
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

128

 

 

  
Abstract—Load balancing in distributed computer systems is the 

process of redistributing the work load among processors in the 
system to improve system performance. Most of previous research in 
using fuzzy logic for the purpose of load balancing has only 
concentrated in utilizing fuzzy logic concepts in describing 
processors load and tasks execution length. The responsibility of the 
fuzzy-based load balancing process itself, however, has not been 
discussed and in most reported work is assumed to be performed in a 
distributed fashion by all nodes in the network. This paper proposes a 
new fuzzy dynamic load balancing algorithm for homogenous 
distributed systems.  The proposed algorithm utilizes fuzzy logic in 
dealing with inaccurate load information, making load distribution 
decisions, and maintaining overall system stability. In terms of 
control, we propose a new approach that specifies how, when, and by 
which node the load balancing is implemented.  Our approach is 
called Centralized-But-Distributed (CBD). 
 

Keywords—Dynamic load balancing, fuzzy logic, distributed 
systems, algorithm.  

I. INTRODUCTION 

OAD balancing in distributed computer systems is the 
process of redistributing the work load among processors 

in the system to improve system performance [1]. Various 
studies have shown that distributing the work load evenly 
among nodes of a distributed system highly improves system 
performance and increases resource utilization. Dynamic load 
balancing algorithms monitor changes on the system work 
load and redistribute the work load accordingly, e.g., [1]-[13]. 
A dynamic load balancing algorithm is usually composed of 
three strategies: transfer strategy, location strategy, and 
information strategy.  Transfer strategy decides on which tasks 
are eligible for transfer to other nodes for processing.  
Location strategy nominates a remote node to execute a 
transferred task.  Information strategy is the information center 
of a load balancing algorithm.  It is responsible for providing 
location and transfer strategies at each node with the necessary 
information required to take their decisions.  Information 
strategy is an important part of a load balancing algorithm.  
The worth and complexity of any dynamic load balancing 
algorithm depends heavily on the performance of its 
information strategy.  The implementation responsibility or 
control of a dynamic load balancing algorithm can take three 
different forms: centralized, distributed, or semi-distributed.   
 

 
Ali M. Alakeel is with the College of Computers and Information 

Technology, University of Tabuk, P.O.Box 741, Tabuk 71491, Saudi Arabia 
(e-mail: alakeel@ut.edu.sa).  

 

 
In a centralized load distribution algorithm, a single node 
(called central node) in the network is nominated to be 
responsible for all load distribution in the network.  In a 
distributed load balancing algorithm, the responsibility is 
distributed where each node in the network carries an equal 
share of the responsibility and executes the same algorithm.  
In a semi-distributed load balancing algorithm, the network is 
segmented into clusters where each cluster contains a set of 
nodes.  The control within each cluster is centralized, i.e. a 
central node is nominated to take charge of load balancing 
within its set.  Load balancing of the whole distributed system 
is achieved through the cooperation of central nodes of each 
cluster, i.e. the responsibility is distributed among the central 
nodes of each cluster. 

Most of previous research in using fuzzy logic for the 
purpose of load balancing, e.g., [16]-[28], has only 
concentrated in utilizing fuzzy logic concepts in describing 
processors load and tasks execution length. The responsibility 
of the fuzzy-based load balancing process itself, however, has 
not been discussed and in most reported work is assumed to be 
performed in a distributed fashion by all nodes in the network. 
This distributed approach requires that the load balancing 
algorithm resides in all nodes of the network all of the time. 
Because of the intrinsic difference between rule-based 
applications and functional based application, using a 
distributed approach for the load balancing control mechanism 
may not be the best choice and may increase the costs of the 
load balancing process. This is because rule-based 
applications require more memory and procession power 
resources than functional based applications.  The memory 
requirement is associated with the knowledge base and during 
the rules chaining process, while the processing power is 
required by the inference engine during the search process for 
a given solution or a goal.  Moreover, the distributed approach 
for the load balancing process still has some traditional 
problems, one of which is that optimal scheduling decisions 
are difficult to make because of the rapidly changing 
environment introduced by the arrivals and departures from 
individual processors.  Another disadvantage is the extra 
communication overhead introduced by all processors trying 
to gather information about each other. 

