
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3979

Abstract—For a spatiotemporal database management system,

I/O cost of queries and other operations is an important performance
criterion. In order to optimize this cost, an intense research on
designing robust index structures has been done in the past decade.
With these major considerations, there are still other design issues
that deserve addressing due to their direct impact on the I/O cost.
Having said this, an efficient buffer management strategy plays a key
role on reducing redundant disk access. In this paper, we proposed an
efficient buffer strategy for a spatiotemporal database index
structure, specifically indexing objects moving over a network of
roads. The proposed strategy, namely MONPAR, is based on the data
type (i.e. spatiotemporal data) and the structure of the index
structure. For the purpose of an experimental evaluation, we set up a
simulation environment that counts the number of disk accesses
while executing a number of spatiotemporal range-queries over the
index. We reiterated simulations with query sets with different
distributions, such as uniform query distribution and skewed query
distribution. Based on the comparison of our strategy with well-
known page-replacement techniques, like LRU-based and Priority-
based buffers, we conclude that MONPAR behaves better than its
competitors for small and medium size buffers under all used query-
distributions.

Keywords—Buffer Management, Spatiotemporal databases.

I. INTRODUCTION
ONSIDERING a real-time query execution, execution time
is known as the typical parameter that reveals the quality

of system performance. Due to the ever-increasing gap
between average main-memory access time and average
secondary-storage access time, I/O cost is still the dominant
factor for the optimization of the execution time. To alleviate
this burden, indexes, associated with database files, have been
employed to organize the hard disk pages in such a way as to
minimize the number of disk accesses during query execution
or other database operations. While utilizing indexes is
indispensable in today’s database systems, there are still other
means of reducing I/O cost such as having an efficient buffer
management, applying effective query optimization
techniques and better data clustering techniques within disk
pages. Each of these research directions have been addressed
in the literature with their novel contributions. Moreover, the
inevitable affect of recent advances in multi-dimensional

Manuscript received August 31, 2006.
U. Kalay is with Dept. of Computer Engineering, Yildiz Technical

University, Istanbul, Turkiye (e-mail: utku@ce.yildiz.edu.tr).
O. Kalıpsız is with Dept. of Computer Engineering, Yildiz Technical

University, Istanbul, Turkiye (e-mail: kalipsiz@yildiz.edu.tr).

databases calls for innovations in these areas aiming at a better
execution time while minimizing the I/O cost.
Multidimensional indexing, for instance, is extended on the
existing indexing methods with additional data structures to
accommodate the specific requirements of new applications.
Accordingly, with changing indexing strategies, the need for
more robust solutions arises naturally in other related areas
mentioned previously.

In this paper, a novel buffer management strategy, namely
MONPAR, is designed for a moving object index structure,
namely MON-tree. Since MON-tree is a spatiotemporal index
structure designed for objects moving over a network of
roads, it consequently needs a specialized buffer management
aiming at reducing the number of disk accesses. In the next
section, we describe main aspects of some well-known buffer
management strategies and explain our motivation for a new
one. Next, in the 3rd section, we examine the main features of
the MON-tree index structure, on which we built up the new
buffer management algorithm, MONPAR. Lastly, we describe
our simulation model in section 4 and evaluate the
performance of our algorithm based on the comparisons with
other buffer models.

II. BUFFER MANAGEMENT
Buffer is a small part of main memory allocated for the

purpose of keeping the hard disk pages that is expected to be
used soon. While the idea of buffering is a traditional
operating system concept, it has an important impact on the
performance of index structures as well. Basically, while
executing a query, pages requested by the query are supposed
to be read from hard disk and to be located in the buffer area
in order to serve for anticipated disk accesses without
accessing the disk redundantly. At this point, if the buffer is
unable to locate all of the target pages due to its limited
capacity, an algorithm aiming at keeping the most “important”
pages in the buffer area is needed. In other words, the
algorithm, called as page replacement algorithm, is expected
to have the ability to select the best appropriate page (called as
victim) to drop from the buffer in order to make room for the
new requested page. It is not always possible to select the best
victim page for the replacement. Nevertheless, many adequate
traditional solutions exist in the literature, some of which are
LRU (Least Recently Used), NRU (Not Recently Used), and
LFU (Least Frequently Used). These algorithms are originally
designed based on the patterns of disk page usage in general

