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Abstract—In the present paper, we consider the generalized form
of Baskakov Durrmeyer operators to study the rate of convergence,
in simultaneous approximation for functions having derivatives of
bounded variation.
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[. INTRODUCTION

N the year 2005, Finta [2] considered a new type of

Baskakov-Durrmeyer operator by taking the weight func-
tions of Baskakov basis functions and established sufficient
conditions for obtaining strong converse inequality. After that
Govil and Gupta [3] studied some approximation properties
for these operators and estimated local results in terms of
modulus of continuity. Also, further properties like point-
wise convergence, asymptotic formula and inverse result in
simultaneous approximation have been established in [5]. Very
recently, Verma et al. [7] Stancu type generalization of the
operators D, (f,x) and studied the direct error estimates
and Voronovskaja type asymptotic formula. To approximate
the Lebesgue integrable functions on the interval [0, 00), we
introduce Baskakov-Durrmeyer operators in generalized form
as:

1\ (n -7
‘/n,r(.ﬂ L) = (n +;|(n13(17;| T)' anJr'r’k(l’)
' ' k=0
bnfr cT T d
x / war(OF (D) dt
where

_(n+k-1 xk
Pok(@) = ko) (Lt a)ntk

1 Ik_l
by, = .
yki(x) B(k, n -+ 1) (1 + :L,)n+k+1

We denote the class of absolutely continuous functions f on
(0,00) is defined by DB,(0,00), (where ¢ is some positive
integer) and satisfying:

() [F(8)] < Cut9, €y >0,

(ii) the function f has the first derivative on interval (0, co)
which coincide a.e. with a function which is of bounded
variation on every finite subinterval of (0,00). It can be
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observed that for all f € DB,(0,00), we can have the
representation

F@) = o) + /mw(t)dt, 2> e 0.

In the recent years, the rate of convergence for the functions
having the derivatives of bounded variation is an interesting
area of research, several researchers have studied in this
direction we refer some of important paper in this area as [6, 8-
10]. Also, Bai et al. [1] worked in this direction and estimated
the rate of convergence for the several operators. Gupta [4]
estimated the rate of convergence for functions of bounded
variation on certain Baskakov-Durrmeyer type operators.

In the present paper we study the rate of convergence for the
operators V,, ,. for functions having the derivatives of bounded
variation, we also mention a corollary which provide the result
in simultaneous approximation.

II. AUXILIARY RESULTS

In the sequel we shall need the following lemmas.

Lemma 1: If we define the central moments as
0 o]
(@) = 3 prra(@) [ b ) (= )"
k=0 0

Then, finro0(z) =1, pinr1(x) = and for n > m we

have the following recurrence relation:

r(2z+1)
n—r

(n —-r—= m)un,'r,m-&-l(x) = 17(1 + $)[M,I,L’7.77,L(I)
+2mpin rm—1()] + (m 4+ 7)(1 4 2z).

Proof: Taking derivative of above

o
-m Z Pn+rk (I)
k=0

:u‘{nr, ,m (:E) =
« / briir (8)(t — )™t
0

00
0

S P(@) / b g () (t — )™ dt
k=0

=  —Mlprm-1 (I) + Z pn-&-r,k‘(m)
k=0

X

| tnrsinttre = o
z(1+ x)[//n,r,m(aj) + mﬂn.,r,mfl(x)]

=Y @ phrol@) [ b (O~ )"
k=0 0
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using (1 + 2)p;, ., (2) = [k — (n + r)x]pyirk(x), we get  Combining (1)-(6), we get the desired result.

z(1 4+ 2)[p () + Mty pm—1(T
( e (2) pnrim=1 (7)) Remark 1: Let © € (0,00) and C > 2, then for n

