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On the Central Limit Theorems for Forward and
Backward Martingales

Yilun Shang

Abstract—Let {Xi}i≥1 be a martingale difference sequence with
Xi = Si − Si−1. Under some regularity conditions, we show that
(X2

1 +· · ·+X2
Nn

)−1/2SNn is asymptotically normal, where {Ni}i≥1

is a sequence of positive integer-valued random variables tending
to infinity. In a similar manner, a backward (or reverse) martingale
central limit theorem with random indices is provided.

Keywords—central limit theorem, martingale difference sequence,
backward martingale.

I. INTRODUCTION

FORWARD and backward martingale limit theory has very
useful unifying properties in the sense that many specific

limit theorems follow as special cases of martingale’s. The
classical form of the forward martingale central limit theorem,
as presented by Brown [7] and amplified by Dvoretzky [8],
Scott [21] and McLeish [17], closely resembles the theorem of
Lindeberg and Feller [3], [4]. Analogous backward martingale
(also known as reverse martingale) central limit theorems are
presented by Loynes [14].

Let n ≥ 1 be a fixed integer. Consider a finite sequence
{X1, · · · , Xn} of martingale difference random variables (i.e.,
Xi is Fi-measurable and E(Xi|Fi−1) = 0 a.s., where
{Fi}0≤i≤n is an increasing filtration and F0 is the trivial
σ-algebra). Let Sn = X1 + X2 + · · · + Xn and v2

n =∑n
i=1 E(X2

i ). The central limit theorem established by Brown
[7] and Dvoretzky [8] states that under some Lindeberg-type
condition,

�n = sup
x∈R

∣∣∣∣P
(

Sn

vn
< x

)
− Φ(x)

∣∣∣∣ → 0 (1)

as n → ∞, where Φ(x) = (1/
√

2π)
∫ x

−∞ e−u2/2du is the
standard normal distribution function. More recent studies on
martingale cental limit theorems and their convergence rates
can be find in e.g. [13], [15], [16], [18]. We refer the reader
to books [10] and [6] for more about martingale central limit
theorems.

A classical (forward) martingale central limit theorem with
random norming is the following. See [10] for a proof.

Theorem 1. Let {Si}i≥0 be a zero-mean martingale se-
quence relative to {Fi}i≥0. Let ci =

√
V ar(Si) < ∞,

Xi = Si − Si−1 and S0 = 0. Suppose

(i) max1≤i≤n Xi

cn

P−→ 0 (in probability),
(ii) There exists a real-valued random variable η such thatPn

i=1 X2
i

c2
n

P−→ η.
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If P (η = 0) = 0, then

Sn√∑n
i=1 X2

i

L−→ N(0, 1) (2)

as n → ∞, where “
L−→ N(0, 1)” denotes convergence in

distribution to standard normal distribution.

The following is an analogous backward martingale central
limit theorem. Also see [10] for a proof.
Theorem 2. Let {Si}i≥0 be a zero-mean backward martin-
gale sequence relative to a sequence of decreasing σ-fields
{Gi}i≥0, and let s2

i = E(X2
i |Gi+1), where Xi = Si − Si−1.

Suppose

(i)
P∞

i=n s2
i

E(
P∞

i=n s2
i )

a.s.−→ 1 (almost surely),

(ii)
P∞

i=n X2
iP∞

i=n s2
i

a.s.−→ 1.
(iii) There exists a real-valued random variable η such thatP∞

i=n X2
i

n

P−→ η.
If P (η = 0) = 0, then

Sn√
E(

∑∞
i=n s2

i )

L−→ N(0, 1) (3)

as n → ∞.

In this paper, we want to generalize Theorem 1 and 2 to
cover the random indices. In other words, we investigate the
sum of a random number of forward (and backward) mar-
tingale difference sequence {Xi}. This question is important
not only in probability theory itself but in sequential analysis,
random walk problems, Monte Carlo methods, etc. Central
limit problems for the sum of a random number of independent
random variables have been addressed in the pioneer work of
Anscombe [2], Rényi [20] and Blum et. al. [5]. More recent
study can be found in e.g. [9], [11], [12], [19], most of which,
nevertheless, deals with simple independent cases.