MONPAR - A Page Replacement Algorithm for
a Spatiotemporal Database

U. Kalay, and O. Kalıpsız

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3980

manner and do not always fit well into the database
environment. For example, LRU page replacement algorithm
replaces the page that has not been accessed for the longest
time. LRU gives the highest priority to the last referenced
page by keeping it in the buffer until all other pages in the
buffer are replaced or referenced again. Hence, although
simple to implement, LRU is unable to differentiate the pages
that have frequent reference from the pages that have
infrequent reference [1]. Additionally, in case of tree-based
database index structures, the position of the page in the
structure can be a valid criterion for the victim selection, thus
LRU is inappropriate due to the lack of this knowledge.

In order to adapt the LRU replacement strategy to database
applications, priority-based LRU strategy (LRU-P) was
suggested in [2]. In this strategy, assuming a tree-based spatial
access method used, priority of a page in an index depends on
its level in the tree. While the root has the priority level equal
to the height of the tree, the pages at the lower levels have
priority levels corresponding to their distance from the leaves.
It is important to note that yet LRU-P selects the least recently
used page as victim, but it selects the victim among the pages
in the buffer having the lowest priority level. Although it is a
good idea to apply this kind of priority assigning to each level,
LRU-P strategy considers only the position of page in the tree.

All derivatives of the LRU method, like LRU-P [2] and
OLRU, ILRU [3] and all other traditional solutions
(NRU,LFU, LRU-K, clock page.) does not have any
knowledge about the type or content of the stored pages.
However, in multidimensional databases such as spatial
databases, it would be better to analyze the content of the page
in order to select the best victim page in the buffer. For this
purpose, spatial page replacement algorithm
(SpatialPageReplacement) has been proposed in [2]. In
essence, this algorithm requires a function SC (p) computing
the area of MBR containing all the entries of the page. The
algorithm selects the victim page, p by applying the function
SC as follows:

{ p | p∈buffer ∧ (q∈buffer ⇒ SC(p) ≤ SC(q)) } (1)

The experiments in [2] shows that it is not advisable to use
the pure spatial page replacement algorithm for some query
distributions. Lastly, an adaptable solution combining LRU
and spatial page-replacement algorithms was investigated in
[2] in order to achieve a robust organization. Unfortunately,
the findings from [2] is valid only spatial index like R*tree.
We think that spatial page-replacement would be a starting
point to design specialized buffer organizations for other
multi-dimensional indexes such as moving object index,
MON-tree. For this purpose, we developed MONPAR on the
basis of SpatialPageReplacement.

III. A BUFFER ORGANIZATION FOR MON-TREE

A. MON-Tree
MON-tree by Almeida and Güting [4] is an efficient

organization of a group of R-tree, which is a widely used
spatial index structure. R-tree spatial index structure [5],
similar to traditional B-tree, is an excellent index structure for
query-based static systems. MON-tree is essentially designed
for the purpose of indexing the past movement of objects
traveling over a network of roads. Fig. 1 shows its basic
architectural structure.

Fig. 1 MON-tree structural overview

MON-tree is a 2-level organization including a set of 2D R-

trees and a hash table (which is not shown in figure). While
the R-tree at the upper level indexes the edges of the network
that had traffic on it, each of R-tree at the lower level stores
the movements along the corresponding edge. Thus, the
number of low-level R-trees is equal to the total number of
edges at leaves of the top level R-tree. In addition, hash table
in main memory is an auxiliary structure to directly access the
movements on a specific edge by hashing an edge, Ei to the
corresponding low-level R-tree. An object movement is
represented as a rectangle (p1, p2, t1, t2), which means an
object motion starts at p1 part of an edge, Ei at time t1, and
ends its movement at p2 part of Ei at time t2, while
0.0 ≤p1<1.0 and 0.0<p2 ≤1.0 are hold.