This paper proposes a new fuzzy dynamic load balancing 
algorithm for homogenous distributed systems.  The proposed 
algorithm utilizes fuzzy logic, e.g., [29]-[31], in dealing with 
inaccurate load information, making load distribution 
decisions, and maintaining overall system stability. In terms of 
control, we propose a new approach that specifies how, when, 

Ali M. Alakeel 

A Fuzzy Dynamic Load Balancing Algorithm 
for Homogenous Distributed Systems  

L



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

129

 

 

and by which node the load balancing is implemented.  Our 
approach is called Centralized-But-Distributed (CBD).  Also 
we introduce a new location policy which utilizes Fuzzy Logic 
techniques in redistributing the load from heavily loaded 
nodes to lightly loaded nodes in the system. Our load 
balancing algorithm includes an explicit mechanism for 
monitoring and tuning system stability.  System stability is 
maintained through the dynamic adjustment and tuning of 
various parameters incorporated in the algorithm. 

The rest of this paper is organized as follows. Section II 
provides an overview of different approaches to control the 
process of load balancing in a distributed system environment. 
Section III presents our proposed fuzzy dynamic load 
balancing algorithm and in Section IV we discuss our 
conclusions and future research. 

II.  RESPONSIBILITY OF LOAD BALANCING  

Along with various load balancing strategies which may be 
applied independently or tailored to enhance the performance 
of an algorithm for solving a certain problem, different 
policies of where to put the control of the load balancing 
algorithm have been proposed in the literature:  centralized, 
distributed, or semi-distributed. 

A centralized load balancing strategy assigns a single 
processor the responsibility of initiating and monitoring the 
load balance operation.  In this strategy, a dedicated processor 
gathers the global information about the state of the system 
and assigns tasks to individual processors.  Despite its high 
potential of achieving optimal performance, centralized 
strategies have some disadvantages:  high vulnerability to 
failures, storage requirements for maintaining the state 
information - especially for large systems, and the 
dependability of the performance of the system on the central 
processor which could result in a bottleneck [1]. 

In a distributed load balancing strategy, each processor 
executes the same algorithm and exchanges information with 
other processors about the state of the system.  Each processor 
may send or receive work on the basis of a sender-initiated or 
a receiver-initiated policy.  In a sender-initiated policy, the 
sender decides which job gets sent to which receiver.  In a 
receiver-initiated policy, the receiver searches for more work 
to do.  Intuitively, queues are formed at senders if a receiver-
initiative policy is used, while they are formed at receivers if a 
sender-initiative policy is used.  Additionally, scheduling 
decisions are made when a new job arrives at the sender in a 
sender-initiative, while they are made at the departure of a job 
in a receiver-initiative policy.  The determination of which 
policy is adopted depends upon the load transfer request which 
can be initiated by an over-loaded or under-loaded processor 
[1], [3], [6], [7]. It has been demonstrated in [4], [6], and [8], 
using analytical models and simulations, that sender-initiated 
strategies generally perform better at lower system loads while 
receiver-initiated strategies perform better at higher system 
loads, assuming that process migration cost under the two 
strategies is comparable. Some of the advantages offered by 
the distributed policy are: Fault tolerance, minimum storage 
requirements to keep status information, and the availability of 

system state information at all nodes. The distributed policy 
still has some disadvantage, one of which is that optimal 
scheduling decisions are difficult to make because of the 
rapidly changing environment introduced by the arrivals and 
departures from individual processors.  Another disadvantage 
is the extra communication overhead is introduced by all 
processors trying to gather information about each other. To 
mitigate this overhead, some distributed strategies minimize 
the amount of information exchanged, which has a negative 
reflection on the performance of an algorithm. 

The semi-distributed policy comes in the middle between 
centralized and distributed policies.  It is introduced to take the 
best of each and to avoid the major drawbacks of each of the 
two policies.  The semi-distributed strategy is based on the 
partitioning of the processors into equal sized sets.  Each set 
adopts a centralized policy where a central processor takes 
charge of load balancing within its set.  The sets together 
adopt a distributed policy where each central processor of each 
set exchanges information with other central processors of 
other sets to achieve a global load balance. 

It has been shown in [1] that the semi-distributed policy 
produces a better performance than the centralized and 
distributed policies.  Research demonstrates that each central 
processor yields optimal load balance locally within its set.  
Moreover, this policy does not incur high communication 
overhead while gathering system state information.  Although 
this policy is a mediator between the centralized and the 
distributed ones, it fits large distributed systems better than 
small systems.  