The rest of the paper is organized as follows. In Section 2,
we present our forward and backward martingale cental limit
theorems and in Section 3, we give the proofs.

II. MAIN RESULTS

The following is our martingale central limit theorem with
random indices.
Theorem 3. Let {Si}i≥0 be a zero-mean martingale se-
quence relative to {Fi}i≥0. Let ci =

√
V ar(Si) < ∞,

Xi = Si −Si−1 and S0 = 0. Denote by {Nn}n≥1 a sequence
of positive integer-valued random variables such that

Nn

ωn

P−→ ω (4)
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as n → ∞, where {ωn}n≥1 is an arbitrary positive sequence
tending to +∞ and ω is a positive constant. Suppose

(i) max1≤i≤n Xi

cn

P−→ 0,
(ii) There exists a real-valued random variable η such thatPn

i=1 X2
i

c2
n

P−→ η,
(iii) There exists some k0 ≥ 0 and c > 0 such that, for any

λ > 0 and n > k0, we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 | ≥ λ
)

≤ c · E(Sn − Sk0)
2

λ2
, (5)

(iv) Cov(Xi, Xj) ≥ 0 for all i and j,
(v) There exists some k1 > 0 and α > 0 such that, for any

n > k1, we have ( ∑
i≥n

ci

)2

≤ αc2
n. (6)

If P (η = 0) = 0, then

SNn√∑Nn

i=1 X2
i

L−→ N(0, 1) (7)

as n → ∞.

We give some remarks here. Firstly, note that the assumption
(iii) is for sufficiently large index of martingale difference
sequence Xi, i.e., {Xi}i>k0 . Secondly, if {Xi}i≥1 is in-
dependent, then (iv) automatically holds for k0 = 0 and
c = 1 by using the Kolmogorov inequality or Doob martingale
inequality (see e.g. [4]). Therefore, the assumption (iii) may
be regarded as a “relaxed” Kolmogrov inequality. Thirdly, the
assumption (iv) says that each pair Xs, Xt of {Xi}i≥1 are
positively correlated. In view of the independent case [5], it
seems likely that the assertion of Theorem 3 still holds when
ω is a positive random variable.

Our backward martingale central limit theorem reads as
follows. Similar remarks as above may apply.
Theorem 4. Let {Si}i≥0 be a zero-mean backward martin-
gale sequence relative to a sequence of decreasing σ-fields
{Gi}i≥0, and let s2

i = E(X2
i |Gi+1), where Xi = Si − Si−1.

Denote by {Nn}n≥1 a sequence of positive integer-valued
random variables such that

Nn

ωn

P−→ ω (8)

as n → ∞, where {ωn}n≥1 is an arbitrary positive sequence
tending to +∞ and ω is a positive constant. Suppose

(i)
P∞

i=n s2
i

E(
P∞

i=n s2
i )

a.s.−→ 1,

(ii)
P∞

i=n X2
iP∞

i=n s2
i

a.s.−→ 1,
(iii) There exists a real-valued random variable η such thatP∞

i=n X2
i

n

P−→ η,
(iv) There exists some k0 ≥ 0 and c > 0 such that, for any

λ > 0 and n > k0, we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 | ≥ λ
)

≤ c · E(
∑n

i=k0+1 X2
i )

λ2
, (9)

(v) Cov(Xi, Xj) ≥ 0 for all i and j.

Then
SNn√

E(
∑∞

i=Nn
s2

i )

L−→ N(0, 1) (10)

as n → ∞.

III. PROOFS

In this section, we provide the proofs of Theorem 3 and
Theorem 4, which are similar in spirit.