Now, consider a spatial-temporal range query, Q (qspatial, t1,
t2), where qspatial is a traditional spatial range query that is
valid for the duration from t1 to t2. At the first step, qspatial is
the static range query over the top-level R-tree that finds the
edges that are covered by query region. By accessing an edge
stored in the top-level, we get the corresponding low-level R-
tree that stores the past movements on this edge. In fact, since
the edge may partially be within the query region, the covered
parts of the edge are selected in main memory with a minimal
execution overhead. Therefore, the output from the first step is
the set of low-level R-trees and a query set that contains the
part of edges covered by the query region, w. Then, the
second step is to find the moving objects of which past
movement regions are intersecting with any query region in w.
That is actually done by another range query executions over
the low-level R-trees found in the first step. Detailed
explanation on this range query execution and performance
improvements can be found in [4] for more interested readers.
We implemented MON-tree index structure as we have
described in [6].

B. MONPAR
As we noted in section 2, SpatialPageReplacement is a

specialized algorithm for R-tree index structure. Since MON-

Network R-tree

Motion R-trees

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3981

tree has been designed as a group of 2D R-trees, we think that
it is worth to mention another specialized buffer algorithm
which applies the idea in the SpatialPageReplacement with
the structural characteristics of MON-tree. Based on these
motivations, we implemented the MONPAR algorithm from
the pseudo-code shown below.

C. Figures

3 types of pages can be designed from the structural

overview of the MON-tree which is depicted in Fig. 1. Two of
them, network pages (N) and motion pages (M), are easy to
refer when we look at the figure. Additionally, we needed a
third set containing header pages (H). Considering long-term
motion simulations, a high number, if not all, of header pages
are expected to accommodate in the buffer due to the fact that
each edge having traffic on it is represented with an additional
R-tree. In our experiments, header page actually holds the
configuration information for the corresponding R-tree that
naturally results in internal fragmentation. It is a good idea to
collect all configuration information throughout the MON-tree
within a couple of disk pages. While this scheme leads to
more complicated organization for the overall tree
configuration, this would eventually eliminate the set H in our
MONPAR algorithm. In that case, we would keep the header
pages in the buffer all the time since there are a few of them.
As a future work, we plan to discard the set H in our further
experiments after some minor reorganization.

In the algorithm, SC (p) (spatial criteria for p), as we noted
beforehand, is the function calculating the total area of MBR
of the entries in the page, p. Since SC results for different set
of pages (N and M) have different value ranks, they are not
comparable. As expected, the replacement already happens
between the pages of the same type.

According to the pseudo code, if the requested page r is in

the buffer, there is no further operation to execute except
keeping some statistics only for LRU, which is the case if set
H is organized as a LRU buffer. If r is not in the buffer and
the buffer capacity, C will not be exceeded, the page is added
into the corresponding set. Otherwise, if C is already at its
maximum, a victim should be determined from the set having
the same type of r. At this point, the comparisons done in the
selection operation is the same as the
SpatialPageReplacement. Once the most appropriate page
(which has the minimum mbr area) has been determined, it is
replaced with the requested page, r.