III.  THE PROPOSED FUZZY LOAD BALANCING ALGORITHM 

A. System Model 

In this presentation we assume the following system model. 
We assume N, where N > 1, independent homogenous nodes 
are connected by a local area network where each node 
consisting of a signal processor.  A single typed tasks arrive to 
a node could either come from outside the network or from 
other nodes in the network.  We assume that all nodes are 
subjected to the same average arrival rate of tasks coming 
from outside the network.  All tasks are queued at each node 
and are served on a First Come First Serve (FCFS) basis. 

B. Assumptions 

• Nodes of the distributed system are numbered from 1 to N, 
where N is the total number of nodes in the system.  The 
numerical number of each node represents its identification 
(ID) in the system. 

• Nodes are connected by a broadcast network and the cost of 
sending a message between any two nodes is the same. 

• We assume that each processor is in some state Sk where it 
has a number of tasks Tk.  Furthermore, we assume that the 
distributed system is initially in a steady state.  

• Given this configuration, the load balancer starts and tries to 
examine the overall state of the system and takes the 
necessary corrective actions accordingly based on the 
objectives this algorithm assumes. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

130

 

 

C.  Objectives 

Once a node is elected to act as the load balancer of the 
distributed system it has the following objectives: 
1) Obtains full information about the load of each host in the 

system efficiently.  
2) Maintains a load balance among the distributed system 

hosts within a difference d.  The value of d varies during the 
operation of the load balancing algorithm and adjusts 
dynamically taking into account the current state of the 
system and the communication costs. The proper range of d 
will only be determined after experimentations with this 
algorithm because this process has to be done efficiently in 
terms of communication time required. 

3) Selects the most appropriate time to launch the load 
balancing process.  Since keeping the load balancer 
working at all times is a burden on the system, we propose 
an efficient way of triggering the load balancer, which is 
described as follows.   
The load balancer algorithm is triggered when one of the 

following conditions is satisfied: 
• When a node becomes idle, or below a threshold value.  
• When the load of a node exceeds a threshold value.   
4) Ensures that only one node is working as the load balancer 

at a time. It is possible that more than one node can meet 
either one of the above conditions. This would cause 
multiple load balancers to be active at the same time.  To 
prevent this, our algorithm provides a mechanism which 
ensures that only one load balancer is active at a given time. 

D. The Algorithm Steps 

The load balancer node performs the following steps: 
1) Obtain the current load of the distributed system.  This is 

accomplished by broadcasting a request for status message 
to all nodes in the system. 

2) Upon receiving the response from all nodes, the load 
balancer assigns each node of the system including itself a 
fuzzy value in the interval [0,1] which represents the load of 
that node relative to the overall load of the distributed 
system.  

     This assignment is achieved by forming a fuzzy set, 
LOADED = {light, normal, heavy}, that represents the load of 
the system.  Using Fuzzy Logic techniques each node of the 
distributed system is assigned a membership value depending 
on its current load.  The membership value is in the interval 
[0,1] and reflects the compatibility of the load at a specific 
node to the fuzzy term LOADED which is represented by a 
fuzzy set.  The assignment of membership values (grades) is 
based on the S-function [31] which is shown in Fig. 1. 
3) Using the results of step (2), the load balancer categorizes 

all nodes into three separate groups: Underloaded, Normal, 
and Overloaded.  Where Normal nodes do not need any 
load balancing and will be left unchanged.  Both 
Underloaded and Overloaded nodes need help and will be 
the target of the load balancing process. 

  

���;  α, β, γ� �  

	


�



� 0                          ��� � �   α         

2    �� �  α
γ �  α��              ���   α  �  � �  β

1 � 2  � � �  γ
γ �  α��        ���   β �  � �  γ 

1                          ��� � �   γ 

� 

 
Fig. 1 The S-function 

 
4) Create a mapping from Overloaded nodes to Underloaded 

nodes.  The outcome of this mapping tells each overloaded 
node where to ship some of the extra work it has.  As a 
result of this mapping, the load balancer sends each 
overloaded node a message specifying the ID of each 
possible underloaded node and the number of tasks the 
overloaded node should ship to the underloaded node.  This 
information is formed in a list arranged as: (ID1, #tasks), 
(ID2, #tasks), (IDN, #tasks). To perform this mapping, we 
adopt Evans et al. [31] probability model by using the load 
at each node and compute the probability of sending a task 
from an overloaded node i to and underloaded node j.  