Proof of Theorem 3. Let 0 < ε < 1/2. From (4) it follows
that there exists some n0, for any n ≥ n0,

P (|Nn − ωωn| > εωωn) ≤ ε. (11)

For any x ∈ R, we obtain

P

⎛
⎝ SNn√∑Nn

i=1 X2
i

< x

⎞
⎠

=
∞∑

n=1

P

(
Sn√∑n
i=1 X2

i

< x,Nn = n

)
. (12)

By (11) and (12), we obtain for n ≥ n0,∣∣∣∣∣P
⎛
⎝ SNn√∑Nn

i=1 X2
i

< x

⎞
⎠

−
∑

|n−ωωn|≤εωωn

P

(
Sn√∑n
i=1 X2

i

< x,Nn = n

)∣∣∣∣∣
≤ ε. (13)

Let n1 = [ω(1 − ε)ωn] and n2 = [ω(1 + ε)ωn]. Since ωn

tends to infinity, we have n1 ≥ k0 for large enough n. Note
that Sn1 +

∑
n1<k≤n Xk = Sn. Then we have for |n−ωωn| ≤

εωωn,

P

(
Sn√∑n
i=1 X2

i

< x,Nn = n

)

≤ P

⎛
⎝Sn1 < x

√√√√ n2∑
i=1

X2
i + Y,Nn = n

⎞
⎠ , (14)

where

Y = max
n1<n≤n2

∣∣∣∣∣∣
∑

n1<k≤n

Xk

∣∣∣∣∣∣ . (15)

Likewise, we have

P

(
Sn√∑n
i=1 X2

i

< x,Nn = n

)

≥ P

⎛
⎝Sn1 < x

√√√√ n1∑
i=1

X2
i − Y,Nn = n

⎞
⎠ , (16)
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Involving the assumptions (i)-(iii), (iv) and (15), we obtain for
large enough n,

P

⎛
⎝Y ≥ ε

1
3

√√√√ n1∑
i=1

X2
i

⎞
⎠ ≤ cE(

∑n2
i=n1+1 Xi)

2

ε
2
3

∑n1
i=1 X2

i

≤ 5cαε
1
3

η
, (17)

the right-hand side of which is less than 1 when ε is small
enough. Note that η 	= 0 by assumption, which justifies the
expression (17).

Denote by E the event that Y < ε1/3
√∑n1

i=1 X2
i . By virtue

of (13), (14), (17) and assumption (ii), we get

P

⎛
⎝ SNn√∑Nn

i=1 X2
i

< x

⎞
⎠

≤ P

(
Sn1√∑n1
i=1 X2

i

< x

√∑n2
i=1 X2

i∑n1
i=1 X2

i

+ ε
1
3 , E

)

+
5cαε

1
3

η
+ ε

≤ P

(
Sn1√∑n1
i=1 X2

i

< x(1 + ε)
cn2

cn1

+ ε
1
3

)

+

(
5cα

η
+ 1

)
ε

1
3 . (18)

Similarly, from (13), (16) and (17) it follows that

P

⎛
⎝ SNn√∑Nn

i=1 X2
i

< x

⎞
⎠

≥ P

(
Sn1√∑n1
i=1 X2

i

< x − ε
1
3 , E

)
− ε. (19)

Using (19), (17) and the assumption (iv), we may derive

P

⎛
⎝ SNn√∑Nn

i=1 X2
i

< x

⎞
⎠ ≥ P

(
Sn1√∑n1
i=1 X2

i

< x − ε
1
3

)

·P (E) − ε

≥
(

1 − 5cαε
1
3

η

)

·P
(

Sn1√∑n1
i=1 X2

i

< x − ε
1
3

)

−ε, (20)

where the first inequality is due to an application of the FKG
inequality (see e.g. [1]).

Now by Theorem 1 we obtain

lim
n1→∞P

(
Sn1√∑n1
i=1 X2

i

< x

)
= Φ(x), (21)

where Φ(x) is the standard normal distribution function as
defined above. Combining (18), (20) and (21), we then ends
the proof of Theorem 3. �

Proof of Theorem 4. Let 0 < ε < 1/2. From (8) it follows
that there exists some n0, for any n ≥ n0,

P (|Nn − ωωn| > εωωn) ≤ ε. (22)

For any x ∈ R, we obtain

P

⎛
⎝ SNn√

E(
∑∞

i=Nn
s2

i )
< x

⎞
⎠

=

∞∑
n=1

P

(
Sn√

E(
∑∞

i=n s2
i )