It is important to note that, in our algorithm, once the buffer
becomes full (|H|+|N|+|M| = C), the size of each set in the
buffer would not change afterwards. This may seem to be a
contradiction with the adaptive solutions in [2], however, in
our structure, usage statistics of each different set (N,M,H)
naturally depends to each other. Thus, it is not applicable to
apply a hybrid solution combining the strategies from LRU
and SpatialPageReplacement as it is done in [2], which studies
only a single R-tree. Moreover, we are dividing the buffer
into three subsections, each of which has a fixed-size length
determined by the initial query distribution conditions.
Admittedly, we ignore the query distributions which cause
instability between the numbers of the pages in the buffer. It is
clear that this would lead to redundant replacements.
Fortunately, we realized that for range queries on MON-tree it
is rare to generate queries that modify the balance between the
requests on each type of set. For example, if high number of
spatial-temporal queries is generated for a specific range, that
is, this would fill up the buffer with the pages containing the
edges in this region; then this would lead the corresponding
low-level motion R-tree pages to place into the buffer. In fact,
the larger the query spatial region area is in the query, the
higher number of motion R-tree pages is requested from hard
disk. Therefore, the balance between the numbers of different
type of pages requested for a query does not change
dramatically due to the structural characteristics of MON-tree.

IV. EXPERIMENTS
We used the same simulation environment as we did in [6].

Basically, we index the moving objects traveling over a
network of roads and query on this dynamic dataset. Once the
traffic generator generators the traffic over the predefined
network, it is possible to execute many types of queries over
this series of movements. We completed our studies on range
queries about the past events.

Spatial index implementations in Java programming
language, namely SaIL[7], has been the core for implementing
MON-tree index structure and all buffer organizations.
Additionally, we inspired from the work at [7] in order to
generate network traffic obeying the normal distribution over
the roads of the network. Fig. 2 depicts the basic modules and
those that we integrated with in order to evaluate the buffer
performance.

r : requested page
H: set of headers page
N: set of network pages
M: set of motion pages
C : buffer capacity
H=N=M= ø
SC(p): area(mbr(p)) // area of mbr of a page

MONPAR (r){
 if (‘r’ is in buffer)
 update ‘r’s statistics if required
 else
 type := the type of page ‘r’
 if (|H|+|N|+|M| < C)
 add ‘r’ into corresponding set
 else if(|H|+|N|+|M| == C)
 {
 victim=null;
 if (type = = network)
 victim := {v| v ∈N, p∈N, SC(v)<SC(p)}
 else if (type == motion)
 victim := {v| v∈M, p∈M, SC(v)<SC(p)}
 else
 victim := LRU(v| v∈H)
 write victim page to disk
 add ‘r’ into corresponding set
 }
 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3982

Fig. 2 Main modules of simulation environment

We implemented a discrete-time event-generation
environment that randomly generates objects moving over the
network based on the parameters, some of which is shown in
Table I. Motion vectors of a group of objects at each time step
is updated based on the initialization parameters, such as
agility and maximum update interval (mui). While the motion
vector of each object at each time step is stored in a text file,
the trajectory of each point is updated in the index structure.
After completion of the generating data set (DS) and
constructing the corresponding index with a predefined leaf
capacity (LF), query processing module executes the queries
in the query set (QS) on the index structure. For the sake of
more comparability of results, before performing each new
query set, the buffer was cleared.

Under these conditions, the established MON-tree index
structure has a total of 8809 disk pages, including 1330 header
pages, 241 network pages and the remaining 7238 motion
pages that are distributed over 1329 motion R-trees. Each
query set includes 100 spatiotemporal range queries over the
road network between the simulation intervals, whereas each
has spatial and temporal distribution that is different from
other sets. We generated 3 types of sets: The first type, namely
uniform query distribution (uqd), includes queries obeying the
uniform distribution characteristics in both spatial and
temporal dimensions. The second one, namely skewed query
distribution with probability of 1.0(sqd-1), includes queries
each of which spatially covers a randomly determined area
(actually this selected area covers %20 of all road network
region in each dimension) and has a randomly determined
temporal interval of 10 time steps throughout the SL. In
literature, this type of queries is known as hot-spot access
queries. Lastly, the third type of queries, namely skewed
query distribution with probability of p (sqd-p), is generated
in order to evaluate the behavior of the buffer against the
instantaneous variations of the query region on only spatial
region dimensions. To do so, we deliberately generate a query
out of the skewed region with a probability of p, whereas the
remaining queries still obey the sqd characteristics.