— Z[k — (n+ 7)Z]pngrn (@) sufficiently large, Lemma 1, yields that
- (1+2)
X /0 b —r ktr (£) (¢ — 2)™dt Hn,r2(2,€) < m-r-1
= Z kp"*”v"’(m)/o bn—rr (t)(t — 2)™dt Lemma 2: Let x € (0,00) and C > 2, then for n
k=0 sufficiently large, we have
—(n+7)zpn m(T)
=1—(n+r)Tnrm(T). (1) o0 y
We can write [ as Anr(@y) = an“’k(m)/o bn—r ot () dt
oo 0o k=0
=Y poees(e) [ (k47 =1 (0= r+2)0) S Ch ) R P
k=0 0 (n—r—=1)(z -y
Xbp—p ptr (t)(t — )™ dt > o0
- 0o 0 1-— /\nm(-ry Z) = Zp71+r,k(1') / bn,fr,k+r(t)dt
=42 poers(®) / Do (B)E (£ — )™t = Sz
kz::() ’ 0 o Cz(l+zx)
< , < z<oo.
o0 oo (n—r—1)(z —x)?
SE) Sy E Y i NSO IR
0
T k=0 ) Proof: The proof of the lemma follows easily by Remark
=L+ —(r—1Dpnrm(x), (say). @ 1. For instance, for the first inequality for n sufficiently large
First we estimate I as follows and 0 < y < x, we have
‘[2 = (n —-r+ 2) Zp’rLJﬂ‘,k‘(m) / bn77',k+’r(t) > Yy
k=0 0 )\n,r(xv y) = an+r,k (T)/ bn—r,k+r(t)dt
x [(t—a)™ +a(t —x)"]dt k=0 0
— (=4 D@ F @], O S UNSEY (RG] oo
k=0 0

Next, to estimate I, by using the equality [(k+r—1) — (n—
P 2))]bn (1) = L+ 0, 4y, (1), we have Hnra(®) _ Crl+z)

oo o (y—2)> = (n—r—1(y—=)*
L= { — / e ()~ x)mdt}
kz::() o ket The proof of the second inequality follows along the similar
0o 0 lines.
b [ Lrnens@) [ a0 @2
B JkZOJ 4 Lemma 3: Let f be s times differentiable on [0, 00) such
= itz (say). @ that FU=D(t) = O(t?) as t — oo where ¢ is a positive integer.
We can write J; as Then for any r,s € N° and n > max{q,r + s + 1}, we have
Ji = : x A d
A ) [ i DVi s (£.2) = Vepgu(D* o), D= L

dx
x [t—2)" +a(t —2)"dt.

Now, applying integration by parts, we have Proof: We prove the result by applying the principle of
mathematical induction and using the following identity

Bo= =+ )Y parrala) / boresr () (£ — )™ dE
k=0 0 Dpn k() = n[pnt1,6-1() — pat1,k(z)] and @)
- mz Y puiri(@) / b gerr(t) (t — )™ Ldt
k=0 0
= _(m + 1)/"’7L,7',7!’L(I) - mxﬂnﬂ','rnfl(z) (5) Dbmk(t) = (n + 1)[b"+17k*1(t) - b7l+1,k(t)]‘ (8)

Proceeding in a similar manner, we obtain the estimate J5 as ) o
The above identity is true even for the case k = 0, as we

Jr = —(m+2)pnrmi1(w) observe that P, 41 negative = 0. Using (7), (8) and integrating
— 2z(m+ 1) pinrm(z) — macQ,u,,mm,l(m). (6) by parts, we have
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(n+r—1)n—-r)!
nl(n —1)!

X Z Dpn+r,k(x) /OO bnf’r’,k+’r’(t)f(t) dt

DV, -(f,x)

(n+r n—r

- ——————fiﬁwmmka>

nl(n —1)!
*pn+<r+1>.,k(w)]/ b rptr () f (1) dt

(n+r)ln—r)
- nltn — 1)l an+(r+1>k

X

Aw[bn—r,k+r+l(t) - bn—r,k+’r(t)]f(t) dt

(n+7r)(n—r—1)!
= — n'(n — 1 an+(r+l) k

AmDmﬂamwﬂuﬁth

Integrating by parts the last integral, we have

(n+r)l(n—r—1)!
nl(n —1)! an+(r+1) k

DVn,r(fv T) =

y / bt arer (DDF(E) dt
0
= VIL,T+1(Dfa'T)7

which shows that the result holds for s = 1. Let us suppose
that the result holds for s = m i.e.

D™ Vn'r(fa ): nT‘Jr'rn(D f7 )
_(nAr+m—1D(n—r—m)
B nl(n —1)!