< x,Nn = n

)
. (23)

By (22) and (23), we obtain for n ≥ n0,

∣∣∣∣∣P
⎛
⎝ SNn√

E(
∑∞

i=Nn
s2

i )
< x

⎞
⎠

−
∑

|n−ωωn|≤εωωn

P

(
Sn√

E(
∑∞

i=n s2
i )

< x,Nn = n

)∣∣∣∣∣
≤ ε. (24)

Let n1 = [ω(1 − ε)ωn] and n2 = [ω(1 + ε)ωn]. Since ωn

tends to infinity, we have n1 ≥ k0 for large enough n. Note
that Sn1 +

∑
n1<k≤n Xk = Sn. Then we have for |n−ωωn| ≤

εωωn,

P

(
Sn√

E(
∑∞

i=n s2
i )

< x,Nn = n

)

≤ P

⎛
⎝Sn1 < x

√√√√E
( ∞∑

i=n1

s2
i

)
+ Y,Nn = n

⎞
⎠ , (25)

where

Y = max
n1<n≤n2

∣∣∣∣∣∣
∑

n1<k≤n

Xk

∣∣∣∣∣∣ . (26)

Likewise, we have

P

(
Sn√

E(
∑∞

i=n s2
i )

< x,Nn = n

)

≥ P

⎛
⎝Sn1 < x

√√√√E
( ∞∑

i=n2

s2
i

)
− Y,Nn = n

⎞
⎠ , (27)

Involving the assumptions (i)-(iv) and (26), we obtain for large
enough n,

P

⎛
⎝Y ≥ ε

1
3

√√√√E
( ∞∑

i=n2

s2
i

)⎞
⎠ ≤ cE(

∑n2
i=n1+1 X2

i )

ε
2
3 E(

∑∞
i=n2

s2
i )

≤ 5cε
1
3 , (28)

the right-hand side of which is less than 1 when ε is small
enough.
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Denote by E the event that Y < ε1/3
√

E(
∑∞

i=n2
s2

i ). By
virtue of (24), (25), (28), and assumption (i)-(iii), we get

P

⎛
⎝ SNn√

E(
∑∞

i=Nn
s2

i )
< x

⎞
⎠

≤ P

⎛
⎝ Sn1√

E(
∑∞

i=n2
s2

i )
< x

√
E(

∑∞
i=n1

s2
i )

E(
∑∞

i=n2
s2

i )
+ ε

1
3 , E

⎞
⎠

+5cε
1
3 + ε

≤ P

⎛
⎝ Sn1√

E(
∑∞

i=n2
s2

i )
< x

√
1 + 2ε

1 − 2ε
+ ε

1
3

⎞
⎠

+(5c + 1)ε
1
3 . (29)

Similarly, from (24), (27) and (28) it follows that

P

⎛
⎝ SNn√

E(
∑∞

i=Nn
s2

i )
< x

⎞
⎠

≥ P

⎛
⎝ Sn1√

E(
∑∞

i=n2
s2

i )
< x − ε

1
3 , E

⎞
⎠ − ε. (30)

Using (30), (28) and the assumption (v), we may derive

P

⎛
⎝ SNn√

E(
∑∞

i=Nn
s2

i )
< x

⎞
⎠

≥ P

⎛
⎝ Sn1√

E(
∑∞

i=n2
s2

i )
< x − ε

1
3

⎞
⎠ · P (E) − ε

≥ (1 − 5cε
1
3 ) · P

⎛
⎝ Sn1√

E(
∑∞

i=n2
s2

i )
< x − ε

1
3

⎞
⎠

−ε, (31)

where the first inequality is due to an application of the FKG
inequality.

Now by Theorem 2 we obtain

lim
n1→∞P

⎛
⎝ Sn1√

E(
∑∞

i=n1
s2

i )
< x

⎞
⎠ = Φ(x), (32)

where Φ(x) is the standard normal distribution function as de-
fined above. Combining (29), (31) and (32), we then concludes
the proof of Theorem 4. �
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