Each query set with the above characteristics is executed
over MON-tree with a specific buffer organization. In our
tests, we compared MONPAR with Random, LRU and Priority
buffer organizations. As can be guessed, random buffer
selects the victim in the buffer randomly, and LRU buffer

selects the victim solely based on the LRU criterion. Lastly,
Priority buffer, unlike LRU-P presented in section 2, solely
requires the knowledge of requested page’s position in the
structure. In our implementation, for all R-tree pages, we
assign the priority value to a page that equals to its distance
from leaves. With MONPAR, not only is structural position
analysis of the pages involved in selection criterion by
categorizing them into 3 groups, but spatial characteristics are
also involved in the decision criterion by applying appropriate
calculations (like SC).

Our experiments are conducted with a time interval of
SL=400 on the different-size page buffers in order to see the
relation between the buffer size and the type of page
replacement. The size of the buffer was chosen so that the
buffer can hold 0.5%, 1%, 2.5%, 5% of overall index pages,
which results in buffer sizes of 50, 100, 250 and 500 pages.
The performance gain is given as the ratio of number of
requests served from buffer to total requests in percent, during
the execution of the query set.

After completion of a number of experiments with different
query distributions, buffer sizes and buffer organizations, we
end up with a list of figures depicted as in fig.3. First, we
consider the buffer performance in relation to the buffer size.
Generally speaking, according to the figures in fig.3, it is clear
that buffer capacity is not always the main parameter that
improves the performance of the buffer. For example, this is
shown in the case with uqd distribution on buffers obeying
Random and LRU rules. Here, the buffer size has nearly no
affect on the performance. The reason is that under such a
uniform distribution, buffers having no knowledge about the
structure are easily filled up with the low levels of the index,
which leads to redundant page faults. When the buffer has
knowledge about the level of pages (as Priority and MONPAR
do), the performance increases with the increasing buffer size.
This observation shows the clear effect of using structure-
aware buffers. Additionally, when other distributions are
applied, especially sqd-1, the same buffers (Random and
LRU) responses to the buffer size modifications accordingly.
It is equally important to note that under the sqd-1 distribution
condition, as the buffer capacity increases, the performances
of all type of buffers already increase rapidly to a peak value.
As Fig. 3(b) shows, the LRU and Random buffer’s
performance catches the specialized buffers’ performance at
almost medium buffer-sizes. Eventually, at BS=500, all
buffers can hold overall requested index nodes.

.

. motion
file

index
files

.

.

client spatial
index

R-tree

TPRtree

MON-
tree

storage
manage
interface

LRU

SpatialPage
Repl.

MONPAR

storage
manager
interface

TABLE I
SOME OF THE SIMULATION PARAMETERS

Parameter Meaning Value(s)

PS disk page capacity 4K
LC leaf capacity 10

SL simulation length 400 time steps
DS dataset size 250 moving obj.
QS query set size 100 spatiotemporal query
BC buffer capacity 50, 100, 250, 500 pages

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3983

Performance Comparison for uqd

0

2

4

6

8

10

50 100 250 500
Buffer capacity

Pe
rf

or
m

an
ce

(%
)

Random LRU Priority M ONPageRepl.

(a)
Performance Comparison for sqd-1

0

20

40

60

80

100

50 100 250 500

Buffer capacity

Pe
rf

or
m

an
ce

 (%
)

Random LRU Priority M ONPageRepl.

(b)
Performance Comparison for sqd-0.8

0

2

4

6

8

10

12

50 100 250 500
Buffer capacity

Pe
rf

or
m

an
ce

(%
)

Random LRU Priority M ONPageRepl.