 
The main contribution of our proposed algorithm is in the 

part which is responsible for selecting the best time to trigger 
the load balancing process and in performing the load 
balancing process itself.  In this regard, a copy of the load 
balancing algorithm resides on each host as in the distributed 
load balancing algorithm reported in the literature.  In our 
approach, the responsibility of load balancing is centralized in 
action, but distributed in time.  This means that only a single 
node will be responsible for performing the load balancing 
processes of the distributed system.  This node, however, is 
not the only one who will complete this task all of the time, as 
is in the traditional centralized approach.  Instead, each node 
might have the chance to perform the load balancing task.  
The selection of which node actually does the work is 
dynamically determined, however.  By doing this, our 
approach attempts to get the best of the well-know centralized 
and distributed approaches to the load balancing problem. 

IV.  CONCLUSION 

This paper propose a new dynamic load balancing 
algorithm for homogenous distributed computer systems 
which employs fuzzy logic in dealing with inaccurate load 
information, making load distribution decisions, and 
maintaining overall system stability. The main contribution of 
our proposal is in the part which is responsible for selecting 
the best time to trigger the load balancing process and in 
performing the load balancing process itself.  In order to 
evaluate the proposed algorithm, we intend to perform and 
extensive experimental study using simulation to show the 
effectiveness of the proposed algorithm as compared to 
existing dynamic load balancing algorithms reported in the 
literature.  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

131

 

 

REFERENCES   
[1] I. Ahmed and A. Ghafoor, "Semi-Distributed Load Balancing for 

Massively Parallel Multicomputers," IEEE Trans. Software Eng., vol. 
17, no. 10, pp 987-1004, October 1991. 

[2] T. L. Casavant, "A Taxonomy of Scheduling in General-Purpose 
Distributed Computing Systems," IEEE Trans. Software Eng., vol 14, 
no. 2, pp 141-154, February 1988. 

[3] Y. Wang and R. Morris, "Load Sharing in Distributed Systems," IEEE 
Trans. Comput., vol. C-34, no. 3, pp. 204-217, Mar. 1985. 

[4] K. Ramamritham, J. A. Stankovic, and W. Zhao, "Distributed 
Scheduling of Tasks with Deadlines and Resource Requirements," IEEE 
Trans. Comput., vol. 38, no. 8, pp 1110-1123, August 1989. 

[5] J. A. Stankovic, K. Ramamritham, and S. Cheng, "Evaluation of a 
Flexible Task Scheduling Algorithm for Distributed Hard Real-Time 
Systems," IEEE Trans. Comput., vol. C-34, no. 12, pp. 1130-1143, 
December 1985. 

[6] D.L. Eager, E.D. Lazowski, and J. Zahorjan, "Adaptive Load Sharing in 
Homogeneous Distributed Systems," IEEE Trans. Software Eng., vol. 
SE-12, no. 5, pp. 662-675, May 1986. 

[7] L. M. Ni, C. Xu, and T. B. Gendreau, "A Distributed Drafting Algorithm 
for Load Balancing," IEEE Trans. Software Eng., vol.SE-11, no. 10, pp. 
1153-1161, October 1985. 

[8] D. L. Eager and E. D. Lazowski, and J. Zahorjan, "A Comparision of 
Receiver-Inititated and Sender Initiated Adaptive Load Sharing," 
Performance Evaluation, 6, pp. 53-68, March, 1986. 

[9] G. Cybenko, “Dynamic load balancing for distributed memory 
multiprocessors,” J. Parallel Distrib. Comput. 7 (1989), pp. 279–301. 

[10] J. Watts, S. Taylor, “A practical approach to dynamic load balancing,” 
IEEE Trans. Parallel Distrib. Systems 9 (3) (March 1998), pp. 235–248. 

[11] P. Krueger, N.G. Shivaratri, “Adaptive location policies for global 
scheduling,”  IEEE Trans. Software Eng. 20 (6), pp.  432-444, June 
1994. 

[12] S. Dhakal, M. M. Hayat, J.E.Pezoa, C. Yang, and D. Bader, "Dyanmic 
Load Balancing in Distributed System in the Presence of Delays: A 
Regeneration-Therory Approach,", IEEE Transactions on Parallel and 
Distributed Systems, vol. 18, no. 4, April 2007. 

