can get N.
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