X an+r+m,k($) / bn—r—m,k+r+m(t7 C)Dmf(t) dt
k=0 0

Now,

DY (f ) = Lt m = Dl == m)!

nl(n —1)!
X Z Danrrer,k(x) / bnfrfm,kJrrer(t)Dmf(t) dt
k=0 0
n+r+m)lin—r—
- ( n'(i (_ 1 Z[pn+r+m+1 k— 1( )

X = pn+r+m+1,k(m)] / bnfrfm,k+r+m(t)Dmf(t) dt
0

m+r+m)(n—r—m

- Z Pn+r+m+1, k )

nl(n —1)!

X /0 [bnfrfm,k+r+m+1(t)
_bnfrfnz,k+r+m (t)]Dmf(t) dt

(n+r+m)lin—r—m-—1)!
= - an+7+m+1k )

nl(n —1)!

X / Db7L77»77,L717k;+7-+7n+1 (t)Dmf(t) dt
0

Again integrating by parts the last integral, we have

(n+r+m)ln—r—m-—1)!
nl(n —1)!

Dm+1Vn,T(f7 I) =

oo
X an+r+m+1,k(x)

k=0
X / bnfrfmfl,kJr’erqul(t)Dm+1f(t) dt
0
Therefore,

Dm+ anr(f: ): nr+m+1(D +1f’ )

Thus, the result is true for s = m + 1, hence by mathematical
induction, proof of the lemma is completed.

III. RATE OF CONVERGENCE

In this section we prove our main results.

Theorem 1: Let f € DBy(0,00), ¢ > 0 and x € (0,00).
The for C' > 2 and n sufficiently large, we have

(n+r—1l(n-r)

Var(fi2) = f(2)

n!(n —)
[\/ﬁ] o4z /k T4z /\/n
TEL V@R VO

+99ifﬁuﬂ 20) - f(2) — o (&) + [f@)]) + O(n")

LOUHD) iy ) =), fOoli )

a2

where \/g f(z) denotes the total variation of f, on [a,b], the
auxiliary function f, is defined by

f@&) = f(z7), 0<t<uz,
f(t) =< 0, t=ux,
ft) = f(@™), z<t<oo.

Proof: Using the mean value theorem, we have

(n+r—1ln-r)
nl(n —1)!

<> prra@) [ bmraer 0170 — )]
k=0 0

o) t
S/(; /mkzopn-&-r,k(x)bn—'r,k-k'r(t)f/(u)du

Var(fiz) = f(2)

dt
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Also, using the identity M

Vn,r(f;x) - f(I)

nl(n —1)!
' fr@t) + f'(a7) , L >
fillw) = =5+ (falw) < / ( / ( f’)x(u)du> Y Dutrk(@)Dn—rkr ()dt
SEIC) N
N |:f/(x) B M] . (u) + /0 </x (f )w(u)du> kzzopnﬁ»nk(x)pnfnkﬁ»r(t)dt
2 x ’ / Ty / 1 (=
+ w[unﬁ(mlﬂ + LWM,M(I)
h ’ o
e = |An.(f,2) + Bur(fr2)] + U(zﬂ;—f(z)‘[ﬂnma(m)]l/g
1, u=uz, . -
Xz(u) = { 0, u 75 Z. + WM,M(@")- (12)
Obviously, we have A plying_ Remarli 1 and Lemma 1 in (12), we have
i t G = (i) - f(@)
,;p"*”“(‘”)/o ([ ]re < A (Fo) + B (o)) + LIS
fra™) + f'(z7) ’ "z7)| 7 x
—f] Xx(u)d’LL)pnfr,ker(t)dt =0. o ifflrtﬁ) n (=) ;‘ [l (iti )_(13)

In order to complete the proof of the theorem it suffices to

Thus, using the above identities, we can write .
g estimate the terms A,, -(f,«) and B,, -(f, ).