(c)
 Fig. 3 Performance results depending on the buffer size and the

buffer type for each query distribution

Now, take into consideration the performance gain when
using specialized buffer organizations. Generally speaking,
there appear to be a competition between Priority and
MONPAR buffers. For the test series including uqd-type
queries, the performance of MONPAR beats the others,
especially for the buffer sizes of less than about 200. The
reason is that, for the large buffers (above capacity of 250),
under such a totally random query distribution, the initial
distribution of N,M and H sets plays a crucial role for the
buffer’s later behaviors. Of course, if we reduce the random
behavior of queries as we did in the other distributions; we
observe the alleviation of the dominant affect of initial set
capacities on the near-future buffer performance. To get a
better sense of how these sets’ capacity really influences the
buffer’s later behavior, consider the distributions of sqd-1 and
sqd-0.8. Under the sqd-0.8 distribution condition, for instance,
MONPAR has an impressive succession for all buffer sizes
due to the fact that the initial request distribution in spatial
dimensions rarely changes –in fact it does with probability of
0.8. The similar succession appears in case of sqd-1
distribution. However, this success is not as much noticeable
as in the former query distribution (sqd-0.8), because in sqd-1
distribution case, others already approach the performance

level of MONPAR.
In conclusion, MONPAR performs better than the other

buffer organizations under all query distributions, except the
totally random distribution (uqd). Even in uqd case, MONPAR
preserves its preference for small-size and medium-size
buffers. As a future work, we plan to analyze statistical
approaches like LRU-K and their possible integration with
structure-aware solutions like MONPAR in order to achieve
more comprehensive results on buffer management for
spatiotemporal indexes.

V. CONCLUSION
In order to speed up the query executions, disk I/O should

be controlled by designing specialized page replacement
algorithms. This requirement is becoming more important
when we look at the innovations in the area of multi-
dimensional databases. In order to design a robust buffer
replacement, although we may borrow the ideas from
traditional operating system solutions, they are not adequate
enough to meet the requirements of database index structures,
especially of those indexing multidimensional data. It is the
contribution of this paper to propose a specialized buffer for
improving the performance of a spatiotemporal index.
Essentially, the specialized buffer, namely MONPAR,
coordinates the pages that should be kept or dropped in the
buffer at the cost of analyzing the content of the page.

Although we made a few justifications based on the
specialized structural characteristics of MON-tree, it is still
possible to manage a fully adaptive buffer on top of current
implementation of MONPAR In that sense, we are motivated
by the possible usage of disproportionate usage of the buffer
by different sets. However, we are still not sure that the
complexity of such an adaptive organization similar to the one
in [2] would not degrade the overall execution time, especially
for large buffers, even though it would decrease the number of
disk accesses.

REFERENCES
[1] T.Y. Kahveci, T. Kahveci, A. Singh, “Buffering of Index Structures” in

2000 Proc. SPIE Conf, Boston.
[2] T. Brinkhoff, “A Robust and Self-tuning Page-Replacement Strategy for

Spatial Database Systems” in 2002 Proc. Conference on Extending
Database Technology (EDBT), pp. 533-552.

[3] G.M. Sacco, “Index Access with a Finite Buffer” in 1997 Proc. of the
Very Large Data Bases Conf., pp. 301-309.

[4] V.T. Almeida, R.H. Güting, “Indexing the trajectories of moving objects
in networks” GeoInformatica vol.9, no.1, 2005, pp. 33-60.

[5] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Serching"
Proc. ACM SIGMOD, Int’l Conf. Management of Data, 1984, pp. 47-57.

[6] U. Kalay, O. Kalıpsız, “Probabilistic Point Queries Over Network-based
Movements” Lecture Notes in Computer Science, Springer Verlag,
2005. [20th Int’l Conf. ISCIS,, Istanbul, 2005]

[7] M. Hadjieleftheriou, Spatial Index Library (SaIL), Available: http://u-
foria.org/marioh/spatialindex/index.html.