[13] D. J. Evans and W.U.N. Butt,” Dynamic load balancing using task-
transfer probabilities,” Parallel Computing, Vol. 19, No. 8,  pp. 897-916, 
August 1993. 

[14] A. M. Alakeel, “Load Balancing in Distributed Computer Systems,” Int. 
Journal of Computer Science and Information Security, Vol. 8, No. 4, 
pp. 8-13, July 2010. 

[15] A. M. Alakeel, “A Guide to Load Balancing in Distributed Computer 
Systems,” Int. Journal of Computer Science and Network Security, Vol. 
10, No. 6, pp. 153-160, June 2010. 

[16] K. Abini, “Fuzzy Decision Making for Load Balancing in a Distributed 
System, “ Proceedings of the 36th Midwest Symposium Circuits and 
Systems, pp. 500–502, 1993. 

[17] Yu-Kwong Kwok, Lap-Sun Cheung,  “A new fuzzy-decision based load 
balancing system for distributed object computing,” Journal of Parallel 
and Distributed Computing, Volume 64, Issue 2, pp. 238-253, February 
2004. 

[18] L. Singh, A. Narayan, and S. Kumar, "Dynamic fuzzy load balancing on 
LAM/MPI clusters with applications in parallel master-slave 
implementations of an evolutionary neuro-fuzzy learning system," IEEE 
International Conference on Fuzzy Systems, pp.1782-1788, ,  June 2008.  

[19] C.W. Cheong, V. Ramachandran, “Genetic Based Web Cluster Dynamic 
Load Balancing in Fuzzy Environment,” Proceedings of the Fourth 
International Conference on High Performance Computing in the Asia-
Pacific Region, Beijing, China, Vol. 2, pp. 714–719, 2000. 

[20] P. Chulhye, J.G. Kuhl, “A fuzzy-based distributed load balancing 
algorithm for large distributed systems,” Proceedings of the Second 
International Symposium on Autonomous Decentralized Systems, pp. 
266–273, April 1995. 

[21] M. Rantonen, T. Frantti, and K. Leiviskä, "Fuzzy expert system for load 
balancing in symmetric multiprocessor systems," Journal of Expert 
Systems with Applications, Vol. 37 No. 12, pp. 8711-8720, December, 
2010. 

[22] L. Singh, A. Narayan, and S. Kumar, "Dynamic fuzzy load balancing on 
LAM/MPI clusters with applications in parallel master-slave 
implementations of an evolutionary neuro-fuzzy learning system," IEEE 
International Conference on Fuzzy Systems,  pp.1782-1788, June 2008. 

[23] I. Barazandeh, S. S. Mortazavi, and A. M. Rahmani, "Intelligent fuzzy 
based biasing load balancing algorithm in distributed systems," IEEE 9th 
Malaysia International Conference,  pp.713-718, Dec. 2009. 

[24] E. El-Abd, “Load blancing in distrubuted computing systesms using 
fuzzy sexpert ssytems, “ Int. Confernce on Modern Probmesn of Radio 
Engiennering, Telecommunications and Computer Scinece, Lviv-
Slavsko, Ukraine, pp. 141-144, 2000. 

[25] S. Dierkes, “Load balancing with a fuzzy-decision algorithm,” Inform. 
Sci. 97 (1–2),  pp. 159–177, March 1997. 

[26] Shaout, P. McAuliffe, “Job scheduling using fuzzy load balancing in 
distributed system,” Electron. Lett. 34 (20), pp. 1983–1985, October 
1998. 

[27] K.-W.Wong, “Fuzzy routing control of service request messages in an 
individual computing environment,” Proceedings of ACM Symposium 
on Applied Computing, Nashville, TN, pp. 548–551, 1995. 

[28] Ajoy Kumar, Mukesh Singhal, Ming T(M&e) Liu, "A Model for 
Distributed Decision Making: An Expert System for Load Balancing in 
Distributed Systems", IEEE computer software and applications 
conference, 1987. 

[29] L. A. Zadeh, “Fuzzy Sets,” Information and Control, No. 8, pp. 338-353, 
1965. 

[30] B. Kosko, “Neural Networks and Fuzzy Systems: A Dynamical Systems 
Approach to Machine Intelligence,” Prentice-Hall, Englewood Cliffs, 
NJ, 1992. 

[31] J. Giarratano, “Expert Systems: Principles and Programming,” PWS-
KENT Publishing Company, Boston, 1989. 