= /OOO (/zt gpnw,k(w)bw,w(t) B /,:O </:(f/)m(u)du) i)pn+r,k($)pnr,k+r(t)dt'
y (w ny f’)w(u)> du) dt = /2 :O < /y t(f’)m(U)du> i)pn+r,k(m)pnr,k+r(t)dt

oo

+‘ /0°° </ tip ik (@hPn=rpr0) * /u </;(f /)m(“)d“> an+r,k(:v)pw,k+r(t,c)dt‘
[f'(z

¥ k=0 k=0

T\ £ o .
y ) . [ )}sgn(u - x)du> dt'. ® < an+r,k(a:)/ (f(t)— f(x))pn_nkJrT(t)dt‘
k=0 2@
Also, it can be verified that + |f (@) ipn-s-r,k(x) /Qw Pr—r i (1) (£ — x)dt'
TG e L) P ) o
" kzop"*T*k(x)p"‘r”“+T(t)dt' o | [T ren)
Pt 1 ooz oo
< |f (I ) 5 f (CU )|[,Un,7“72(m)]1/2 (10) < anJrr,k(x)/ pnfr,kdrr(t)cllqut
k=0 2x
d G 00
“ LS pins@) [ o rian(0t =
([ e, = )
o N ? PN @) [ pucri (Ol = ali
anJrr,k(x)pnfr,kJrT(t)dt =0
=t 172 - (o) -2 @)
TSRS ST . / m .
= D) Mo, 1 .Z’) 1) C(l " 1‘) [\/Zm%ir/ﬁ - I‘{/‘/;
+ ((f/)m) + —= ((f/)a:) (14)
Combining (9)-(11), we get (n—r-1) k=1a2—2 vn o-
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For estimating the integral

el [es}
> @) [ puceiea (00
k=0 2

above, we proceed as follows:
Since ¢ > 2z implies that ¢ < 2(¢ — x) and it follows from
Lemma 1, that

o0 [eS]
anJrr,k(x)/ pnfr,kJrr(t)Cltmdt
k=0 2x

o0 0o

<12} prirn(@) / Poriar (C(t — 2)27d
k=0 0

= C12% 1y, 1 0g () =

O(n™9), asn— oo. (15)

8

) /OOC Pr—rgotr(t)(t — 2)%dt

C(l+x)

= |f($)|m- (16)

By using the Schwarz inequality and Remark 1, we get the
estimate as follows:
o0

NS pusral@) [ pa s Ot = aldt < 1(2"))
k=0 2

> oo 1/2
X <;}pn+r,k($)/(; pnfr,kJrr(t)(tfx) dt)

Cz(1+zx)

1 a7

=|f'(=")|

Collecting the estimates from (14)-(17), we obtain

(A (2)
= 0+t 0D
s () - ) - )]+ 15D
n_lf_“iwfz\? fz+\/ﬁ((f)) s

On other hand, to estimate B, .(f,z), applying the Lemma 2
with y = — fﬁ and integration by parts, we have

|Bn,r(fa :C)‘ =

An Am))]
/ ( >z<mm<x Dt

(L]

IN

|| An,r(z, t)|dt

s ix,(lrtxl) /Oy\t/((f/)z)( 1t)2dt+/:\t/((f’)w)dt
= (Z:xflixl) /Oy\/“f’)z)(xlf)gdwjﬁ V ()
T
X xT \/ﬁ z T x
- (fi—(lrt 1)/1 \/ ((f')z)d“ﬂL% \/ ((f)z)
z— = o—z
C(l+x) A , ERRY ,
S o1 z\_/%«f o) + \/ﬁz_\/ﬁ«f )o)  (19)
where u =

u- ‘

Comblmn ( 2), (18) and (19) we get the desired result.

As a consequence of Lemma 3, we can easily prove the
following corollary for the derivatives of the operators V7, ..

Corollary 1: Let f®) € DB,(0,00),q > 0 and
x € (0,00). The for C > 2 and n sufficiently large,
we have

(ntr—Dln—r)! s co) — £(8)
D Veelfia) = (@)
f] ztz/k -
< Z \/ (D**1f),) \/, \/ (D**1f),)
k=1z-z/k o)
* %“DV (22) = D*f(a) =« D" f(at)]
+ |Dsf~(a:)|}+0(n—q)+?meﬂ o)
|DS+1f(x+)_DS+1f(:r )‘ CJZ( Z)
_|_
2 n—r—1
|Ds+1f(x+) +Ds+1f(ac*)\ (14 2x)
! 2 S

where \/Z f(z) denotes the total variation of f, on [a,b], the
auxiliary function f, is defined by

DsFLf(t) — DsTHf(z7), 0<t<um,
D f(t) =< 0, t=ua,
DSTLf(t) — DL f(aT), z<t< .
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